
 

  

 

 

 

 

 

 

 

 
 
 
 
 

 
Introduction 
 

Over the past decade metabolomics has emerged as a powerful 
tool used in a variety of quite diverse fields for hypothesis 
development, to elaborate unknown gene functions, biomarker 
discovery and to complement proteomic and transcriptomic 
experiments. While considerable progress has been made, the datasets 
obtained from metabolomics experiments still remain extremely large 
and dense and thus subsequently a challenge to interpret and derive 
biological meaning. This challenge lies in the difficulty of 
understanding how dozens of chemically diverse compounds, a small 
subset of the hundreds to thousands of metabolites present within 
cells, are functionally related to each other and the perturbed 
condition of the experiment. While it is possible, and common, for 
experimenters to intuitively interpret these results using their 
knowledge of metabolism and the tested conditions, or manually map 
them onto known metabolic pathways, computational analysis allows 
for more comprehensive interpretation. As metabolomics remains a 
developing field, bioinformatic tools designed to perform this task 
continue to be developed and released by various groups using diverse 
algorithms. While many databases, tools and projects such as the 
human metabolome database [1] have focused on creating tools 
specifically for interpreting human metabolomics experiments, the 
options for more diverse organism metabolomics are somewhat 
limited. This  review  seeks  to  introduce  the  problems  faced  when  

  
 
 
 
 
 

 
 

 
  

 

interpreting metabolomics results and describe the most current 
approaches to solving these problems in various model and 
experimental systems without a human centric bias. 

 
Background 
 

The central dogma of molecular biology delineated the basic 
transfer of biological information as moving from DNA to RNA to 
protein [2]. While many proteins interact with each other and the 
nucleic acids, the real metabolic function of the cell relies on the 
enzymatic interconversion of the various small, low molecular weight 
compounds, termed metabolites[3]. These metabolites represent the 
actual functional phenotype of the cell that when systematically 
identified and quantified, the process of metabolomics, will show an 
accurate snapshot of the cell’s physiological state [4]. A relative 
newcomer to the ‘omics’ field compared to proteomics and 
transcriptomics, the technologies and techniques behind 
metabolomics have been evolving rapidly to even the point where 
commercial kits are available for common clinical samples [5]. While 
still a developing field, excellent reviews of topics in designing a 
metabolomics experiment from sample selection and preparation 
[6,7], analytical techniques [4,8] to data processing [9,10] and 
statistics [11] are available. The frequent final product of the 
metabolomics pipeline is the generation of a list of metabolites who’s 
concentrations have been (significantly) altered which must be 
interpreted in order to derive biological meaning. While tools 
designed for this function exist, the development of many of these 
tools have been driven by the application of metabolomics to human 
pathologies such as kidney [12], heart [13], and neurological [14] 
disease and especially cancer [15,16] leaving more broadly applicable 
tools lagging somewhat behind. Additionally there is no widely 
accepted standard for the computational interpretation of metabolite 
data whereas the interpretation of protein and transcript expression 
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datasets is much more mature [17]. To fill these voids a number of 
tools have recently been developed with fresh ideas, providing new 
releases constantly, as this field emerges out of its adolescence. A 
challenge though is that as of yet, none have emerged as a 
standardized approach. Here, current solutions for metabolomic data 
interpretation will be described with reference to studies that have 
taken advantage of these new methods will be presented. Throughout, 
tools with a focus on those which can be broadly applied to any 
organism will be highlighted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Metabolomics requires many steps and choices before getting to 

the point of data interpretation which will affect how this process is 
undertaken. The main decisions are analytical platform (likely 
GC/LC-MS or NMR as they are the most common), each with their 
own advantages and disadvantages though the choice will more likely 
be dictated by instrument availability and analytical method 
(chemometric or quantitative) determined by the scope of the 
experiment. GC-MS is an extremely common metabolomics platform, 
resulting in a high frequency of tools which allow for the direct input 
of GC-MS spectra. The popularity of GC-MS is due to its relatively 
high sensitivity, broad range of detectable metabolites, existence of 
well-established identification libraries and ease of automation [18]. 
Even with its popularity, separation-coupled MS  data requires much 
processing and careful handling to ensure the information it contains 
is not artifactual [19]. While scientists have been quantifying 
metabolite levels for over 50 years through targeted analysis, the focus 
here will be on untargeted metabolomics as the problem of 
interpretation mainly needs to be dealt with for this kind of 
experiment. Untargeted metabolomics aims to identify and quantify as 
many of the metabolites in a sample as possible then determine which 
are important, rather than focusing on identifying and quantifying a 
specific set of metabolites which are expected to be important (the 
targeted approach) [20]. When this approach is undertaken with one 
of the three most common instruments (GC/LC-MS or NMR) 
metabolites are identified by using pure reference spectra (plus 

chromatographic information if applicable) which also allow for 
quantification [10].These techniques, and others were reviewed by 
Zhang et al.[8]. 

Advances in instrumentation and technical treatment of samples 
as well as data preprocessing and development of improved databases 
have been arriving rapidly in metabolomics leading to ever increasing 
numbers of metabolites identified and accuracy of their 
quantification[8]. With these improvements, one would expect the 
results of metabolomics to have a profound effect on the questions 
they’re being applied to. Indeed metabolomics approaches have shown 
many successes in identifying potential therapeutic targets and also 
assigning function to unknown genes/proteins[20], thus effectively 
connecting to the field of functional genomics. Phenotype 
characterization studies however, such as in environmental 
metabolomics, often tend to be limited to speculating cause/effect 
relationships based on prior knowledge[21]. Many studies results‘ are 
discussed in terms of ‘suggestions’, ‘correlations’, or the individual 
metabolites changing are not even discussed, just the fact that 
discerning metabolic patterns are identifiable [22].This process of 
comparing metabolic profiles and only looking for differences is more 
exaggerated when metabolomics is used for biomarker discovery. This 
process of identifying specific metabolites that are altered in a disease 
state, as well as general metabolic differences is common in 
metabolomics studies of human pathologies [12,15,23]. Putative 
biomarkers are often then confirmed using a second dataset and/or by 
confirmatory experiments examining the metabolite in cell 
cultures[12]. While these methods have obvious and well-realized 
implications in the clinical field, current metabolomics interpretations, 
especially outside of human medicine, are generally over-reliant on 
additional research for explanations as well as providing 
underwhelming conclusions for data that purports to represent the 
basal level of functionality within the cell culture, tissue or organism. 
Fortunately, tools designed to better mine and interpret metabolomics 
data have been under rapid development recently. Indeed, this step has 
been called a ‘bottleneck’ in the metabolomics pipeline [24,25,26].  

 
Key Issues 
 

It is in the final steps of interpretation where the most potential 
remains to improving the quality of information obtained from 
metabolomics [27,28,29,30]. By this point though prior steps have 
created several problems which must be overcome when interpreting 
metabolomics data: 1) All of the metabolites within a system cannot 
be identified with any one analytical method due to chemical 
heterogeneity, which will cause downstream issues as all metabolites in 
a pathway have not been quantified; 2) not all metabolites have been 
identified and characterized and so do not exist in the standards 
libraries, leading to large number of unannotated and/or unknown 
metabolites of interest; 3) organism specific metabolic 
databases/networks only exist for the highest use model organisms 
making contextual interpretations difficult for many researchers; 4) 
interpreting the huge datasets of metabolite concentrations under 
various conditions with biological context is an inherently complex 
problem requiring extremely in depth knowledge of metabolism. 
There is also one final problem, the issue of determining which 
metabolites are actually important in the experimental system in 
question. While there is no standardized method for this, there are 
many statistical tests and tools available to researchers to pick out 
statistically significant metabolites from noise [11]. The remaining 
issues have fortunately already been and will continue to be addressed 
to varying degrees as advances in technologies and method 
developments rapidly evolve. The  first  three problems will generally  

Preprocessing: Computational procedure where raw data (GC/LC-MS, 
NMR spectra) are converted into a useable form. Removes bias and makes 
samples comparable. 
 
Targeted metabolomics: Directed measurement of a group of metabolites 
suspected to be relevant in a particular system. 
 
Untargeted metabolomics: Quantification of as many metabolites as 
possible within the bounds of an instrument. 
 
Secondary Analysis: Data interpretation procedure where a finalized 
dataset is subject to higher level analysis using information obtained from 
biochemical databases. 
 
Metabolic Pathway: A series of enzyme-catalyzed biochemical reactions 
that bring a number of metabolites together under the umbrella of one 
particular biological function.  
 
‘Omics: General term for the high through-put technologies that identify 
and quantify large groups of targets at once including transcriptomics 
(mRNA), proteomics (proteins) and metabolomics (metabolites). 
 
Unannotated compound: A metabolite to which no biological function has 
been ascribed either in life in general or in the specific organism in 
question. 
 
Unknown compound: A compound that produces a unique 
chromatographic peak and mass spectrum, but who’s structure and name 
are unknown. 
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be solved/alleviated over time as advances in instrumentation and 
their combined use as well as the continued curation and community 
development of databases allows for more metabolites to be identified 
in a more contextual fashion. The final problem, which is the main 
topic of this review, will only be solved as our understanding of 
systems biology evolves and tools to tap this knowledge keep up. The 
current generation of platforms, which are at the cutting edge of the 
field have generally been built upon the foundations laid by the large 
biochemical databases. 

 
Bioinformatic Basis 

 
With the advent of the genomic age, the amount of biochemical 

knowledge has exploded in the last two decades which has 
necessitated its storage in large databases. A variety of top-down (gene 
to protein to metabolite) and bottom-up (chemical entity to 
biological function) approaches have been taken resulting in a rich 
expanse of metabolic knowledge bases available to query. These 
databases provide the contextual biochemical basis for metabolomics 
data interpretation. By supplying information about metabolites, such 
as defining which enzymatic reactions consume or produce them, and 
which pathways they’re involved in, researchers can use them to 
interpret their experiments to higher levels. An excellent review of 
these (top-down) types of databases is available in [31], while a more 
expanded review of databases is available in [32] and more recently in 
[33]. Also the Metabolomics Society website provides an excellent 
resource (www.metabolomicssociety.org/database). Additionally, and 
more specific to the development of metabolomics, mass spectral 
databases like the Golm Metabolome Database (GMD),  which link 
mass spectrum and chromatographic retention time to specific 
compounds have been developed for use in the identification stages of 
metabolomics [34,35]. Some tools designed for higher level 
metabolomic analysis can take GC-MS spectra as input and so have 
integrated select databases into their platform. The human 
metabolome database (HMDB)[1] warrants mention here as while it 
is highly specific, it contains integrated information from spectra 
(multiple NMR, GC-MS) to clinical relevance. As a result it has been 
integrated into several platforms. By far the major database that has 
been integrated into metabolomics interpretation platforms is the 
Kyoto Encyclopedia of Genes and genomes (KEGG), which is divided 
into several sub-databases with LIGAND, REACTION PAIR and 
PATHWAY being the most relevant to metabolomics [36]. These 
databases have been undergoing continuous updating and annotation 

for close to 20 years and so contain a great deal of valuable 
information. KEGG and MetaCyc are currently the largest (most 
number of organisms) and most in depth comprehensive (i.e. contains 
linked information from metabolite to gene) databases available, and 
so have been frequently integrated into interpretation platforms. The 
most commonly integrated databases have been summarized in Table 
1.This leaves other databases (further reviewed in [31]), such as 
Reactome [37] (human),KNApSAcK [38] (plants), Model SEED 
[39] (diverse), and BiG [40] (6 model organisms), somewhat 
overshadowed, though they do have their own tools for use in 
metabolomic analysis, and can be more useful than the large databases 
if a specific organism is desired. The KEGG and MetaCyc databases 
each contain a generalized ‘conserved’ set of pathways based on 
metabolic pathways that are more or less the same throughout life in 
general. For KEGG, organism specific annotations are available to 
query while for MetaCyc, individual ‘Cyc’ databases have been 
generated for a number of organisms, some just computationally, 
others extensively manually curated such as AraCyc for 
Arabidopsis[41]. A more recent development are the cheminformatic 
databases like PubChem [42] and ChEBI [43], which provide a 
chemically ontological approach to cataloguing the ill-defined 
category of ‘small molecules’ active in biological systems. These types 
of databases can provide additional non-biology specific information 
as well alternative formatting options for datasets. Finally it is 
important to note that the few databases discussed here are by no-
means exhaustive and that these databases are cross-referenced and 
linked to each other as well as against more widely known databases 
such as the well-known Chemical Abstract Service (CAS) [44] among 
many others. 

 
Metabolomics Secondary Analysis: Enrichment Analysis and 
Metabolite Mapping 

 
Biochemical databases provide an excellent backdrop of 

information for metabolomic analysis tools to query. Like many 
techniques in metabolomics, the algorithms for using these databases 
for interpretation evolved from methods developed for transcriptomic 
and proteomic analysis, such as Gene Set Enrichment Analysis 
(GSEA) [46]. This landmark technique has been the clear influence 
for several recent metabolomic tools, namely PAPi [24], MBRole 
[27], MSEA [30,47] (as implemented by two different groups) and 
MPEA [29]. While each tool is unique in its algorithm, the general 
idea  of  enrichment  analysis  is  used  by  all.   Enrichment   analysis  
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depends on meta-data being associated with metabolites as 
biochemical entities. As such they can be annotated with various 
classifiers such as chemical family or which metabolic pathways it is 
involved in. Enrichment analysis can then take a list of metabolites, 
and with some tools their relative abundances (including 
positive/negative changes), and calculate based on some metric 
whether any particular pathway(s) (or some other classifier such as 
chemical family) is (statistically) more represented than any other, 
based on all possibilities. The assumption is then that this particular 
pathway is being more perturbed by the experimental condition than 
others, hence the observed significance and alterations to 
concentrations in the input metabolites. This method of secondary 
analysis has evolved alongside the complementary technique of 
metabolite mapping of which available non-specific network 
visualization tools have been reviewed in [48,49,50].These generic 
network tools allow for integration of multiple ‘omics datasets, as well 
as more user controlled flexibility. Metabolomics specific network 
mapping tools also exist, some of which are components of databases 
such as the KEGG pathway databases (KEGG Atlas) and MetaCyc’s 
Pathway Tools [51,52]. Other explicitly designed tools are also 
available, some of which have been summarized in Table 2. 
CytoScape[53] is a highly used/integrated stand-alone networking 
program for ‘omics datasets which even has plugins like 
MetScape[54] designed for viewing human metabolic data. The 
principal idea behind pathway mapping is the contextual visualization 
of metabolomics data. On these networks, nodes represent 
metabolites and edges (connecting lines) represent enzymatic 
conversions. By highlighting the significantly changed metabolites 
(with or without magnitudes) on organism specific (if available) or 
life-general metabolic pathways a researcher is provided with an 
interpretable visualized representation of their data. Biological 
inferences can then be made by manually inspecting these figures, 
while some platforms provide network topology analysis tools. The 
complex subject of computational representation and analysis of 
metabolic networks has been reviewed in [55]. Between visualization 
and enrichment analysis secondary analysis is becoming an important 
step in biological interpretation of metabolomics experiments. 

Metabolomics secondary analysis tools have been developed by a 
number of groups with diverse implementations, however there are 
many commonalities. One of the major benefits of many of these 
tools is their implementations of user-friendly GUIs, allowing greater 
accessibility and precluding the necessity of learning the complicated 
tools they’re based on, most prevalently, R(The R Project for 
Statistical Computing, www.R-project.org). Before continuing, 
enrichment analysis will be used as a synonym for over-representation 
analysis, which some tools prefer to use. For enrichment analysis two 
objects are needed, a (ranked) list of items (i.e. genes or metabolites) 
provided by the experiment and a background set of annotations, 
derived from biochemical databases, computationally, through manual 
curation or some combination thereof. The list of metabolites can be 
ranked based on some metric indicating how different the abundances 
of each metabolite is between two sample classes, which can be 
calculated a number of different ways. As such the list will then show 
the metabolites with the most different abundances at the top of the 
list and the most similar at the bottom. The background set should 
contain all known metabolic pathways in an organism, each pathway 
including all the involved metabolites. For example the ‘TCA cycle’ 
contains the metabolites succinate, oxaloacetate, isocitrate etc. 
Compounds can occur multiple times as they are parts of many 
pathways, such as oxaloacetate which also appears in glyoxylate 
metabolism, among other pathways.  

A danger with KEGG is that it includes pathways such as 
‘metabolic pathways’ and ‘microbial metabolism in diverse 

environments’ which contain huge numbers of metabolites, and so as 
such are relatively meaningless when found as enrichment analysis 
hits. ‘Aminoacyl-tRNA biosynthesis’ is also a common hit to be taken 
with a grain of salt, as it is often highlighted when several amino acids 
are identified as significant. Careful scrutinization of metabolic 
pathways to ensure that they are logical is an important step in 
analyzing results produced by any platform. Other problems can arise 
when a dataset contains inordinate representation of certain pathways 
(either very few or very many). When many metabolites from one 
pathway are found in a dataset this pathway may be found to be 
significant mainly due to the large number of metabolites. Also the 
converse can happen if only a few metabolites are present in the 
dataset, but they changed significantly between classes, the pathway 
may not be found to be important due to the low number of 
metabolites [56]. Another issue occurs when querying the general 
(non-species specific) KEGG database as pathways that are non-
existent in the experimental organism arise as significant. Sometimes 
this is obvious as with ‘synthesis of plant secondary metabolites’, 
though other times it may be difficult to know especially since well-
curated metabolism databases exist for a scant few organisms. This is 
problematic for checking not only whether the pathway exists, but 
whether the annotation is accurate. Finally, even with well-annotated 
organisms there will metabolites identified that have not been assigned 
to any reaction whereas in poorly annotated organisms metabolites 
may be in metabolic pathways differently than expected from the 
canonical databases. Thus it is of the utmost importance for 
researchers to carefully regard the results produced by any secondary 
analysis tool and to understand how each piece of software works to 
ensure that the biological interpretation of the data is not skewed by 
some computational artifact. Cross-validating results through the use 
of multiple tools or multiple users producing the same result with a 
given platform is time consuming but would buttress the confidence 
in a result. Ultimately the best form of validation is a follow-up 
experiment however finding support from the literature for a result 
will also boost confidence.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
These issues, and KEGG’s issues are somewhat alleviated by the 

BioCyc[45] series of organism specific databases,  which if one has 
not already been generated, researchers with fully sequenced organisms 
can automatically produce such a customized database using the 
powerful Pathway Tools software [52]. This tool takes a sequenced, 
annotated genome and determines which metabolic reactions exist by 
comparing against the MetaCyc database of ‘all’ known metabolic 
reactions. A rudimentary metabolic network is then generated which 
must be manually curated using actual experimental knowledge to 
ensure that the computational model is actually accurate. These 
models have shown useful to many researchers, however their use is 
less prevalent among enrichment analysis tools. 

 

Metabolite mapping: Visual attribution of specified metabolites within 
known, pre-defined metabolic pathways. Can include further information 
like significance and abundance in control vs. experimental classes. 
 
Metabolite Networking: Statistical computation that groups metabolites 
together based on some property. 
 
Network Topology Analysis: Statistical computation that computes how 
objects (nodes and edges) are related with a particular network graph. 
 
Enrichment analysis: Statistical calculation that uses biological annotation 
to attempt to discern out of a set of (significantly changing) metabolites 
which higher level functional properties (pathways) are being affected. 
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Overview of Metabolomics Secondary Analysis Tools 

 
As with the rest of the metabolomics field, the sub-field of 

secondary analysis is rapidly evolving. Many tools for metabolite 
mapping and enrichment have been recently developed and are 
available for use. Generally these tools can be divided into two 
categories: enrichment analysis and metabolite mapping. Enrichment 
analysis aims to provide higher level information about metabolism 
from a list of metabolite abundances in different sample classes. 
Metabolite mapping provides a visual representation of metabolomic 
data by showing the identified metabolites (and their abundances) on 
a network graph, often obtained from a biochemical database. Some 
tools provide other functions as well, or can perform both 
simultaneously. Additionally the option to integrate other ‘omics data 
is becoming more prevalent. MetaboAnalyst and MeltDB are two 
platforms that warrant special mention as they provide a 
comprehensive environment to analyze metabolomics data from raw 
spectra all the way to secondary analysis. Finally it should be noted 
that the platforms discussed here are by no means an exhaustive list, 
merely a representative set of the most used and promising tools at 
this time. 

 
Comprehensive Platforms 
 

 
MetaboAnalyst [57] provides a suite of utilities allowing 

comprehensive analysis from raw spectral data to pathway analysis 

within one platform. Also included are tutorials and example datasets 
that can easily be loaded to practice analysis. Five main choices are 
available: statistical, enrichment and pathway analysis as well as time 
course analysis. A number of other utilities including data quality 
checking (useful for batch effects) and a metabolite ID converter 
among others are also included. If beginning from raw GC or LC-MS 
data MetaboAnalyst uses XCMS [69] for peak fitting, identification 
etc. Once at the peak list (NMR or MS) stage, various preprocessing 
options such as data-filtering and missing value estimation can be 
used. Next a number of normalization, transformation and scaling 
operations can be performed. At this point the dataset is entered and 
can be subjected to MetaboAnalyst’s entire suite of statistical analyses 
including metabolomics standards like PCA, PLS-DA and 
hierarchically clustered heatmaps, among many other options. While 
all these tools are useful and highly convenient, they can similarly be 
performed by many other platforms, albeit often with less accessibility 
making MetaboAnalyst a good option for those new to the field. It is 
the secondary analysis tools MSEA and MetPa (accessible as 
enrichment and pathway analysis) however which are of interest to 
this review. 

The Enrichment Analysis tool of MetaboAnalyst was one of the 
earliest implementations of GSEA for metabolomics datasets. As it 
stands, it is quite biased towards human metabolism as except for the 
custom option, all the available background sets for enrichment 
analysis are of various mammalian derived human-centric sets 
including blood, urine and disease associated metabolite sets. It is 
however possible to provide a custom background set thereby 
allowing any organism to be studied. This implementation of MSEA 
provides three options for input: a single column list of compounds 
(Over Representation Analysis, ORA), a two column list of 
compounds AND abundances (Single Sample Profiling, SSP) and a 
multi-column table of compound abundances in classed samples 
(Quantitative Enrichment Analysis, QEA). Each option can provide 
different information. ORA will calculate whether a particular set of 
metabolites is statistically significantly higher in the input list than a 
random list, which can be used to examine ranked or threshold cut-off 
lists. SSP is aimed at determining whether any metabolites are above 
the normal range for common human biofluids. QEA is the most 
canonical and will determine which metabolite sets are enriched 
within the provided class labels, while providing a correlation value 
and p-value. MetaboAnalyst’s MSEA has been used for a number of 
applications including aiding in characterizing the metabolic basis of 
Fragile X syndrome [70], understanding how various environmental 
pollutants affect goldfish tissues differently [71], and in identifying 
metabolic changes that occur as mice age [72]. Generally the results 
provided by MSEA were used to contextualize the observed changes 
in individual metabolites. 

The Pathway Analysis tool of MetaboAnalyst, MetPa, performs 
somewhat similarly to MSEA, however it performs pathway 
enrichment and network topology analysis. It also provides broader 
options for organism databases including 17 common model 
organisms such as C. elegans, A. thaliana, E. coli, M. musculus among 
others, as well as a custom option. Input options are the same as 
MSEA. Once the data is loaded, the background database selected, 
the test method (Fisher’s Exact or Hypergeometric) and network 
topology metric must also be chosen. Output from MetPa is an 
interactive set of graphs. One graph plots the p-values vs pathway 
impact for the computed metabolic pathways. This graph allows one 
to discover the highest significantly impacted pathways for further 
exploration. Clicking data points on this graph will cause the network 
to be displayed in an adjacent view, with the input metabolites 
highlighted. Clicking these metabolites will show a box whiskers plot 
for each class allowing one to visualize increases and decreases. 

Figure 1. Flow chart showing possibilities of metabolomics secondary 
analysis. Beginning with a list of metabolites, and also in some cases 
associated with relative abundances or a comparable metric the data can 
be analyzed two different ways which may include intermediary steps. 
Also needed is a biochemical database to be used in annotating the 
biological (and/or chemical function) of the listed metabolites. The list of 
metabolites plus abundances can undergo statistical analysis in order to 
pre-screen for metabolites having significant differences between sample 
classes, or the abundances can be used to calculate how differently 
they’re expressed between each sample class (difference metric) which is 
then used to rank the list from most different to most similar. 
Significances can be used for both metabolite mapping and enrichment 
analysis. Metabolite mapping is the visual attribution of specified 
metabolites within known, pre-defined metabolic pathways which can 
include further information like significance and abundances as node 
attributes such as size and colour. Enrichment analysis is a statistical 
calculation that uses biological annotation to attempt to discern out the 
input metabolites which higher level functional properties (pathways) are 
being affected. This can take the form of searching for particular 
annotations at the top/bottom of the ranked list or examining whether a 
particular set is over-represented in the significant list. 
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Through these functions MetPa can be used to visualize metabolomic 
data within known metabolic pathways, along with calculating which 
pathways are significantly affected. This ability makes it a powerful 
tool for secondary analysis. It has been used to understand the 
diabetes-contextual effects of a high-fructose diet in rats [73]. The 
results were used along with corroboration from TICL [68] to 
provide a starting point for analysis. MetPa has also been used to 
understand metabolomic results of renal injury in heart failure 
patients [74]. Finally it was used  to identify perturbations to leucine 
and cysteine amino acid metabolism as well as energy metabolism in 
Dupuytren’s disease of fibroblasts from the palm of the hand [75]. 
This presence of a specific metabolic phenotype will aid in the pursuit 
of the cause of the disease. 
 

MeltDB [30] is another comprehensive suite for metabolomics 
data analysis designed explicitly as a free and platform independent 
integrated project management and analytical pipeline that takes raw 
GC or LC-MS data through spectral preprocessing, data 
normalization, statistical analysis and recently integrated, enrichment 
analysis all within the same system. Their registration required web-
based implementation allows multiple users (with various privileges 
such as view-only accounts) to work in parallel on the same projects. 
Also available are features for experiment meta-data description such 
as test conditions, extraction method and analytical parameters. 
MeltDB allows for data to be input at any level of processing, IE raw 
spectra can be imported and have their peaks detected, identified and 
quantified (with a choice from a variety of methods) or previously 
pre-processed data can be imported. This includes access to their 
implementation of MSEA [60]. Similar to MetaboAnalyst, MeltDB 
provides a wealth of options and utilities for analyzing MS 
metabolomics data including a large number of platforms (also 
accessible as stand-alone applications eg. XCMS [69]) for 
chromatographic MS processing. It is also able to import 
preprocessed data from common (non open-source) vendor-specific 
software. Further in the pipeline and similar to MetaboAnalyst, 
MeltDB can be used to perform statistical analysis like PCA and 
generate figures such as hierarchically clustered heatmaps which again 
is very useful for new comers. These features have been used in 
demonstrating how SEC is a superior sample collection method for 
Corynebacterium glutanicum and in the metabolic characterization of 
different parts of the grain during the highly important process of 
industrial barley malting [76]. MSEA takes a ranked list of 
compounds and determines whether a particular pathway is enriched 
towards the top or bottom of this list, however it provides the highly-
convenient option of being able to natively rank the list based on a 
number of metrics. In their analysis used to test this new tool it was 
found that the use of a highly specific background set, CglCyc (from 
their sequenced C. glutanicum), which was automatically produced 
then manually curated produced better results than the use of the 
KEGG database. Two main reasons were provided. First, KEGG 
pathways are much larger and interconnected than their CglCyc 
pathways resulting in the obstruction of information when there are 
opposite fluxes in different parts of the pathway (the provided 
occurrence was in opposite abundances in the upper and lower regions 
of gluconeogenesis). Second, as previously noted, KEGG annotated 
pathways do not exist in all organisms. Further testing was performed 
on datasets obtained from a number of mutant lysine production 
strains, which generally showed the expected results of alterations to 
lysine and threonine metabolic pathways as their mutations targeted 
this split of branched chain amino acid metabolism. This new tool 

appears to be quite powerful, though also very reliant on the quality 
of the background set. 

 
Enrichment Analysis 

 

Pathway Activity Profiling [24] is an R-based tool designed 
specifically for secondary analysis of metabolomic data. As input it 
takes a list with abundances (normalized and scaled) and working on 
the assumptions that the detection (IE presence in the list) of more 
metabolites in a pathway and that lower abundances of those 
metabolites indicates higher flux and therefore higher pathway activity 
PAPi calculates an activity score (AS) for each pathway. The 
metabolic pathways are taken from the general KEGG database and 
the AS indicates the probability of this pathway being active in the 
cell. These scores can then be used to compare experimental and 
control conditions by performing ANOVA or a t-test to compare 
two sample types. As such, PAPi is a classic implementation of 
metabolomics secondary analysis, allowing users to derive higher level 
information from a simple list of metabolites. It has been used to 
show the similarity between genetic and environmental perturbation 
of yeast strains, which was in agreement with the previously published 
conclusions. It has also been used to show that sound caused 
frequency dependent metabolic alterations[77] and that different 
biological interpretations will be made in microbial metabolomics 
based on the extraction methodology [78]. While PAPi’s assumptions 
may not be universally accurate (TCA cycle intermediates can have 
high abundance even when flux through the reactions in this pathway 
is also high) and the interface is more difficult than other platforms, it 
still provides an excellent option for enrichment analysis. 
 

Metabolic Biological Role [27] is another classic implementation 
of enrichment analysis. Taking as input a list of significantly changing 
metabolites (IE statistically processed already) MBRole calculates 
which pathways and chemical groups are enriched either against a pre-
compiled (from KEGG) or user supplied background set. Output is a 
table of metabolic pathways with significance p-values and the 
pathways hyper-linked to KEGG metabolism maps. MBRole is an 
easy to use yet powerful tool as it can take input under many different 
database formats and compute the enrichment based on any of the 
available annotations. Also the use of any of the organism-specific 
KEGG annotations makes the investigation of diverse organisms easy. 
It has been used as a starting point to interpret steatotic liver tissue 
metabolomic data. Results were interpreted in the context of the 
identified enriched pathways that were altered in steatotic tissue with 
prior knowledge and direct examination of the metabolite pools[79]. 
While the flaws of KEGG annotations remain present, MBRole 
provides an excellent simple implementation of enrichment analysis 
for the average user. 
 

Metabolite Pathway Enrichment Analysis [29] is a stand-alone 
tool that takes a ranked list of metabolites (either KEGG IDs or mass 
spectra with retention index) and determines if a particular known 
metabolic pathway (as annotated in the background set) tends to 
appear more towards the top or bottom of that list. Output is a table 
of metabolic pathways (linked to KEGG) with p-values (among other 
data) indicating whether the pathway was significantly enriched. The 
default settings are human-biased as KEGG and the SMPDB[80] (a 
curated set of human pathways) are queried however a custom 
background set option is also available. The list can be ranked by any 
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metric, such as significance to a model or t-tests of concentration. 
One of the main differences between MPEA and other tools is the 
ability to work with ambiguously identified compounds, especially 
useful when working from mass spectra. Mass spectra are first 
identified using the GMD, then ambiguous identifications resolved 
within the pathway enrichment analysis. This tool has been used by 
the group that developed it to make a minor contribution in studying 
Alzheimer’s progression, showing that pentose-phosphate pathway 
was altered in patients that were developing dementia [81]. 
 

The Tool for automatic Interpretation of a Compound List [68] 
is an early example of metabolomics secondary analysis. It was 
designed to take a list of (significantly) changed metabolites from an 
experiment and calculate whether they are biologically related, 
according to KEGG pathways. Taking a list of KEGG IDs as input, 
TICL outputs a list of pathways with p-values indicating the 
probability of this pathway appearing by chance. A relatively 
underused tool, TICL has been used to demonstrate differences 
between the biofilm and planktonic response to metal stress[82], and 
to supplement/compare MetPa results in studying the effects of a 
high-fructose diet on rats[73]. An early pioneer in the field with a 
sound premise, at the time of writing TICL was not functional. 
 

Integrated Molecular Pathway-Level Analysis [66] is a tool 
designed to perform enrichment analysis on both metabolomic and 
proteomic or transcriptomic datasets simultaneously. Taking as input 
a list of metabolites plus a list of genes/proteins if available (not 
necessary) IMPaLA can calculate pathway enrichment using one of 
two methods.  Enrichment is computed either against a user-provided 
background set or against the whole set chosen from the available 
input format databases (KEGG, HMDB, ChEBI etc). The input can 
either be preselected for significance by some other analysis or can 
include abundance information between two different classes. In 
either case, output is a table of pathways hyper-linked to the database 
it was found in along with a p-value indicating significance. For the 
purposes of combined analyses there is a p-value calculated separately 
for genes and metabolites as well as a combined value. This makes 
IMPaLA a good tool for analyzing combined datasets however the 
limited outlinking with pathways and lack of visualization means that 
there are potentially better options for just metabolomics enrichment 
analysis.  

 
Metabolite Mapping 
 

MetaMapp [25] presents a novel approach to metabolic mapping 
which uses chemical similarity of compounds in order to overcome 
the difficulties of missing, unknown and unannotated metabolites 
prevalent in metabolomics data. Development of this platform was 
due to a dissatisfaction with other available metabolic mapping tools, 
generally due to the above being more or less addressed, depending on 
the particular tool. Hence MetaMapp was developed on the premise 
that since biochemistry is the interconversion of chemically similar 
entities, compounds can be clustered solely by their chemical 
similarity. While this was found to be highly beneficial for 
metabolites without reaction annotation, chemical similarity mis-
clustered some obviously biologically-related metabolites. As such 
MetaMapp uses both chemical similarity and KEGG reactant pair 
data. Finally, the problem of unknown compounds was addressed by 
adding the possibility to map metabolites based on their mass spectral 

similarity. While the resultant graphs are somewhat busy, especially 
when statistical information such as significance or fold-change is 
applied to node attributes such as size and colour, this novel approach 
can provide much needed contextual information about unannotated 
and unknown metabolites. The function of this tool was 
demonstrated using GC-MS metabolomic data from three tissues 
involved in fetal exposure to tobacco smoke: maternal plasma and 
lungs and fetal lungs. Using MetaMapp, an identical network of the 
179 identified metabolites (excluding unknowns) was generated for 
each tissue, with various biologically and chemically related clusters 
clearly visible. For each graph, only significant metabolites were 
labeled, with color representing up or down regulation (compared to 
the unexposed control) and size representing fold-change. Aligning 
these three graphs allowed for a visual inspection of the metabolomic 
data which made interpretation pleasantly obvious. These results 
clearly showed that the fetal lungs were most affected, with fatty acids 
being the most dysregulated. Also present were alterations to several 
amino acids. These results show the promise of this novel technique 
in interpreting metabolomics experiments. One of the most exciting 
features, which was not involved in the confirmatory results is the 
ability to map unknown metabolites. This possibility will likely be 
very useful in discovering novel metabolic pathways in the future. 

 

MassTrix [62] is a platform for automatically identifying high 
precision spectra and mapping data in the context of organism-
specific KEGG pathways. It is one of the oldest tools discussed and 
has been well-utilized. Developed by the same group as Meta P-server, 
the ability to integrate raw transcriptomic data was recently added 
[63]. This ability, plus the identification of compounds previously 
annotated within an organism (from KEGG) differentiates MassTrix 
from other platforms. The identification procedure is based on 
comparing the masses of input ions to known metabolites obtained 
from their multi-integrated database including options for adducts 
and isotopes though it may be by-passed by entering previously 
identified KEGG IDs. Once data has been uploaded and analyzed, 
two sets of results are provided. The Compound section shows all of 
the annotated compounds with mass, formula, identity and which 
database the ID was acquired from. This section can be examined for 
ambiguity issues and compounds are clickable to find their pathway 
annotations linked from KEGG. The Pathway section of results 
allows pathways of interest (those which include identified 
compounds) to be visualized with ID’d compounds highlighted as 
well as transcriptomic data applied. One drawback here is the inability 
to assign metabolite abundances. Indeed, MassTrix is somewhat 
limited compared to more modern tools, though the added 
integration of transcriptomic data has great potential. Additionally, 
MassTrix has an excellent track record of use for a wide variety of 
applications. It has been used to study the effects of dry-bean 
consumption on carcinogenesis in rats[83], to explore the wide 
dynamic range of the human metabolome in healthy individuals[84] 
and also quite interestingly to study the ‘metabolome’ of organic 
matter in sea-spray [85] among many other successful applications 
 

PaintOmics [65] is an ‘omics mapping web-tool that takes 
metabolite and transcript abundances and significances and maps 
them onto organism-specific KEGG maps. Taking either or both 
types of data, PaintOmics will produce a series of KEGG pathway 
maps with the data highlighted on the networks, as well as providing 
an enrichment analysis p-value for each pathway. It is capable of 
coloring objects (metabolites or transcripts) for each condition 
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provided in the input. Given that PaintOmics will include any 
pathway with at least one entry the enrichment analysis or prior 
knowledge will be needed to assist in interpretation. While an 
improvement over the combined mapping abilities of MassTrix, 
PaintOmics suffers from the same drawbacks of other KEGG based 
utilities, namely quality of annotation and size of pathways, both of 
which are addressed by MetaMapp. Still the ability to seamlessly 
integrate both transcriptomic and metabolomic datasets, as well as 
display the results of multiple classes in one visualization make it a 
useful tool. Additionally as KEGG annotations continue to improve 
and include more species it will only increase in utility. Thusfar it has 
be used to map transcriptomic data from differently cultured 
hepatocellular carcinoma cells [86]. 
 

The tool for the Visualization and Analysis of Networks with 
related Experimental Data (VANTED) [67] is another tool capable 
of mapping ‘omics data onto custom and KEGG derived networks 
with additional visualization and analysis options. Contrary to most 
other programs, VANTED must be installed on the user’s computer. 
Taking any combination of data (in the form of relative or absolute 
concentrations in different samples), it will present the data upon the 
relevant biological networks. This allows users to see the 
concentrations of metabolites in sample classes AND their connection 
to other metabolites and/or genes and/or proteins together. This 
works best when many linked metabolites have been quantified, which 
is unfortunately often not the case in metabolomics experiments. 
Statistical tests indicating whether metabolite concentrations are 
significantly different from the control can also be automatically 
performed and their result appended to the visualization. VANTED 
provides numerous options for how the networks are generated 
including downloaded organism-specific KEGG maps as well as 
correlation-based mapping using various metrics. These statistically 
oriented maps, along with the convenient presentation of metabolite 
abundance data make VANTED a powerful tool for metabolomic 
secondary analysis. Since its release it has been updated frequently and 
has been highly used in the field. VANTED has been used to 
interpret metabolomics results in a wide variety of studies including 
the effects of drought response on wheat leaves [87], the effects of 
pyruvate for treatment of mitochondrial disease [88] and 
understanding how glucose starvation affects Staphylococcus aureus 
[89], among many others.  
 

Pathos [64] is a metabolite mapping tool designed in response to 
MassTrix’s limitations. Specifically it was made to include the ability 
to map data from different experimental conditions and compare their 
degree of change. Apart from this difference, Pathos identification 
functions similarly to MassTrix taking mass/charge values (or 
previously identified compound IDs) and identifies them using an 
organism-specific KEGG database, then displays the KEGG pathways 
with the input metabolites highlighted. Different than MassTrix 
though, a p-value for each pathway is not provided. Output is a list of 
pathways with the number (out of the total) of identified metabolites 
which are clickable to show the mapped pathway. On the visualization 
identified metabolites can be clicked to show a column plot 
comparing the abundances under each condition. Generally this tool is 
relatively comparable to the many other metabolite mapping tools. It 
has been used in conjunction with Ingenuity Pathway Analysis to 
monitor stem cells in regenerative medicine [90]. 

 

ProMeTra [91] is an ‘omics viewing web-tool designed to 
visualize any kind of ‘omics data not only on KEGG database derived 
metabolic pathways but also on user supplied pathways. Its 
visualization system was designed to take advantage of the Scalable 
Vector Graphics (SVG) format allowing easy coloring (eg by 
abundance differences), extra annotation and even the production of 
animations. These features allow for the easy generation of clear, 
visually appealing multi-class annotated pathway maps for use in 
biological interpretation. Regulons can also be visualized, which when 
annotated with transcriptomic can clearly show biological effects. 
ProMeTra’s main draw compared to other mapping tools is the use of 
SVG graphics which allow for infinite zooming, output at any 
resolution and easy manipulation in SVG capable drawing programs. 
Even so it is an underused tool, perhaps due to the login-based (but 
not required) system or the less intuitive UI. 

 
Others 
 

MetExplore [28] is a metabolism exploration suite which can 
analyze metabolic networks without metabolomic data, though it also 
has a tool which will identify all the pathways individual metabolites 
can be involved in. This implementation was designed to overcome 
MetaCyc’s shortcomings of mapping compounds iteratively onto each 
relevant pathway, instead MetExplore aims for one single 
representation of each metabolite. Using the MetaCyc/BioCyc series 
of databases there is a relatively wide choice of organism databases. 
MetExplore’s main tools are Metabolome Mapping and a series of 
computational analysis tools. These tools do not involve data input, 
they just provide a variety of methods to analyze MetaCyc derived 
metabolic networks. Choke point analysis can identify 
reactions/metabolites that are unique within the network whereas 
scope and precursor analysis allow the investigation of what 
metabolites are required/are possible to produce the other metabolites 
in the network. Such analyses can be used to identify a minimal set of 
media or whether a particular metabolite can be generated given a 
defined media. These tools have been used to work on understanding 
the symbiotic relationship between Buchnera and its aphid host [92]. 
For all types of analysis filters are available to restrict artifacts and 
adjust the analysis. MetExplore’s metabolome mapping tool is 
somewhat more limited than other comparably named tools. It can 
take as input a list of masses or identified metabolites, but does not 
output a visualization. Instead it provides a table view which indicates 
for each metabolites which metabolic pathways they are involved in 
and also topological information IE the number of reactions that 
produce/consume it, ranging from none to many for each direction. 
While this has its uses, the same information can generally be 
obtained from other mapping tools, however the computational 
analysis tools provided by MetExplore could be quite useful to 
researchers working on organisms that have a –Cyc database. 
 

Meta P-server [61] is a metabolomics exploration tool specifically 
designed to work with multi-class experiments. Taking as input a 
metabolite quantitation table and a sample description matrix, a 
number of statistical tests are automatically performed which can then 
be viewed and colored according to any identifiers in the sample 
description matrix. This allows the quick and easy checking for batch 
effects, outlying samples and also overall data quality. The two main 
statistical outputs are PCA plots and hypothesis testing. The 
generated PCA plots can be colored by each possible class identifier 
allowing the most important classifier to be quickly found. 
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Hypothesis testing of whether metabolite concentrations are different 
is performed for each possible class division, generating a series of 
boxplots with significant differences highlighted. For example if the 
data are classified by sampling day (Day 2, 3 and 5) and by drug 
dosage (none, high) two sets of hypothesis test results will be 
produced, one showing whether there are differences between 
concentration between each day for a given dosage, and the other 
showing differences between each dosage for a given day. This is 
performed for each metabolite. The other statistical result generated is 
a heatmap of correlations for any given numerical classifiers. Also 
included an option for direct import of Biocrates AbsoluteIDQ [5] 
kit derived data. While not providing any secondary analysis options, 
Meta P-server provides a quick and easy method for statistical analysis 
of multi-class experiments. 

 
Commercial Software 

 
All of the above software are completely free to use, with most 

not even requiring registration of an account. There are also a number 
of commercial pieces of software available. These software are 
generally designed to be comprehensive solutions for use in multi-
omics experiments including a number of integrated pathway analysis 
and contextual visualization choices. Additionally these software are 
more geared towards human/mammalian model (i.e. mouse, rat) 
disease and drug investigations and use manually curated proprietary 
databases. 
 

Ingenuity Systems Inc. (Redwood, CA), offers a data analysis 
suite deemed Ingenuity Pathway Analysis (www.ingenuity.com). 
Using their Ingenuity Knowledge Base, metabolomic data (among 
other ‘omics data types) can be mapped onto networks and 
enrichment analysis can also be performed. These features are among 
a large suite of systems biology analysis tools that are designed to 
allow biologically contextual representation of data. These data can 
come from a large variety of different types of experiments ranging 
from small-scale drug target experiments to combined transcriptomic 
and metabolomic studies. While many types of data can be used, IPA 
can take just a list of altered metabolites as input and use literature-
characterized signaling and metabolic pathways to identify the 
biologically relevant effects of an experiment. This approach has been 
used to aid in the understanding of diverse metabolomics experiments, 
including colorectal cancer [93] and detoxifying processes in 
traditional Chinese medicine [94]. 

 

GeneGo Inc. (Carlsbad, CA), of Thompson Reuters, along with 
MetaMiner and MetaDrug is a series of pathway analysis and data 
mining tools highly geared towards human disease investigations. 
Among these tools are features for mapping multi-omics experiments, 
drug target prediction, and pathway perturbation analysis for toxicity 
studies. These tools all work against their proprietary manually 
curated databases, which for some features extend into common 
model and pathology-relevant organisms. Metacore has been used to 
perform over representation and network analysis on datasets 
combining metabolomic and either transcriptomic or proteomic data 
to understand toxin mode of actions [95] and biomarkers in 
colorectal cancer [96], respectively. 
 

Agilent Technologies (Santa Clara, CA) provides a comparable 
suite while also providing features for MS analysis of raw data by 

integrating with their Mass Profiler Professional, however this 
program has mostly been used for transcriptomic analysis. 

 
Summary and Outlook 

 
Metabolomics represents the apical step in the paradigm of 

systems biology. Its rapid development has provided unparalleled 
understanding of metabolic processes to a plethora of different fields. 
The secondary analysis of metabolomics data is a recent addition 
which will provide researchers with much more power in finding 
biological interpretation. Currently though, few researchers tend to be 
using enrichment tools and the provided results are rarely heavily 
discussed in their manuscripts. While the results from this type of 
analysis should not be the sole source of information for biological 
interpretation of metabolomics experiment, the provided results are 
highly useful in giving metabolic context for many metabolites at 
once, without having to search through databases one at a time. Still, a 
number of researchers have shown they provide an excellent 
springboard for diving into the depths of metabolomics data.  

As the field of metabolomics secondary analysis evolves, a number 
of challenges remain. Beyond the ever-changing processes of data pre-
processing and statistical analysis for metabolite significance, the 
contextual interpretation of metabolomics results will also need 
improving. While the software described in this review are a good 
beginning, future analyses will need to be highly tailored towards 
organism-specific metabolic reconstructions. The MetaCyc derived 
series of databases have begun to fill this role, however as genome 
annotation remains a marginally accurate process, the models 
generated from such data are affected equally. Community driven 
confirmation and elucidation of genetic and metabolic annotation of 
databases like EcoCyc have shown that it is only a matter of time and 
effort for reasonable computational models to be built. For other 
organisms comparable tools will be developed as the research 
community deems them important. Another major improvement to be 
made would be decreasing the number of inaccurate and meaningless 
pathway hits made in enrichment analysis. This may be difficult 
though as metabolites will only become annotated into more 
metabolic pathways as their connections are elucidated. Great steps 
have been made in metabolite mapping techniques, especially with the 
chemical similarity connections provided by MetaMapp, however the 
interpretability of all maps remains difficult. Computational 
improvements in the graphical presentation and ease of producing 
legible maps will make metabolite mapping better for metabolomic 
secondary analysis. 

Achieving good biological interpretations of metabolomics data is 
easier in medical studies of humans and generally when using highly 
studied model organisms due to the preponderance and quality of 
databases associated with these subjects. While it is generally true in 
science that studying organisms with a wealth of literature makes data 
interpretation easier, this effect is greatly amplified in metabolomics. 
Thus humans, E. coli, and A. thaliana are much more convenient to 
perform metabolomics secondary analysis upon compared to, for 
example, a freshly isolated environmental bacterial strain. Again 
MetaCyc and its associated tools present the solution though 
producing an organism-specific –Cyc database from an annotated 
genome remains a complex time consuming endeavour. Fortunately 
the documentation continues to improve and SRI International is 
well-engaged with the research community for educational and 
software feedback purposes. 

Regarding the current set of available tools, they all have strengths 
and weaknesses and it should not come to the use of one over the 
other. Once a metabolomics dataset has reached the point of 
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secondary analysis, applying any of the above tools is not a hugely 
time-consuming process and so it may be wise to use multiple tools 
and take the consensus results. Definitely the use of at least one 
enrichment analysis and one visualization/mapping tool is 
recommended. Given the complexity of metabolomic data, it is also 
important to carefully regard the results from secondary analysis as it 
is possible for enrichment analysis to produce significant pathway hits 
from only one or two metabolites in a pathway. As such, careful 
scrutinization and logical biological interpretation of the data must be 
undertaken. With this in mind metabolomics researchers should strive 
to integrate secondary analysis into their studies as these highly useful 
results can be obtained very rapidly. Clearly the field of secondary 
analysis is coming into its own and its continuing development will 
only serve to improve the success of the metabolomics approach. 
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