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Abstract Circadian regulation of transcriptional processes has a broad impact on cell

metabolism. Here, we compared the diurnal transcriptome of human skeletal muscle conducted on

serial muscle biopsies in vivo with profiles of human skeletal myotubes synchronized in vitro. More

extensive rhythmic transcription was observed in human skeletal muscle compared to in vitro cell

culture as a large part of the in vivo mRNA rhythmicity was lost in vitro. siRNA-mediated clock

disruption in primary myotubes significantly affected the expression of ~8% of all genes, with

impact on glucose homeostasis and lipid metabolism. Genes involved in GLUT4 expression,

translocation and recycling were negatively affected, whereas lipid metabolic genes were altered to

promote activation of lipid utilization. Moreover, basal and insulin-stimulated glucose uptake were

significantly reduced upon CLOCK depletion. Our findings suggest an essential role for the

circadian coordination of skeletal muscle glucose homeostasis and lipid metabolism in humans.
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Introduction
Circadian rhythms are daily cycles of most bodily processes driven by a system of intrinsic biological

clocks organized in a complex hierarchical manner. This mechanism ensures a temporal coordination

of physiology and behavior with a near 24 hr period of rest-activity and feeding-fasting cycles, thus

providing the organism with an evolutionary conserved advantage (Albrecht, 2012; Spoelstra et al.,

2016). In mammals, the circadian system is driven by a central pacemaker, situated in the paired

suprachiasmatic nuclei (SCN) of the hypothalamus, and by secondary oscillators located in peripheral

organs. The SCN clock is readjusted on a daily basis, mainly by light inputs coming from the retina.

In turn, the central pacemaker orchestrates peripheral clocks through a combination of neuronal,

endocrine, and metabolic signaling pathways (Saini et al., 2015). As a result, metabolic processes in

the liver, skeletal muscle, and other organs are subject to daily oscillations (Asher and Sassone-

Corsi, 2015) with the SCN keeping these rhythms in appropriate synchrony with each other.

Skeletal muscle is responsible for ~70% of glucose uptake resulting from ingested carbohydrates

(DeFronzo et al., 1981; Gachon et al., 2017), and perturbations in glucose sensing and metabolism

in this organ are strongly associated with insulin resistance in type 2 diabetes (T2D) (Muoio and

Newgard, 2008). In rodents, it has been established that the skeletal muscle clock plays an essential

role in maintaining proper metabolic homeostasis, with skeletal muscle pathologies stemming from

clock disruption via deletion of the core clock component Bmal1 (Andrews et al., 2010;

Harfmann et al., 2015). Disruption of muscle insulin sensitivity by modulating glucose uptake, with a

reduction in Glut4 mRNA and protein levels, has been reported in two muscle-specific Bmal1 knock-

out (KO) models (Dyar et al., 2014; Harfmann et al., 2016). In humans, diurnal variations in glucose

tolerance have been described (Kalsbeek et al., 2014), although the molecular mechanism responsi-

ble for such variations remains largely unexplored. Feeding-fasting cycles accompanying rest-activity

rhythms represent major timing cues in the synchronization of peripheral clocks, including skeletal

muscle oscillators (Dibner and Schibler, 2015; Wehrens et al., 2017). Although several studies have

reported that in murine models 3.4% to 16% of the skeletal muscle transcriptome is expressed in a

circadian manner (McCarthy et al., 2007; Miller et al., 2007; Dyar et al., 2014; Zhang et al., 2014;

Hodge et al., 2015), it is unclear to what extent the muscle circadian transcriptome is regulated by

feeding-fasting rhythms and additional central synchronizers, and how local muscle clocks contribute

in generating these transcript oscillations. Cell-autonomous circadian clocks operating in human pri-

mary skeletal myotubes (hSKM) established from muscle biopsies have been recently characterized

(Perrin et al., 2015; Hansen et al., 2016; Loizides-Mangold et al., 2016). Importantly, proper func-

tion of these cellular oscillators is indispensable for the normal secretion of interleukin 6 (IL-6), inter-

leukin-8 (IL-8), the monocyte chemotactic protein 1 (MCP-1) and additional myokines, regulating

skeletal muscle insulin sensitivity and inflammation (Perrin et al., 2015).

In order to dissect the impact of the endogenous circadian clock on skeletal muscle gene tran-

scription from external factors and their reciprocal influence, we performed a genome-wide tran-

scriptome analysis by high-throughput RNA sequencing (RNA-seq) in skeletal muscle biopsies

collected from human subjects placed under a controlled laboratory routine, as well as in cultured

hSKM synchronized in vitro in the presence of a functional or compromised clock. An important

overlap between genes exhibiting rhythmic patterns in tissue biopsies and in synchronized hSKM

was observed. Expression patterns of genes related to insulin response, myokine secretion, and lipid

metabolism were strongly altered in the absence of a fully functional clock in vitro. These transcrip-

tional changes had important functional outputs, with basal as well as insulin-stimulated glucose

uptake and lipid metabolism being altered by perturbation of the oscillators operative in hSKM.

Altogether, these results strongly suggest that cell-autonomous skeletal muscle clocks drive rhythmic

gene expression and are indispensable for proper insulin response, lipid homeostasis, and myokine

secretion by the skeletal muscle.
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Results

Diurnal rhythms of gene expression in human skeletal muscle under
controlled laboratory routine
To assess rhythms of gene expression in human skeletal muscle, RNA samples derived from vastus

lateralis biopsies taken every 4 hr across 24 hr from 10 healthy volunteers were analyzed by total

RNA-seq (see Supplementary file 1-table S1 for in vivo donor characteristics, n = 10). Sample collec-

tion was performed under controlled laboratory routine by implementing a protocol designed to

minimize the effect of confounding factors (see Materials and methods and [Loizides-

Mangold et al., 2017]). In total 13,377 genes were quantified at the exonic level (Figure 1—source

data 1), of which 9211 genes were quantified at the intronic level as well. To identify genes with

coordinated rhythmic expression, we used a mixed linear model with harmonic terms across the 10

individuals at the pre-mRNA (intronic signal) and mRNA (exonic signal) levels. This method allowed

for the identification of 5748 rhythmic genes that were rhythmic at the pre-mRNA or/and mRNA

level with a False Discovery Rate (FDR) of 5% (Figure 1A). When rhythmicity levels were further ana-

lyzed, it became apparent that 4792 genes showed rhythmic transcription at the intronic pre-mRNA

level (Figure 1A, upper and middle left panels). However, from these rhythmic pre-mRNA tran-

scripts, only 57% were also rhythmic at the mRNA level (R-I.R-E, upper panels Figure 1A), likely

because of the longer half-life of their mRNA. Indeed, approximation of mRNA half-life by the exon/

intron ratio showed that among these rhythmic pre-mRNA transcripts, those that are only rhythmic

at the pre-mRNAs level (R-I) have a longer half-life compared to those that are rhythmic at the

mRNA level (R-E and R-I.R-E, Figure 1B). The R-I.R-E group of genes was enriched in circadian clock

genes and genes encoding RNA-binding proteins, whereas the R-I group was enriched for genes

encoding proteins involved in mRNA translation, mitochondrial activity, TCA cycle, and lipid metabo-

lism (Figure 1—source data 2). In parallel, around 10% of the quantified transcriptome (956 genes)

were only rhythmic at the mRNA level (R-E, Figure 1A, lower panels), likely through post-transcrip-

tional regulation and in particular mRNA degradation (LuckLück et al., 2014; Wang et al., 2018).

This group was enriched in genes encoding proteins involved in ribosome biogenesis and protein

transport (Figure 1—source data 2). Amplitude distribution suggested that among the genes that

were rhythmic at the pre-mRNA level, those with higher amplitude of transcription had a greater

probability to be rhythmic at the mRNA accumulation level (R-I.R-E, Figure 1C). Taken together, our

results highlight the high rhythmicity of gene expression in human skeletal muscle, even under con-

trolled laboratory routine. However, the number of genes being qualified as significantly rhythmic at

the pre-mRNA and/or mRNA level was strongly dependent on the threshold level that was applied

(Figure 1D).

As previously reported in mice, rhythmic gene transcription was distributed into two phases of

transcript accumulation (04:00 and 16:00, Figure 1E). The afternoon peak (16:00) was enriched in

genes related to muscle contraction and mitochondrial activity (Figure 1—source data 2), whereas

homologous genes in rodents were shared between the active but also the resting phase

(McCarthy et al., 2007; Miller et al., 2007; Hodge et al., 2015). In contrast, among the genes

highly activated in the middle of the night (04:00), many were associated with inflammation and

immune response (Figure 1F).

Among the rhythmic genes, we observed high amplitude oscillations for the core clock genes

ARNTL (BMAL1), NPAS2, CLOCK, PER2, PER3, CRY2, NR1D1 (REV-ERBa) and RORA, which were

well synchronized among the 10 individuals (Figure 1G). In addition, several transcription factors

associated with muscle metabolism and physiology like TFEB, a key regulator of lysosomal biogene-

sis and autophagy that also regulates glucose homeostasis and oxidative phosphorylation

(Mansueto et al., 2017), KLF13, which plays a role in cardiac muscle cell development

(LavalleeLavallée et al., 2006), and KLF15, an important transcriptional regulator of muscle lipid

metabolism (Haldar et al., 2012), showed an oscillatory profile. Moreover, also PPARD, the most

abundant PPAR isoform in skeletal muscle and master regulator of muscle mitochondrial function

(Jordan et al., 2017), and MYOD1, the key regulator of myogenesis and direct target of BMAL/

CLOCK (Andrews et al., 2010) were rhythmically expressed in human skeletal muscle, likely orches-

trating the temporal muscle transcriptome (Figure 1H). In addition to these transcription factors,

genes involved in the secretion of myokines, glucose homeostasis and lipid metabolism displayed

rhythmic transcription (Figure 1—figure supplement 1A,B and C, respectively).
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Figure 1. Rhythmic gene expression in human skeletal muscle. (A) Heat map showing genes rhythmic at the pre-mRNA and mRNA level (R-I.R-E: upper

panel), at the pre-mRNA level only (R-I: middle panel), and at the mRNA level only (R-E: lower panel). Standardized relative gene expression is indicated

in green (low) and red (high) and ordered by their respective phase. (B) mRNA half-life proxy by exon/intron ratio showing lower stability for genes with

rhythmic mRNA (R–E) profiles. (C) Amplitude distribution of genes that are rhythmic only at the mRNA level (R-E, blue), the pre-mRNA level (R-I, red), or

rhythmic for both (R-I.R-E). Genes with higher amplitude of transcription at the pre-mRNA level have a higher probability to be rhythmic at the mRNA

level (R-I.R-E). (D) Number of genes in each group in relation to the -log10 BH corrected p-value; dashed line indicates threshold of 0.05. (E) Phase

distribution at the pre-mRNA and mRNA level for the three groups described in (A). (F) Phase distribution for genes activated by acute muscle exercise

(red), inflammation (blue), or both (green). (G) Temporal expression of core clock components, and (H) key muscle transcription factors. N = 10 human

muscle biopsy donors. (I) Phase distribution of predicted rhythmic DNA motif activity.

DOI: https://doi.org/10.7554/eLife.34114.002

Figure 1 continued on next page
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To gain more insight into the rhythmic transcriptional regulation observed in this dataset, we per-

formed a DNA-binding motif enrichment analysis to identify those with rhythmic activity. As shown

in Figure 1I, the 16:00 peak is enriched in MEF2 and MYOD1 motifs, in phase with MYOD1 expres-

sion, and both proteins synergize to activate gene expression (Taylor and Hughes, 2017). In paral-

lel, the 4:00 peak is enriched in MYC and AP1 families of transcription factors, both downstream of

the MAP kinase pathway activated by exercise (Aronson et al., 1997) or wound-induced inflamma-

tion (Aronson et al., 1998).

Cell-autonomous circadian clocks regulate functional gene expression in
hSKM
To assess the impact of cell-autonomous circadian clocks operative in hSKM on skeletal muscle gene

transcription and function, we used our previously developed model of efficient siCLOCK-mediated

clock disruption (Perrin et al., 2015). RNA-seq was conducted on siCLOCK-transfected hSKM

obtained from two male donors matched for age and BMI (Supplementary file 1-table S1, donors 1

and 2, in vitro part). Human primary myoblasts were cultured and differentiated in vitro into myo-

tubes, transfected with siRNA, synchronized in vitro with a forskolin pulse, with subsequent sample

collection every 2 hr during 48 hr for RNA-seq analysis (Figure 2—figure supplement 1 and Materi-

als and methods). CLOCK expression was reduced by at least 80% upon siCLOCK depletion, as

assessed by RNA-seq and quantitative real-time PCR (Figure 2A and Figure 2—figure supplement

2A). In parallel, bioluminescence profiles derived from hSKM transduced with a lentiviral Bmal1-lucif-

erase vector were monitored as described previously (Perrin et al., 2015). As expected, the circa-

dian amplitude of Bmal1-luciferase bioluminescence reporter profile became dampened upon

siCLOCK compared to siControl and non-transfected counterparts (Figure 2—figure supplement

2B).

We first performed a differential analysis of the global gene expression profile across all 25 time

points, starting from 0 hr and until 48 hr following synchronization. Out of the 16,776 mapped

genes, the median values for all the time points, reflecting the overall expression levels of 1330

genes (8%), were significantly altered in siCLOCK-transfected hSKM compared to their control coun-

terparts, with 742 being downregulated and 588 being upregulated (Figure 2B; Figure 2—source

data 1). As expected, core clock gene expression was affected, with NR1D1 (REVERBa), NR1D2

(REVERBb), PER3, TEF, BHLHE41 (DEC2), and DBP being significantly downregulated, and CRY1

being upregulated upon CLOCK depletion (Figure 2A).

Functional clocks operative in hSKM are required for proper lipid
metabolism and response to insulin
Remarkably, genes encoding for proteins essential for vesicle formation including SNAREs, solute

transporters, and Rab GTPases exhibited significantly altered expression levels upon CLOCK deple-

tion (Supplementary file 1-table S2). Additional genes involved in secretion pathways and exhibiting

altered mRNA expression levels upon CLOCK depletion are listed in Supplementary file 1-table S3.

Using the Panther classification system (Mi et al., 2017) for gene ontology (GO) term analysis, over-

representation of genes associated with the regulation of nucleotide metabolism, transcription and

RNA processing, as well as muscle contraction were identified within the significantly down- and/or

upregulated genes (Supplementary file 1-table S4, and Figure 2—source data 2). Furthermore,

enrichment analysis using the Reactome pathway database was performed on the down- and/or

upregulated genes. Of note, overrepresentation of genes related to muscle contraction, regulation

Figure 1 continued

The following source data and figure supplement are available for figure 1:

Source data 1. List of 9211 genes identified by RNA-seq analysis in human skeletal muscle.

DOI: https://doi.org/10.7554/eLife.34114.004

Source data 2. GO term enrichment analysis for transcripts identified as rhythmic in human skeletal muscle.

DOI: https://doi.org/10.7554/eLife.34114.005

Figure supplement 1. Temporal gene expression in human skeletal muscle.

DOI: https://doi.org/10.7554/eLife.34114.003
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Figure 2. Disruption of the circadian oscillator impacts on functional gene expression hSKM. Differential gene expression analysis between hSKM

bearing a disrupted (siCLOCK) or intact (siControl) circadian clock. Comparison of the median gene expression at all analyzed circadian time points

between the two groups. A total of 16,776 genes were detected by RNA-seq as expressed above the threshold of counts per million (CPM) >3. (A)

Core clock genes; (B) 15,446 genes remained unchanged (dark blue), and 1330 genes exhibited a significantly different expression level upon siCLOCK-

mediated clock disruption (light blue), with 588 being up-regulated (orange) and 742 down-regulated (grey) (FDR <0.05 and p-value <0.05). Altered

genes comprised those related to glycerophospholipid and triglyceride metabolism, storage and transport (C) inositol phosphate metabolism (D) and

sphingolipid metabolism and storage (E). (F) Relative levels of PC, PE, PI, PS, Cer GlcCer, SM, CL and TAG, analyzed by mass spectrometry based

lipidomics in hSKM cells transfected with either siControl (orange bar) or siCLOCK (blue bar). Total phosphatidylcholine (PC) and glycosylceramide

(GlcCer) levels are significantly decreased or increased, respectively, upon siCLOCK transfection. Data are mean ± SEM, N = 4 (# p-value <0.05). (*) for

FDR <0.05, (**) for FDR <0.01, (***) for FDR <0.001.

DOI: https://doi.org/10.7554/eLife.34114.006

The following source data and figure supplements are available for figure 2:

Source data 1. List of 16,776 genes identified in hSKM by RNA-seq and used for the differential analysis.

DOI: https://doi.org/10.7554/eLife.34114.009

Figure 2 continued on next page
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of gene transcription, and cellular responses to stress and membrane trafficking were also identified

(Supplementary file 1-table S5, Figure 2—source data 3).

In addition, 42 transcripts involved in lipid metabolism were affected by CLOCK disruption. These

comprised genes related to glycerophospholipid and triglyceride metabolism as well as lipid storage

and transport (Figure 2C), in addition to those regulating inositol phosphate (Figure 2D) and sphin-

golipid metabolic pathways (Figure 2E). Importantly, the observed modifications in gene expression

level were in an accord with significant alterations in absolute lipid metabolite levels, resulting in

total phosphatidylcholine levels being downregulated, and glycosylceramide levels being upregu-

lated in the absence of a functional myotube clock (Figure 2F, Supplementary file 1-table S1,

donors 7–10 for in vitro part). The first matching a reduction in lysophosphatidylcholine symporter 1

(MFSD2A) and phosphatase LPIN1 levels (Figure 2C and F), and the latter matching the transcrip-

tome outcome for UDP-glucose ceramide glucosyltransferase (UGCG) the key enzyme of de novo

glucosylceramide biosynthesis (Figure 2E and F).

Our differential analysis in human muscle cells demonstrates that genes involved in insulin-stimu-

lated and contraction-induced glucose uptake, comprising TBC1D13, TBC1D4 (AS160), 14-3-3�

(YWHAQ), RAB35, STX6, and PDPK1 (PDK1), were significantly downregulated upon siCLOCK

(Supplementary file 1-table S2), highlighting the pleiotropic effect of the skeletal muscle CLOCK

gene/protein in regulating glucose uptake in response to insulin and/or to contraction.

To determine the protein levels of candidate genes identified by RNA-seq, hSKM cells estab-

lished from five additional donor biopsies (for donor characteristics see Supplementary file 1-table

S1) were transfected by siRNA targeting CLOCK. Matching the changes observed by RNA-seq,

CLOCK mRNA was reduced by siCLOCK as determined by RT-qPCR (Figure 3A), leading to a reduc-

tion in CLOCK protein expression by 74% (Figure 3B). Moreover, the expression of the 14-3-3q pro-

tein, a key regulator of GLUT4 translocation (Sakamoto and Holman, 2008; Kleppe et al., 2011),

was decreased by about 28% under these conditions (Figure 3C), matching the decrease in its gene

expression (Supplementary File 1-table S2). In contrast, AS160 protein levels did not change signifi-

cantly (Figure 3—figure supplement 1) despite a reduction at the mRNA expression level

(Supplementary file 1-table S2).

Finally, we analyzed the impact of clock disruption on the ability of hSKM to take up glucose in

response to insulin. The assessment of glucose uptake, using a radioactive glucose analogue, dem-

onstrated an increase in glucose uptake upon insulin stimulation in non-synchronized siControl and

siCLOCK-transfected myotubes (siControl: basal vs. insulin p-value = 0.019; siCLOCK: basal vs. insu-

lin p-value = 0.017). Importantly, we observed a significant decrease in both basal (30%), and insulin-

stimulated (27%) glucose uptake in siCLOCK-transfected myotubes, as compared to their siControl

counterparts (Figure 3D left and right panels, respectively).

RNA-seq reveals rhythmically expressed genes in cultured hSKM
synchronized in vitro
We next aimed at identifying genes that exhibited rhythmic profiles in hSKM synchronized in vitro.

The existing algorithms JTK_CYCLE (Hughes et al., 2010) and CosinorJ (Mannic et al., 2013) do

not allow for a satisfactory analysis of datasets containing large differences in amplitude, observed

among the two cycles in our datasets. We therefore developed a novel algorithm, adapted for the

analysis of our RNA-seq datasets, comprising high-resolution analysis of two full cycles (25 time

Figure 2 continued

Source data 2. GO term enrichment analysis, using the Panther classification system, for transcripts that were down- and/or upregulated upon clock

disruption.

DOI: https://doi.org/10.7554/eLife.34114.010

Source data 3. Reactome pathway analysis, using the Panther classification system for transcripts that were down- and/or upregulated upon clock

disruption.

DOI: https://doi.org/10.7554/eLife.34114.011

Figure supplement 1. Study design.

DOI: https://doi.org/10.7554/eLife.34114.007

Figure supplement 2. siRNA-mediated CLOCK knockdown leads to a flattening of the Bmal1-luc circadian oscillation amplitude in hSKM.

DOI: https://doi.org/10.7554/eLife.34114.008
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points over 48 hr) following in vitro synchronization (see Materials and methods for details). Our in

vitro algorithm was validated on the temporal expression profiles of key core clock genes from two

published large-scale time series (Atger et al., 2015; Petrenko et al., 2016) and on the model data-

set cycMouseLiverRNA from the MetaCycle R package. Briefly, after conversion of the raw data to

log2 RPKM values and filtering for log2 RPKM >0, temporal patterns of the resulting 12,985 genes

were grouped into 16 models (Figure 4A, Figure 4—source datas 1 and 2), with models 1 to 15

comprising 994 rhythmic genes (7.65%), and model 16 comprising 11,991 non-rhythmic genes

(92.35%).

Because the number of rhythmic genes exhibited larger variations between the two analyzed cell

cultures, established from two different human individuals than between siControl and siCLOCK

(Figure 4—figure supplement 1A), we proceeded with a deeper analysis of models 1 to 4, which

group together genes that are rhythmic in the siControl situation for both donor cell cultures.

According to our analysis, model 1 comprises 73 genes, classified as rhythmic in both donors upon

Figure 3. Basal and insulin-induced glucose uptake by hSKM is downregulated in the absence of a functional circadian clock. (A) CLOCK mRNA was

measured in hSKM cells transfected with siControl or siCLOCK by RT-qPCR and normalized to the mean of 9S and HPRT. CLOCK expression was

reduced by 91 ± 2% (mean ± SEM, N = 4; (***) p-value <0.001) in siCLOCK-transfected cells. Protein levels of CLOCK (B) and 14-3-3q (C) were assessed

by western blot. Left panel: representative western blot; right panel protein quantification over all monoplicates (mean ± SEM, N = 5). CLOCK and 14-3-

3q protein levels were reduced by 75 ± 2%, and 28 ± 8%, respectively. (D) Glucose uptake rates (in pmol/mg.min) measured in the absence (basal) or

presence (insulin) of insulin (1 hr, 100 nM) in siControl or siCLOCK-transfected cells. Note significant reduction of basal (31 ± 3%) and insulin-stimulated

glucose uptake (28 ± 3%). Data are mean ± SEM of four independent experiments using myotubes from four different donors (same as for A-C). (*)

p-value <0.05, (**) p-value <0.01, (***) p-value <0.001.

DOI: https://doi.org/10.7554/eLife.34114.012

The following figure supplement is available for figure 3:

Figure supplement 1. TBC1D4/AS160 protein levels are not affected by siCLOCK.

DOI: https://doi.org/10.7554/eLife.34114.013
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Figure 4. Temporal gene expression analysis in human skeletal myotubes bearing a disrupted or functional circadian clock. (A) Total of 12,985 genes

were identified by RNA-seq as expressed above log2 RPKM >0. Genes were subjected to the circadian analysis, adapted for high-resolution datasets

over 48 hr. Genes were categorized as rhythmic or non-rhythmic (NR) (left diagram) and rhythmic genes (994) were grouped into 15 models (right

panel). Genes that were non-rhythmic in either one of the 15 models (11,991 genes) are represented in model 16. (B) Heat maps for genes assigned to

Figure 4 continued on next page
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siControl and siCLOCK, models 2 and 3 include 39 and 34 genes, respectively, that are rhythmic in

both siControl donors and in one siCLOCK donor respectively, and model 4 comprises 44 genes

that are rhythmic in siControl, but not in siCLOCK (Figure 4B). Circadian core clock genes clustered

to model 1, as they exhibited a rhythmic mRNA profile in siControl and a flattened, but still rhythmic,

profile upon siCLOCK (Figure 4C and Figure 4—figure supplement 2), indicating a presence of

partially functional circadian oscillator. Of note, classification of a temporal gene profile as rhythmic

by our algorithm did not take into consideration amplitude alterations, like those generated by

siCLOCK-treatment, as long as the temporal profile was qualified as circadian. As amplitude values

were indeed often blunted upon siCLOCK treatment, to quantify such amplitude changes a log10

transformation was applied, providing approximation to a normal distribution using a paired t-test.

In agreement with our previous publication (Perrin et al., 2015), the amplitude of mRNA accumula-

tion was significantly decreased in siCLOCK samples (Supplementary file 1-table S6, Figure 4—fig-

ure supplement 1B).

In summary, 190 genes were qualified as rhythmic in the two analyzed cell cultures, and were clus-

tered into models 1–4 (Figure 4—source datas 1 and 2), as exemplified in Figure 4D (upper panels)

and in Figure 4—figure supplement 1C. Importantly, similarly to core clock genes, also these func-

tional genes exhibited a blunted circadian amplitude upon clock disruption (Figure 4D, lower pan-

els, Figure 4—figure supplement 1B). For instance, CAMKK1, classified as rhythmic in both

siControl and siCLOCK conditions (model 1), exhibited a significant circadian amplitude reduction

upon siCLOCK (Figure 4D, Supplementary file 1-table S6). In addition, SERPINE1, a myokine whose

secretion by myotube cells was reduced upon clock disruption (Perrin et al., 2015), presented lower

amplitude in siCLOCK-transfected cells (Supplementary File 1-table S6). Panther database analysis

for genes assigned to models 1–4 suggested enrichment for a number of GO term and Reactome

pathways, comprising cell cycle and mitotic regulation (Figure 4—figure supplement 3,

Supplementary file 1-tables S4-5, Figure 4—source datas 3 and 4).

Comparative analysis of diurnal rhythms of gene expression in human
skeletal muscle tissue and cultured hSKM
Consequently, we compared rhythmic gene expression between muscle biopsy and cultured hSKM

cells (Figure 5A). Among the 190 transcripts that were identified as rhythmic in hSKM cells

(Figure 4A, models 1–4, Figure 5—source data 1), 14 transcripts were excluded as they were repre-

senting non-protein coding sequences or pseudogenes. Additional 26 genes, associated with mitotic

cell cycle functions, and further 17 genes related to cell proliferation, adhesion and differentiation,

Figure 4 continued

models 1 to 4. Relative expression is indicated in green (low) and red (high). (C) Individual temporal expression profiles of core clock genes ARNTL,

NR1D1, NR1D2, CRY1, CRY2, PER1, PER2 and PER3 in siControl or siCLOCK-transfected cells. (D) Upper panel: Representative examples for genes

assigned to models 1–4. Lower panel: Circadian amplitude quantification of siControl and siCLOCK in models 1–4.

DOI: https://doi.org/10.7554/eLife.34114.014

The following source data and figure supplements are available for figure 4:

Source data 1. List of genes found in each of the 16 models identified by rhythmic analysis of the RNA-seq data.

DOI: https://doi.org/10.7554/eLife.34114.018

Source data 2. This dataset contains the log2 RPKM values for all 25 time points (0 to 48 hr) and the mean of all time points per donor and per condi-

tion (siControl/siCLOCK) as well as the model where each gene is grouped.

DOI: https://doi.org/10.7554/eLife.34114.019

Source data 3. GO term enrichment analysis, using the Panther classification system, for transcripts that were grouped into model 1.

DOI: https://doi.org/10.7554/eLife.34114.020

Source data 4. Reactome enrichment analysis, using the Panther classification system, for genes that were grouped into model 1.

DOI: https://doi.org/10.7554/eLife.34114.021

Figure supplement 1. Comparison of rhythmic transcript profiles between the two donors.

DOI: https://doi.org/10.7554/eLife.34114.015

Figure supplement 2. Temporal profiles of core clock transcript expression.

DOI: https://doi.org/10.7554/eLife.34114.016

Figure supplement 3. Genes involved in cell cycle regulation exhibit circadian expression profile in hSKM.

DOI: https://doi.org/10.7554/eLife.34114.017
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Figure 5. Comparison between the circadian transcriptome of human skeletal muscle and human primary myotubes. (A) Scatter plot, representing the

amplitude of expression in relation to the corrected p-value for genes that were rhythmic in vivo (human muscle biopsies). Genes that were also

rhythmic in vitro (hSKM, models 1–4) are colored in red. Blue dots represent genes with a p-value <0.01 and log2 amp >0.5. (B) Phase distribution plot

Figure 5 continued on next page
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were only found in hSKM and are likely a consequence of incomplete myotube differentiation in cell

culture, as opposed to fully differentiated muscle tissue. Cultured muscle cells lack the in vivo envi-

ronment and the chemical communication that exists within the tissue. Notably, the absence of neu-

ronal connections further limits the final differentiation of cultured myotubes (for review see

[Aas et al., 2013]).

Among the remaining 133 genes, 99 were expressed in human muscle biopsies. Within this group

of overlapping genes, 35 were also qualified as rhythmic at the mRNA level (q-val <0.05) in muscle

tissue (Figure 5—source data 1). The genes rhythmic in both in vivo and in vitro datasets included

the core clock components (Figure 5A), as well as functional genes that were enriched at the 04:00

time point (Figure 5B). Interestingly, genes implicated in glucose homeostasis (KLF11, GFPT2,

NAMPT) and in muscle regeneration (PLAU, PLD1, PIM1), were rhythmic both in vivo and in vitro,

suggesting an important role for the circadian clock in regulating muscle physiology (Figure 5C).

Discussion
This study presents the first large-scale circadian transcriptome RNA-seq analysis in muscle biopsies

from multiple volunteers and in hSKM cells synchronized in vitro with 2 hr resolution over 48 hr, in

the presence of a functional or disrupted cell-autonomous clock, with subsequent analysis of its

impact on gene expression. Moreover, we demonstrate that CLOCK depletion in cultured primary

skeletal myotubes led to significant changes in gene expression (Figure 2), and related physiological

outputs, comprising the regulation of basal and insulin-stimulated glucose uptake, lipid homeostasis

(Figure 3), and myokine secretion, as summarized in Figure 6. These results provide new insights

into the targets of the molecular clock in human skeletal muscle, previously only studied in rodents

(McCarthy et al., 2007; Miller et al., 2007; Dyar et al., 2014; Zhang et al., 2014; Dyar et al.,

2015). Finally, to dissect the effects of the cell-autonomous endogenous clock from SCN signals and

entrainment cues, this dataset was compared to the diurnal transcriptome of human skeletal muscle

collected in form of serial muscle biopsies across 24 hr (Figures 1 and 5).

Comparison between the circadian transcriptome of synchronized
myotube cells in vitro, and human muscle tissue collected in vivo
Our in vitro myotube system allows us to explore the transcriptional regulation of muscle target

genes without confounding effects of the SCN, rest-activity and feeding-fasting cycles

(Harfmann et al., 2015). Regarding the rhythmic analysis of in vitro RNA-seq data, larger variations

were observed between the two donors than between siControl and siCLOCK conditions (Figure 4—

figure supplement 1), likely due to the genetic heterogeneity among human individuals. The low

number of subjects therefore represents a limitation of our study, despite high time-resolution of 2

hr for sample collection conducted over 48 hr, that resulted in as many as 25 time points per myo-

tube donor. We therefore concentrated on genes, which were rhythmic in both donors in siControl

condition, irrespectively of their rhythmicity disruption by siCLOCK treatment. In total, 994 circadian

genes (7.65% of the global transcriptome) were rhythmic in at least one of the four models (models

1–4, Figure 4A–B), exceeding the value found for U2OS cells, exhibiting 1.5% of oscillating gene

transcripts (Krishnaiah et al., 2017). When compared with the diurnal transcriptome of human skele-

tal muscle biopsies, the percentage of rhythmic genes was considerably lower, likely due to the cell

culture situation where the circadian amplitude is gradually lost (Figure 2—figure supplement 2B)

in the absence of entrainment (Hughes et al., 2009), or due to effects driven by the SCN or behav-

ioral rhythms rather than by the local peripheral clock. Moreover, we cannot exclude that

Figure 5 continued

of genes rhythmic in muscle biopsies and primary myotubes shows enrichment at the 04:00 time point. (C) Examples of genes, involved in glucose

homeostasis and muscle regeneration, that are rhythmic in vivo and in vitro (RNA-seq data, N = 10).

DOI: https://doi.org/10.7554/eLife.34114.022

The following source data is available for figure 5:

Source data 1. List of 190 genes, rhythmic in hSKMs.

DOI: https://doi.org/10.7554/eLife.34114.023

Perrin et al. eLife 2018;7:e34114. DOI: https://doi.org/10.7554/eLife.34114 12 of 30

Research article Human Biology and Medicine

https://doi.org/10.7554/eLife.34114.022
https://doi.org/10.7554/eLife.34114.023
https://doi.org/10.7554/eLife.34114


discrepancies between the in vivo and in vitro circadian datasets are in part also influenced by the

fiber type composition of vastus lateralis and gluteus maximus, as demonstrated by myosin isoform

analysis (Loizides-Mangold et al., 2017). Additional differences with respect to gene rhythmicity

between the two datasets may stem from potential differences due to the different algorithms

employed for the data analyses.

Among the 35 genes classified as rhythmic in cell culture and in skeletal muscle tissue, were

genes involved in glucose metabolism and in muscle regeneration, including PLAU (LluisLluı́s et al.,

2001) and PIM1 kinase (Fischer et al., 2009), along with core clock components such as NR1D1 and

NR1D2 (Figure 5A), previously identified as the most rhythmic transcripts across all human and

mouse datasets (Laing et al., 2015). Phospholipase PLD1 (Teng et al., 2015), involved in intracellu-

lar membrane trafficking and maintenance of glucose homeostasis in human skeletal muscle

(Huang et al., 2005) was rhythmically expressed in vivo and in vitro. Moreover, oscillatory genes in

both datasets included NAMPT, KLF11, and GFPT2, the latter controlling the flux of glucose into the

hexosamine pathway, tightly linked to hyperglycemia and insulin resistance (Coomer and Essop,

2014). The expression of NAMPT, a key regulator of NAD+ synthesis and muscle maintenance

(Frederick et al., 2016), was previously shown to be regulated by CLOCK and BMAL1 in complex

with SIRT1 (Ramsey et al., 2009; Garten et al., 2015). Importantly, the diurnal rhythm of secreted

NAMPT is disturbed by sleep loss, and positively associates with impairment of postprandial glucose

metabolism (Benedict et al., 2012). The transcription factor KLF11, a glucose-inducible regulator of

insulin transcription and secretion, that is a member of the Krüppel-like family of transcription factors

proposed as circadian (Yoshitane et al., 2014), was found to be regulated by the circadian clock in

mouse kidney and epididymal fat tissue (Guillaumond et al., 2010), and is possibly involved in post-

prandial glucose metabolism in skeletal muscle (Neve et al., 2005).

Comparison of our in vitro dataset to the results published on U2OS cells (Hughes et al., 2009;

Krishnaiah et al., 2017) revealed that among the 190 genes that were rhythmic in human skeletal

Figure 6. Schema summarizing impact of clock disruption on muscle metabolic function. Clock disruption leads to impaired insulin sensitivity and

decrease in glucose uptake (1), causes a dysregulation of genes involved in vesicle trafficking (2) and impacts lipid metabolism and lipid metabolite

oscillations (3) as reported in Loizides-Mangold et al. (2017).

DOI: https://doi.org/10.7554/eLife.34114.024
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myotubes, 30 were also rhythmic in U2OS. Among those were members of the core-clock machinery,

and multiple genes involved in cell cycle progression and mitosis. Moreover, the sulfatase ARSJ,

involved in glycosphingolipid metabolism, EXOSC8, a regulator of mRNA stability, LRRC16A,

involved in actin filament organization, and TUBA1C, encoding for a structural constituent of the

cytoskeleton, as well as E2F1 were rhythmic in skeletal myotubes and in U2OS cells. Interestingly,

the RING finger domain protein-encoding gene TRIM47 exhibited a rhythmic expression in human

skeletal myotubes, in human muscle biopsies, and in U2OS cells.

A comparison of our in vivo dataset (exonic signals) to published temporal gene expression data-

bases of mouse skeletal muscle (Dyar et al., 2014; Zhang et al., 2014) revealed 107 common rhyth-

mic genes between mouse and human skeletal muscle. When comparing the circadian phases of

core-clock components in our database to the temporal profiles of the corresponding genes in

rodents (Dyar et al., 2014; Zhang et al., 2014), we observed a phase shift of 8–10 hr. This result is

in good agreement with a phase shift observed between peripheral clocks in nocturnal versus diurnal

species, which is indeed typically smaller than 12 hr (Mure et al., 2018). The question remains at

what level such a phase-shift between nocturnal and diurnal species occurs, and why it is not exactly

12 hr in peripheral organs (Mure et al., 2018). Further comparative studies, conducted in the same

type of tissue and with the same methodology, will be required to explore this fundamental issue.

An important observation was the strong induction of genes associated with inflammation and

immune response in human muscle in the early morning hours (04:00) (Figure 1F), 16 hr after sam-

pling of the first biopsy. We cannot fully rule out that repeated muscle sampling contributed to this

signature, as previously reported for repeated biopsy sampling of a single muscle via the same skin

incision site over 25 hr (Friedmann-Bette et al., 2012). However, clinical sampling was optimized to

minimize this effect, as serial vastus lateralis biopsies were sampled across alternating limbs and

from separate skin incision sites, each proximal to the previous (Van Thienen et al., 2014), not

excluding the possibility that circulating molecules may diffuse an inflammatory signal between limbs

(Catoire et al., 2012). Importantly, this immune signature was restricted to a single time point in the

early morning hours, and thus likely does not exclusively result from responses to muscle injury,

which would have further increased at the last time point (08:00). Given that inflammatory cytokines

have been described as myokines and important regulators of muscle physiology, this could thus

represent a true signature with relevant outcomes for muscle physiology.

One limitation of the comparison between RNA-seq datasets obtained for in vivo and in vitro

skeletal muscle and hSKM samples in the present study stems from different analyses methods

applied for the two datasets. The algorithms applied here for these two datasets were chosen to

optimally fit each dataset differing in the number of time points and the time span of samples collec-

tion. Indeed, cellular samples were collected every 2 hr over 48 hr resulting in 25 time points,

whereas muscle tissue biopsies were collected every 4 hr over 24 hr, resulting in six time points only,

due to obvious practical limitations of repetitive muscle tissue biopsy sampling from the same

individuals.

Effect of CLOCK depletion on myotube gene transcription and core
clock gene regulation
Efficient clock disruption in adult hSKM cells via siRNA-mediated CLOCK knockdown by our previ-

ously validated protocol led to significant changes in gene expression (Figure 2A and B)

(Perrin et al., 2015; Petrenko et al., 2016; Loizides-Mangold et al., 2017). Most core clock genes

were downregulated upon siCLOCK transfection, in addition to a flattening of the Bmal1-luciferase

profile (Figure 2—figure supplement 2B), consistent with our previous data for hSKM and human

pancreatic islets (Perrin et al., 2015; Saini et al., 2016). However, despite the observed amplitude

blunting, core clock components still presented remnant circadian expression profiles that can likely

be attributed to the partial downregulation of CLOCK, and to compensatory mechanisms that occur

to maintain the circadian machinery (DeBruyne et al., 2007) (Figure 2A, Figure 2—figure supple-

ment 2A), leading to the observation that the effect on absolute gene expression was more pro-

nounced than the effect on mRNA rhythmicity (Figure 4C and D). Although our established

experimental system for cellular clock disruption mediated by efficient CLOCK knockdown proved

highly useful to study transcriptional and functional outputs in cultured human primary cells, one

should keep in mind that core-clock genes also perform clock unrelated functions. The same holds

true for genetic mouse models, where different core-clock gene KO strains exhibit distinct
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phenotypes. To discriminate between clock-related and unrelated effects of the CLOCK gene knock-

down, alternative methods for the circadian clock perturbation will be required.

Muscle fiber type parameters are affected in response to siCLOCK
Gluteus maximus is a slow muscle characterized by high levels of MYH7 expression, fatigue resis-

tance, and slow speed contraction as well as an oxidative metabolic type (Talbot and Maves, 2016).

Although the levels of key transcription factors regulating fiber-type-specific genes, including

MYOD1, NFATC1, SIRT1 and PPARGC1A were not significantly altered upon siCLOCK, we identified

an upregulation of multiple genes characteristic for type I slow fibers, as well as a downregulation of

genes associated with type II fast fibers (Supplementary file 1-table S7). Whether these changes

affect mitochondrial activity stays to be further explored. Importantly, a recent study has demon-

strated that Bmal1 KO myotubes display reduced mitochondrial respiration and a reduced expres-

sion of hipoxia-inducible factor 1 (HIF1) target genes (Peek et al., 2017). In agreement, we also

observed reduced expression of the HIF target gene VEGFA upon clock disruption

(Supplementary file 1-table S7), supporting the hypothesis that clock - HIF interactions play an

important role in the glycolytic capacity of skeletal muscle. In addition, we also observed an upregu-

lation of myosin light chain kinase MLCK (MYLK) that contributes to force generation by myofila-

ments. Taken together these observations reinforce the hypothesis that clock disruption induces a

global switch in the genetic program towards slow type I muscle fibers, as it was previously sug-

gested in muscle-specific Bmal1 KO mice (Hodge et al., 2015).

Muscle clock alteration impairs glucose uptake in response to insulin
Skeletal muscle is responsible for 70–80% of insulin-stimulated glucose uptake (DeFronzo and Tripa-

thy, 2009). Importantly, we observed a 30% decrease in glucose uptake for both basal and insulin

stimulated conditions in siCLOCK-transfected hSKM (Figure 3C). Previous studies have reported

similar observations in either Bmal1-specific muscle KO, or in ClockD19 mutant mice

(Kennaway et al., 2007; Dyar et al., 2014; Harfmann et al., 2016). Recently, it was shown that car-

diomyocyte-specific Bmal1 KO and ClockD19 mutant mice exhibit defects in insulin-regulated pro-

cesses, including over-activation of AKT and mTOR signaling (McGinnis et al., 2017). Although we

did not see significant changes in GLUT1 or GLUT4 gene expression levels, our differential analysis

highlighted many genes involved in the regulation of the GLUT4 translocation pathway

(Supplementary file 1-table S2 and Figure 2—source data 1).

Upon closer analysis of the GLUT4 translocation and recycling pathways, we observed changes

upon siCLOCK treatment at each step, with several genes being differentially expressed. Specifically,

the enzyme PI4K2A, catalyzing the phosphorylation of phosphatidylinositol (PI) to phosphatidylinosi-

tol 4-phosphate (PI4P), was downregulated at the mRNA level, which may result in decreased PIP2

and PIP3 levels (Pullen et al., 1998; Sakamoto and Holman, 2008). Additionally, siCLOCK-depleted

cells overexpressed MAPKAP1 (mSIN1), one component of the mTORC2 complex required for AKT

phosphorylation (Frias et al., 2006), and CAV-3, essential for PI3K and AKT activity as well as

GLUT4 translocation in muscle (Fecchi et al., 2006; Tan et al., 2012). Moreover, the observed

reduction of 14-3-3� (YWAHQ) upon siCLOCK at both the mRNA and protein level may lead to an

attenuated inhibition of TBC1D1 and TBC1D4 (AS160), and thus block GLUT4 translocation to the

plasma membrane (Ramm et al., 2006; Roach et al., 2007; An et al., 2010; Kleppe et al., 2011;

Szekeres et al., 2012). Consistent with this theory, we observed a modest upregulation of the Rab-

GTPase-activator TBC1D1, in addition to a downregulation of RGC2 and an upregulation of TPM3 at

the mRNA level. In summary, regulation of GLUT4 translocation and recycling pathways may be

affected upon clock disruption with important consequences on glucose uptake and insulin sensitiv-

ity as summarized in Figure 6.

Muscle clock disruption influences the expression of genes involved in
vesicle trafficking
GLUT4 located at the plasma membrane, is endocytosed in clathrin-coated vesicles and further

recycled (Leto and Saltiel, 2012; Jaldin-Fincati et al., 2017). We observed that several factors of

the clathrin-mediated endocytosis machinery were altered upon CLOCK depletion

(Supplementary file 1-table S2), among them FNBP1 (FBP17), EPN2, HIP1, and SYT1. Furthermore,
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our results suggest that CLOCK depletion impacts on calcium levels in the cytoplasm as SYT1 acts as

a calcium sensor, and in the presence of elevated Ca2+ levels promotes the fusion of close mem-

branes (Martin, 2015).

Once GLUT4 is endocytosed, it is transported to early endosomes using RAB5 (Stenmark et al.,

1994; Leto and Saltiel, 2012). As RAB5B was upregulated upon siCLOCK, it is suggesting that this

recycling step might be increased. Moreover, we found downregulation of TBC1D16, which was

shown to regulate RAB4 activity, suggesting a possible increase in the fast remobilization of GLUT4

at the plasma membrane (Goueli et al., 2012).

We have previously demonstrated that the basal secretion of myokines, such as IL-6, IL-8, and

MCP-1, exhibits a circadian pattern, which was strongly disrupted in hSKM after CLOCK silencing in

vitro (Perrin et al., 2015). Here, our transcriptional analysis showed that key regulators of the exocy-

tosis machinery were altered upon clock disruption (Supplementary file 1-tables S2 and S3). Both

VAMP3 and STX6, which are involved in IL-6 secretion in mouse macrophages (Manderson et al.,

2007), were downregulated at the mRNA level (Supplementary file 1-tables S2 and S6), confirming

previous results that clock disruption impacts on vesicle trafficking and secretion (Marcheva et al.,

2010; Saini et al., 2016). Importantly, when compared with results from clock disrupted human

islets (Saini et al., 2016) we found that numerous genes involved in hormone secretion by pancreatic

islets were affected in a similar manner in hSKM (Supplementary file 1-table S8).

Further downstream, GLUT4 is sent to the late endosome for degradation by the lysosome or tar-

geted to the endosomal recycling compartment (ERC), through its interaction with VAMP3

(Dugani et al., 2008; Rose et al., 2009). PI4K2A, which was downregulated upon clock depletion

(Supplementary file 1-table S2), might be involved here as it regulates VAMP3 trafficking to perinu-

clear membranes (Volchuk et al., 1995; JovicJović et al., 2014). In addition, CAMSAP2, involved in

microtubule stabilization (Hendershott and Vale, 2014), and KIF13A, associated with recycling

endosome tubules (Delevoye et al., 2014), were also downregulated upon CLOCK disruption

(Supplementary file 1-tables S2 and S3). Taken together these results, as summarized in Figure 6,

suggest that the muscle clock may play an important regulatory function in the control of the secre-

tion machinery via transcriptional regulation.

Cell-autonomous clock disruption in hSKM might impact energy
substrate utilization
The circadian clock has been associated with the control of muscle development and regeneration,

as clock mutant mice exhibit defects in muscle metabolism, architecture and composition (for review

see [Chatterjee and Ma, 2016; Schiaffino et al., 2016]). Here, we found alterations in the expres-

sion of several genes involved in lipid metabolism, calcium handling, electron transport chain, and

glucose metabolism (Figure 2C–E, Supplementary file 1-table S7), suggesting a shift in energy sub-

strate utilization upon clock disruption, as has been proposed previously in rodents upon loss of

Bmal1 (Hodge et al., 2015; Harfmann et al., 2016). AMP-activated protein kinase, a potent regula-

tor of skeletal muscle fat metabolism (Thomson and Winder, 2009) might be dysregulated upon

clock disruption as we observed upregulation of its regulatory subunit PRKAG2 and downregulation

of subunit PRKAG3. Previous work reported downregulation of both subunits in Bmal1-specific mus-

cle KO mice (Hodge et al., 2015), suggesting that this gene could be directly controlled by BMAL1.

Clock disruption causes changes in lipid levels as has been described previously for the liver of

Per1/2 KO mice (Adamovich et al., 2014). In hSKM, siCLOCK treatment affected several genes

involved in lipid metabolic processes, lipid storage and transport (Figure 2C–E), which resulted in

total phosphatidylcholine and glycosylceramide level alterations (Figure 2F). Specifically, we found

an increase in the long chain fatty acid transporter CD36 and in FABP3, consistent with previous

results obtained in mouse skeletal muscle upon clock disruption (Hodge et al., 2015;

Schiaffino et al., 2016). In addition, we observed an upregulation of MSTN upon siCLOCK, which

could further promote the increase in CD36 and FABP3, leading to impaired glucose uptake

(Figure 3D). Interestingly, muscle-specific myostatin (Mstn) KO mice exhibit a reduction of lipid

transporters, including FABP3 and CD36, a diminution of lipid oxidation, higher levels of saturated

and unsaturated fatty acids, and a decrease of cardiolipin and triglycerides (Baati et al., 2017). Fur-

thermore, downregulation of Mstn in skeletal muscle from type one diabetic mice leads to an

increase of Glut1 mRNA and GLUT4 protein levels, promoting insulin-stimulated glucose uptake

(Coleman et al., 2016). Altogether, these results confirm previous rodents studies and indicate a
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shift in substrate utilization in skeletal muscle from carbohydrates to lipids with impact on muscle

metabolism and glucose homeostasis (Dyar et al., 2014; Dyar et al., 2015; Hodge et al., 2015;

Harfmann et al., 2016).

Conclusions
In summary, our study provides (1) a comparison between rhythmic transcriptome databases

obtained from human muscle tissue and cultured primary cells derived from muscle biopsies, and (2)

the identification of pathways regulated by CLOCK in skeletal muscle, involved in glucose uptake,

myokine secretion, and lipid metabolism (Figure 6). Human primary cells cultured in vitro have been

used as a model to study human disease and metabolism (Aas et al., 2013; Saini et al., 2015). In

combination with tissue analysis as presented here, primary cell culture constitutes a powerful model

to study human metabolism, and warrants further analyses in additional metabolically active tissues

in physiological conditions, and in the context of metabolic diseases.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody anti-AS160 (C69A7)
Rabbit mAb

Cell Signaling Cat. #2670
RRID:AB_2199375

1:1000; for western blot;
primary Ab

Antibody anti-14-3-3 q Rabbit
polyclonal

Cell Signaling Cat. #9638
RRID:AB_2218251

1:200; for western blot;
primary Ab

Antibody anti-CLOCK(H276)
Rabit polyclonal

Santa Cruz Biotechnology Cat. sc-25361
RRID:AB_2260802

1:200; for western blot;
primary Ab

Antibody anti-actin Rabbit
polyclonal

Sigma-Aldrich Cat. A2066
RRID:AB_476693

1:1000; for western blot;
primary Ab

Antibody goat anti-rabbit-IgG HRP Sigma-Aldrich Cat. A8275
RRID:AB_258382

1:3000; for western blot;
secondary Ab

Recombinant
DNA reagent

Bmal1-luciferase
(luc) reporter

Liu et al., 2008;
PMID:18454201

Sequence-based
reagent

ON-TARGETplus
Non-targeting Pool

Dharmacon D-001810-10-20

Sequence-based
reagent

ON-TARGETplus human
CLOCK siRNA SMARTpool

Dharmacon L-008212-00-0020 Target Sequences:
CAACUUGCACCUAUAAAUA
CGACAGGACUGGAAACCUA
GAACAACGGACACGCAUGA
CUAGAAAGAUGGACAAAUC

Peptide,
recombinant protein

NA NA NA NA

Commercial
assay or kit

SuperSignal West Pico
Chemiluminescent Substrate

Thermo Fisher Scientific Prod. #34080

Commercial
assay or kit

Quant-iTª RiboGreenª
RNA Assay Kit

Thermo Fisher Scientific R11491

Commercial
assay or kit

RNeasy Mini kit Qiagen Ref # 74104

Commercial
assay or kit

TruSeq Stranded Total RNA
Library Prep Kit with Ribo-Zero
Gold Set A (48 samples, 12 indexes)

Illumina RS-122–2301

Commercial
assay or kit

TruSeq Stranded Total RNA
Library Prep Kit with Ribo-Zero
Gold Set B (48 samples, 12
indexes) Indexes only

Illumina RS-122–2302

Commercial
assay or kit

TruSeq RNA Library
Prep Kit v2

Illumina RS-122–2001/RS
-122–2002

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Commercial
assay or kit

HiSeq PE Cluster Kit
V4 - cBot

Illumina PE-401–4001

Commercial
assay or kit

HiSeq SBS Kit V4 250
cycle kit

Illumina FC-401–4003

Commercial
assay or kit

KAPA HiFi HotStart
ReadyMixPCR Kit

Kapa BioSystems
(Roche)

KK2602

Commercial
assay or kit

Quant-iT PicoGreen
dsDNA Assay Kit

Thermo Fisher Scientific P7589

Commercial
assay or kit

LabChip DNA High
Sensitivity Reagent Kit

Perkin Elmer CLS760672

Chemical
compound, drug

Forskolin Sigma-Aldrich F6886

Chemical
compound, drug

Luciferin Prolume LTD #260150

Chemical
compound, drug

2-deoxy-[3H]-D-glucose PerkinElmer NET328A001MC Specific Activity: 5–10 Ci
(185-370GBq)/mmol,
1mCi (37MBq)

Insulin Sigma-Aldrich I9278

Chemical
compound, drug

Potassium phosphate
monobasic

Sigma-Aldrich P5655

Chemical
compound, drug

HiPerFect transfection
reagent

Qiagen Cat No./ID: 301705

Chemical
compound, drug

Tert-butyl methyl ether Sigma-Aldrich #20256

Chemical
compound, drug

Methylamine solution Sigma-Aldrich #534102

Chemical
compound, drug

Methanol LC-MS
CHROMASOLV

Fluka
(Thermo Fisher Scientific)

#34966

Chemical
compound, drug

Water LC-MS CHROMASOLV Fluka
(Thermo Fisher Scientific)

#39253

Chemical
compound, drug

Chloroform, stabilized
with ethanol, for HPLC

ACROS Organics
(Thermo Fisher Scientific)

#390760010

Chemical
compound, drug

12:0 PC (DLPC) Avanti Polar Lipids #850335

Chemical
compound, drug

17:0-14:1 PE Avanti Polar Lipids LM1104

Chemical
compound, drug

17:0-14:1 PI Avanti Polar Lipids LM1504

Chemical
compound, drug

17:0-14:1 PS Avanti Polar Lipids LM1304

Chemical
compound, drug

12:0 SM (d18:1/12:0) Avanti Polar Lipids #860583

Chemical
compound, drug

C17 Ceramide (d18:1/17:0) Avanti Polar Lipids #860517

Chemical
compound, drug

C8 Glucosyl(ß)
Ceramide (d18:1/8:0)

Avanti Polar Lipids #860540

Software,
algorithm

Rstudio Rstudio R version 3.3.1

Software,
algorithm

Prism 5 GraphPad NA

Software,
algorithm

Excel 2016 Microsoft NA

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Software,
algorithm

LumiCycle Actimetrics NA

Software,
algorithm

STAR: ultrafast universal
RNA-seq aligner

Dobin et al., 2013
PMID:
23104886

Software,
algorithm

edgeR package Robinson et al., 2010
PMID:
19910308

edgeR version 3.16.5

Software,
algorithm

lme4 R package Bates et al., 2015
DOI: 10.18637/jss.v067.i01

Software,
algorithm

lmtest R package Zeileis et al., 2002
DOI: 10.18637/jss.v007.i02

Software,
algorithm

TopGO R package https://bioconductor.riken.
jp/packages/3.3/bioc/vignettes/
topGO/inst/doc/topGO.pdf

Software,
algorithm

GEMTools http://gemtools.
github.io/

GEMTools v1.7.1

Lipid data analyzer II IGB-TUG Graz
University; PMID:21169379

LDA v.2.5.1

Software,
algorithm

Image Lab Bio-Rad

Other RIPA buffer Sigma-Aldrich Cat# R0278

Human skeletal muscle biopsies
10 healthy volunteers were recruited for the in vivo study (see Supplementary file 1-table S1 for

donor characteristics). One week prior to the scheduled laboratory visit, participants had to adhere

to a consistent daily feeding and sleeping routine. Participants arrived in the laboratory at 19:00 hr

on the day prior to the testing day and ingested one standardized meal that first evening. Partici-

pants remained for the duration of their stay in a semi-recumbent position. During the waking hours

of the testing day, they were given mixed-macronutrient meal-replacement solutions at hourly inter-

vals (Resource, Nestlé, Switzerland) to ensure energy balance. The laboratory was free from natural

light and with artificial lighting standardized to 800 lux in the direction of gaze, ambient temperature

maintained between 20 and 25˚C and noise levels tightly regulated. Participants were not permitted

to sleep during waking hours when lights were on (i.e. 07:00-22:00 hr) and wore eye masks whilst try-

ing to sleep during lights-out (i.e. 22:00-07:00 hr). Anesthetic administration (1% lidocaine w/o epi-

nephrine) and skin/fascia incisions for this procedure (Bergstrom, 1962) were completed within the

hour prior to sleep such that night-time samples could be acquired with minimal discomfort. Six 100

mg biopsy samples were acquired from the vastus lateralis muscle at 4 hr intervals (12:00, 16:00,

20:00, 24:00, 04:00 and 08:00 hr) and immediately snap frozen under liquid nitrogen. Samples were

taken from each leg in alternating and ascending order with skin incisions separated by 2–3 cm. The

study was conducted in accordance with the Declaration of Helsinki and with the approval of the

Health Research Authority (NRES Committee South West; 14/SW/0123) and the Swiss Commission

cantonal (Canton Vaud) d’éthique de la recherche (Cer-VD). For further details see Loizides-

Mangold et al. (2017).

Human muscle RNA-sequencing and data analysis
Total Stranded RNA-Seq (in vivo muscle samples): RNA was quantified with Ribogreen (Life Technol-

ogies, Carlsbad, CA) and quality was assessed on a Fragment Analyzer (Advances Analytical).

Sequencing libraries were prepared from 250 ng total RNA using the TruSeq Stranded Total LT Sam-

ple Prep Kit (Illumina, San Diego, CA) with the Ribo-Zero Gold depletion set. The procedure was

automated on a Sciclone NGS Workstation (Perkin Elmer, Waltham, MA). The manufacturer’s proto-

col was followed, except for the PCR amplification step. The latter was run for 13 cycles with the

KAPA HiFi HotStart ReadyMix (Kapa BioSystems, Roche, Switzerland). This optimal PCR cycle
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number was evaluated using the Cycler Correction Factor method as described previously

(Atger et al., 2015). Purified libraries were quantified with Picogreen (Life Technologies) and the

size pattern was controlled with the DNA High Sensitivity Reagent kit on a LabChip GX (Perkin

Elmer). Libraries were then pooled by 24, and each pool was clustered at a concentration of 8 pmol

on 8 lanes of v4 paired-end sequencing flow cells (Illumina). Sequencing was performed for 2 � 125

cycles on a HiSeq 2500 strictly following Illumina’s recommendations.

Paired-end reads were mapped to the Homo sapiens genome (GRCh38/hg38) using STAR

(Dobin et al., 2013) with parameters “–alignIntronMin 20 –alignIntronMax 1000000 –GTF (option –

sjdbGTFfile). Mapped reads were quantified in intronic and exonic regions. For each gene, we

defined a gene body by merging all the respective transcripts using BEDtools (Quinlan and Hall,

2010). A region was defined as exonic if it occurs in a least one of the transcripts while an intronic

region had to be shared between all the transcripts. We assigned uniquely mapping paired-reads to

exonic regions (exon/exon and complete exon reads) or intronic regions (intron-exon and complete

intron reads) considering reads orientation. Genes with less than two intronic reads or 10 exonic

reads on average were discarded. Intronic and exonic reads count were normalized using edgeR

(Robinson et al., 2010) by the library scaling factor from the exonic regions and the respective

intronic and exonic length (rpkm()). Genes with less than �2 RPKM (log2) at the exonic level were

discarded. Genes with less than �3 RPKM (log2) at the intronic level were reported as NA for the

intronic quantification.

Rhythmicity was assessed with a linear mixed-effects model using lmer() function from the lme4 R

package applied on the log2 normalized reads count. A standard harmonic regression with a 24 hr

period was fitted with a donor-dependent random effect on the baseline:

yID; t ~ cos
2p

24
t

� �

þ sin
2p

24
t

� �

þ 1jIDð Þ

where yID,t is the log2 normalized reads count for patient ID at time t. This full model was compared

to the null model (without the harmonic terms) using the likelihood ratio test function ltest() from the

lmtest R package. The p-values were computed from a chi-squared distribution and were adjusted

using the Benjamini-Hochberg procedure.

Gene ontology analysis was performed using the TopGO R package . Enrichment analysis for GO

terms derived from ‘Biological Process’ was performed for the genes rhythmic in the three groups

(R-I.RE, R-I, and R-E) and in the different phase bins. GO terms with p-value <0.05, a minimum num-

ber of 3 genes, and less than 200 annotated genes were considered.

Transcription factors enrichment analysis
Predictions of transcription factor binding sites (MotEvo) and promoter regions were downloaded

from http://swissregulon.unibas.ch/sr/downloads (database Homo sapiens, hg19:FANTOM5)

(Pachkov et al., 2013). Transcription factor binding sites were assigned to their corresponding

genes using the promoter regions table. Genes rhythmic at the intronic level, and with amplitude

larger than 0.5 (log2), were grouped according to their phase in 4 hr bins. All the genes expressed

in the dataset were used as a background and a hypergeometric test was computed for the over-

representation of transcription factor binding sites in the different bins. Transcription factor binding

sites with -log10(p-value) >104 and belonging to at least five genes were reported and annotated in

Figure 1I.

Study participants, skeletal muscle tissue sampling and primary cell
culture
Biopsies from the Gluteus maximus muscle were derived from donors with their informed consent

(see Figure 2—figure supplement 1 and Supplementary file 1-table S1 for donor characteristics).

The experimental protocol (‘DIOMEDE’) was approved by the Ethical Committee SUD EST IV

(Agreement 12/111) and performed according to the French legislation (Huriet’s law). All donors

had HbA1c levels inferior to 6.0% and fasting glycemia inferior to 7 mmol/L, were not diagnosed for

type 2 diabetes (T2D), neoplasia or chronic inflammatory diseases, and not doing shift work. Primary

skeletal myoblasts were purified and differentiated into myotubes according to the previously
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described procedure (Agley et al., 2015; Perrin et al., 2015). After reaching confluence, myoblasts

were differentiated into myotubes during 7–10 days in DMEM supplemented with 2% FBS.

siRNA transfection and lentiviral transduction
Human primary myoblasts were differentiated into myotubes as described above. Cells were trans-

fected 24 hr (RNA-seq) or 72 hr (western blot, glucose uptake) prior to experiment with 20 nM

siRNA targeting CLOCK (siCLOCK), or with non-targeting siControl (Dharmacon, Lafayette, CO),

using HiPerFect transfection reagent (Qiagen, Hilden, Germany) following the manufacturer’s proto-

col. To produce lentiviral particles, Bmal1-luciferase (Liu et al., 2008) lentivectors were transfected

into 293 T cells using the polyethylenimine method (for detailed procedure see [Pulimeno et al.,

2013]). Myoblasts were transduced with the indicated lentiviral particles with a multiplicity of infec-

tion (MOI) = 3 for each, grown to confluence, and subsequently differentiated into myotubes.

In vitro skeletal myotube synchronization and real-time
bioluminescence recording
Primary myotubes were synchronized with 10 mM forskolin (Sigma-Aldrich, St. Louis, MO) for 60 min

at 37˚C in a cell culture incubator, then the medium was changed to a phenol red-free recording

medium containing 100 mM luciferin (Prolume LTD, Pinetop, AZ), and cells were transferred to a

37˚C light-tight incubator as previously described by us (Pulimeno et al., 2013). Bioluminescence

from each dish was continuously monitored using a Hamamatsu photomultiplier tube (PMT) detector

assembly. Photon counts were integrated over 1 min intervals. Luminescence traces are shown as

detrended data.

Glucose uptake measurement
Human myotubes treated with siControl or siCLOCK as described before were serum-starved for 3

hr then incubated with 2-deoxy-[3H]-D-glucose for 15 min. Incubations were performed with or with-

out insulin stimulation (1 hr, 100 nM). After incubation, the medium was removed prior to cell lysis in

0.05 M NaOH. Cell content radioactivity was determined by liquid scintillation counting (Perkin

Elmer, 2900TR) and protein content was quantified by using the Bradford protein assay. Glucose

transport is expressed in pmol/mg.min (Chanon et al., 2017).

Protein analysis
Human myotubes transfected with siControl or siCLOCK for 24 to 72 hr, were lysed in RIPA buffer.

Protein extracts (8 mg) were analyzed by SDS-PAGE and immunoblotted to 0.45 mm nitrocellulose

membrane or 0.2 mm PVDF membrane using a wet system (Bio-Rad, Hercules, CA) according to the

manufacturer’s instructions. Membranes were blocked and incubated with primary and secondary

antibodies in 5% BSA/TBS-T 0.5% or 5% BSA/TBS-T 0.1%. Primary and secondary antibodies were

used at the following dilutions: anti-TBC1D4/AS160 (1/1000, Cell Signaling, Danvers, MA, #2670S),

anti-14-3-3q (1/200, Cell Signaling, #9638S), anti-CLOCK (1/200, Santa Cruz Biotechnology, Santa

Cruz, CA, H-276) and anti-ACTIN (1/1000, Sigma-Aldrich, A2066), anti-rabbit-HRP (1:3000, Sigma-

Aldrich A8275). Signals were visualized using SuperSignal West Pico Chemiluminescent Substrate

(Thermo Fisher Scientific, Waltham, MA). For protein quantification, five donors were analyzed but

only the representative western blot result of one donor is shown.

Lipidomics
The lipidomics analysis was performed as described in Loizides-Mangold et al. (2017). Briefly,

human primary myotubes were harvested from one confluent 10 cm dish (~1.5�106 cells) and lipid

extracts were prepared using the MTBE protocol (Matyash et al., 2008). Total phosphorus was

determined as described in (Loizides-Mangold et al., 2017). Phospho- and sphingolipid were ana-

lyzed by mass spectrometry using on a TSQ Vantage Triple Stage Quadrupole Mass Spectrometer

(Thermo Fisher Scientific) equipped with a robotic nanoflow ion source (Nanomate HD, Advion Bio-

sciences, Ithaca, NY), using multiple reaction monitoring (MRM). Lipid concentrations were calcu-

lated relative to the relevant internal standards and then normalized to the total phosphate content

of each total lipid extract. Triacylglyceride analysis was performed by mass spectrometry analysis on

a hybrid ion trap LTQ-Orbitrap XL mass spectrometer (Thermo Fisher Scientific) equipped with a
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micro LC binary pump UFLC-XR (Shimadzu, Kyoto, Japan). Lipid identification was carried out with

the Lipid Data Analyzer II (LDA v. 2.5.1, IGB-TUG Graz University) (Hartler et al., 2011).

hSKM mRNA extraction and quantitative PCR analysis
Differentiated myotubes were synchronized by 10 mM forskolin, collected every 2 hr during 48 hr (0–

48 hr), deep-frozen in liquid nitrogen and kept at �80˚C. Total RNA was prepared using RNeasy

Mini kit (Qiagen). 0.5 mg of total RNA was reverse-transcribed using Superscript III reverse transcrip-

tase (Invitrogen) and random hexamers, and PCR-amplified on a LightCycler 480 (Roche). Mean val-

ues for each sample were calculated from the technical duplicates of each RT-qPCR analysis, and

normalized to the mean of two housekeeping genes (HPRT and 9S), which served as internal con-

trols. Primers used for this study are listed in Supplementary file 1-table S9.

hSKM RNA-sequencing and data analysis
Total RNA was prepared from primary human skeletal myotubes from two donors, transfected either

with siControl or siCLOCK, synchronized with a forskolin pulse and collected every 2 hr during 48 hr

in duplicates, using RNeasy Mini Kit (Qiagen). Total RNA libraries were prepared from 300 ng of

RNA following customary Illumina TruSeq v2 protocols for next generation sequencing. PolyA-

selected mRNAs were purified, size-fractioned, and subsequently converted to single-stranded

cDNA by random hexamer priming. Following second-strand synthesis, double-stranded cDNAs

were blunt-end fragmented and indexed using adapter ligation, after which they were amplified and

sequenced according to protocol. RNA libraries were sequenced with a HiSeq2000 sequencer pro-

ducing 49pb paired-end reads. Standard quality checks for material degradation (Bioanalyzer and

TapeStation, Agilent Technologies, Santa Clara, CA) and concentration (Qubit, Life Technologies)

were done before and after library construction, ensuring that samples are suitable for sequencing.

Paired-end reads were mapped to the human genome (version GRCh37/hg19) with GEMTools

(v1.7.1) using GENCODE v19 as gene annotation. RNA-seq reads were subsequently filtered for cor-

rect orientation of the two ends, a minimum mapping quality score of 150 and allowing a maximum

of 5 mismatches in both ends. GENCODE annotation v19 was used to assign filtered reads to their

corresponding exons and genes. For each gene, we processed the exons from all transcripts, which

were quantified by considering only filtered reads as above, in which both ends map to exons of the

same gene. The gene counts were incremented non-redundantly, meaning reads overlapping two

exons were counted once to the total count sum per gene.

The differential gene expression analysis was performed with the R package edgeR

(Robinson et al., 2010). First, transcripts expressed lower than three counts per million (CPM) and

noninformative (e.g. non-aligned) were filtered. To minimize the log-fold changes between the sam-

ples for most genes, a set of scaling factors for the library sizes were estimated with the trimmed

mean of M-values (TMM) method (Robinson and Oshlack, 2010). The dispersion was estimated with

the quantile-adjusted conditional maximum likelihood (qCML) method. Once the dispersion esti-

mates are obtained, we performed the testing procedures for determining differential expression

using the exact test (Robinson and Smyth, 2008).

Regarding the rhythmic analysis, homemade algorithm was developed to analyze these RNA-seq

data. In short, raw data were transformed to log2 reads per kilobase per million mapped reads

(RPKM) as described previously (Atger et al., 2015), then only transcripts with log2 RPKM >0 for

each of the fourth conditions (two subjects, siControl or siCLOCK) were kept avoiding big variability

for weakly expressed transcripts. The 48 time points of each condition were used to define a local

regression function (LOESS). This step allows smoothing the curve and reducing local variability. The

function was then used to calculate 10 different measures (maximum and minimum slopes, first and

second extremum, minimum-maximum ratio, autocorrelation, measure of scattering, residues on the

loess function, residues on a linear function and period). These features were used to classify gene

expression patterns in four different groups: rhythmic genes (category ‘circadian’), genes that show

only one peak at the beginning of the time course (category ‘one peak’), linearly (category ‘linear’)

and scatteredly expressed genes (category ‘cloud’). The algorithm attributes a probability to each

transcript per condition. To be classified in one category, this probability must be the highest value

and superior to 0.5 in at least one category. If no probabilities are superior to 0.5 for the four cate-

gories, transcripts are grouped into model 16 (non-rhythmic). The 11 major circadian genes,
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including ARNTL (BMAL1), NR1D1 (REVERBa), NR1D2 (REVERBb), PER1, PER2, PER3, CRY1, CRY2,

NPAS2, TEF and BHLHE41, were selected to train a random forest model. The same number of

genes for the three other groups were also integrated in the training dataset. This dataset was then

passed to the training algorithm for random forests and gene conditions that were assigned to one

of these categories with a high score (0.9) were integrated in the training dataset. This procedure

was repeated until 500 curves per group were identified. The last model was kept to classify the

whole dataset.1485 curves from 994 transcripts were identified as rhythmic among 12,985 tran-

scripts. Altogether, transcripts were grouped into 16 models.

Bioluminescence and statistical data analysis
Bioluminescence data were analyzed with the Actimetrics LumiCycle analysis software (Actimetrics

LTD, Wilmette, IL). RNA-seq data and qPCR data analysis were performed using RStudio, GraphPad

Prism five and Excel 2016. Panther analyses were performed using the PANTHER version 12.0

released on 10.07.2017. Statistical analyses were performed using Student’s t-test. Differences were

considered significant for (*) p-value <0.05, (**) p-value <0.01, and (***) p-value <0.001. Exact p-val-

ues and raw data for Figures 2 and 3 are listed in Supplementary file 2.

Mycoplasma test for primary cultures
Since primary cultures, established from human skeletal muscle tissue biopsies were used in this

study, mycoplasma contamination tests were conducted only once for each primary myotube cul-

ture. To do so, 100 ml of culture medium were taken 48 hr following the last trypsinization, boiled at

95˚C for 5 min, and centrifuged for 10 s at 14,000 rpm. PCR was performed on 5 ml of thus proc-

essed samples, using a mix of primers listed in Supplementary file 1-table S9. The PCR program

was 5 min at 95˚C, followed by 30 cycles with 95˚C 30 s, 60˚C 30 s, 72˚C 30 s, and a final elongation

at 72˚C for 10 min. PCR products were separated on a 1.5% agarose gel.
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ève

Charna Dibner

Biotechnology and Biological
Sciences Research Council

Jonathan D Johnston

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Laurent Perrin, Conceptualization, Data curation, Formal analysis, Validation, Investigation, Visualiza-

tion, Methodology, Writing—original draft, Writing—review and editing; Ursula Loizides-Mangold,

Conceptualization, Data curation, Formal analysis, Supervision, Validation, Investigation, Methodol-

ogy, Writing—original draft, Project administration, Writing—review and editing; Stéphanie Chanon,
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Spelsberg TC, Delaunay F, Teboul M. 2010. Kruppel-like factor KLF10 is a link between the circadian clock and
metabolism in liver. Molecular and Cellular Biology 30:3059–3070. DOI: https://doi.org/10.1128/MCB.01141-
09, PMID: 20385766

Haldar SM, Jeyaraj D, Anand P, Zhu H, Lu Y, Prosdocimo DA, Eapen B, Kawanami D, Okutsu M, Brotto L, Fujioka
H, Kerner J, Rosca MG, McGuinness OP, Snow RJ, Russell AP, Gerber AN, Bai X, Yan Z, Nosek TM, et al. 2012.
Kruppel-like factor 15 regulates skeletal muscle lipid flux and exercise adaptation. PNAS 109:6739–6744.
DOI: https://doi.org/10.1073/pnas.1121060109, PMID: 22493257

Hansen J, Timmers S, Moonen-Kornips E, Duez H, Staels B, Hesselink MK, Schrauwen P. 2016. Synchronized
human skeletal myotubes of lean, obese and type 2 diabetic patients maintain circadian oscillation of clock
genes. Scientific Reports 6:35047. DOI: https://doi.org/10.1038/srep35047, PMID: 27756900

Harfmann BD, Schroder EA, Esser KA. 2015. Circadian rhythms, the molecular clock, and skeletal muscle. Journal
of Biological Rhythms 30:84–94. DOI: https://doi.org/10.1177/0748730414561638, PMID: 25512305

Harfmann BD, Schroder EA, Kachman MT, Hodge BA, Zhang X, Esser KA. 2016. Muscle-specific loss of Bmal1
leads to disrupted tissue glucose metabolism and systemic glucose homeostasis. Skeletal Muscle 6:12.
DOI: https://doi.org/10.1186/s13395-016-0082-x, PMID: 27486508
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