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Constructing a robust emotion-aware analytical framework using non-invasively

recorded electroencephalogram (EEG) signals has gained intensive attentions nowadays.

However, as deploying a laboratory-oriented proof-of-concept study toward real-world

applications, researchers are now facing an ecological challenge that the EEG patterns

recorded in real life substantially change across days (i.e., day-to-day variability), arguably

making the pre-defined predictive model vulnerable to the given EEG signals of a

separate day. The present work addressed how to mitigate the inter-day EEG variability of

emotional responses with an attempt to facilitate cross-day emotion classification, which

was less concerned in the literature. This study proposed a robust principal component

analysis (RPCA)-based signal filtering strategy and validated its neurophysiological validity

and machine-learning practicability on a binary emotion classification task (happiness

vs. sadness) using a five-day EEG dataset of 12 subjects when participated in a

music-listening task. The empirical results showed that the RPCA-decomposed sparse

signals (RPCA-S) enabled filtering off the background EEG activity that contributed more

to the inter-day variability, and predominately captured the EEG oscillations of emotional

responses that behaved relatively consistent along days. Through applying a realistic

add-day-in classification validation scheme, the RPCA-S progressively exploited more

informative features (from 12.67 ± 5.99 to 20.83 ± 7.18) and improved the cross-day

binary emotion-classification accuracy (from 58.31 ± 12.33% to 64.03 ± 8.40%) as

trained the EEG signals from one to four recording days and tested against one unseen

subsequent day. The original EEG features (prior to RPCA processing) neither achieved

the cross-day classification (the accuracy was around chance level) nor replicated the

encouraging improvement due to the inter-day EEG variability. This result demonstrated

the effectiveness of the proposed method and may shed some light on developing a

realistic emotion-classification analytical framework alleviating day-to-day variability.
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INTRODUCTION

Implicit emotional reactions behave as a non-verbal
psychophysiological communication channel alternative to
explicit manners of body gestures, written text, and speech,
enriching the interaction in people. Through characterizing
such emotional information by leveraging multidisciplinary
knowledge and the ever-growing affective computing technology,
a conventional human-computer interaction (HCI) scenario
can then be augmented with an emotion-aware ability, which
facilitates a realistic humanoid closed-loop feedback. Emotion
recognition has attracted intensive attention nowadays. Two
facets may drive its intensive interest. On one hand, it enables a
wide spectrum of intriguing emotion-oriented applications such
as, machine intelligence (Chen et al., 2017), receptionist robots
(Pinheiro et al., 2017), content recommendation devices (Lee and
Shin, 2013), tutoring systems (Muñoz et al., 2010), and music
therapy (Ian et al., 2016). On the other hand, recent explosive
innovations in wearable sensing technology considerably bring
laboratory-demonstrated emotion-aware research closer to our
daily life, necessitating a robust and accurate emotion-aware
analytical framework.

Existing affective computing research has demonstrated the
capacity of assessing implicit emotions by internal changes in
physiological signals that are originated from autonomic and
central nervous systems (Picard et al., 2001; Kim and Andre,
2008; Chanel et al., 2009; Lin et al., 2010). Among them,
electroencephalogram (EEG) is a non-invasive-recording of the
electrical activity of the brain. The EEG signals presumably
encompass the fundamental yet critical information underlying
emotion dynamics, since the limbic system located in the
brain plays a key role in emotion regulation (Hariri et al.,
2000). There has been promising interdisciplinary analytical
frameworks proposed to leverage advanced signal processing,
machine learning, and data mining techniques with the attempt
to exploit the EEG correlates of emotional responses as well as to
later develop an emotion-aware model for emotion recognition
(Chanel et al., 2009; Frantzidis et al., 2010; Lin et al., 2010;
Petrantonakis and Hadjileontiadis, 2010; Koelstra et al., 2012;
Soleymani et al., 2012; Jenke et al., 2014; Gupta et al., 2016;
Hu et al., 2017). This area has become an emerging track in
the affective brain-computer interface (ABCI), namely EEG-
based emotion recognition (Mühl et al., 2014). The successful
demonstrations would not only demonstrate the feasibility of
emotional computing from EEG signals, but also pose new
directions for practical ABCI applications in real life.

A practical issue for exploiting the EEG correlates of implicit
emotional responses is about howmany EEG samples are needed
from an individual to reliably model the emotional responses.
The issue has also been recognized as a plausible factor affecting
the classification accuracy while training a machine-learning

classifier upon the given data. The previous study results may

support the argument in part. The works that involved a short-

duration (around 1–15 s per trial) emotion elicitation scenario,
e.g., image viewing and emotion imagery (Chanel et al., 2009;
Frantzidis et al., 2010; Petrantonakis and Hadjileontiadis, 2010),
typically led to better results than those involved a long-duration

manner (around 30–120 s per trial), e.g., music listening and
video watching (Koelstra et al., 2012; Soleymani et al., 2012;
Gupta et al., 2016). In practice, an emotion experiment with EEG
recordings faces a trade-off between acquiring more data trials
and preventing the human subjects from being bored and drowsy
to elicitation materials. In most cases, fewer than a few dozen
of trials per targeted emotional class can be collected in a 2∼3-
h experiment session for an individual, including the time for
instruction briefing and EEG headset capping. The collected EEG
trials are thus rare and likely pose a challenge for translating
the EEG spatio-spectral oscillations into implicit emotional
responses and for utilizing the EEG-emotion relationship to train
a realistic subject-specific emotion-classification model.

A straightforward remedy for the aforementioned challenge
in a single-day session is to perform a multiple-session EEG
recording on separate days. Nevertheless, this raises another
issue concerning the substantial inter-day variability in the EEG
signals, which has been empirically demonstrated in studies
(Christensen et al., 2012; Lin et al., 2015; Das et al., 2016; Yin
and Zhang, 2017). That is, EEG features recorded on different
days were found distinctively distributed. The data clusters of
the same classes across days happened to behave more diversely
than the clusters of different classes within a single day (Lin
et al., 2015). This finding was in line with the outcomes using
peripheral bio-signals (Picard et al., 2001). The class clusters
were even dramatically changed by reversal among different days
(Christensen et al., 2012). As such, the day-to-day variability
inevitably hindered a machine-learning classifier from leveraging
an effective set of between-class decision boundaries that can
work consistently to the data recorded across days. It might
happen that naively aggregating the EEG samples from all of
the available recording days degrades rather than upgrades the
classification accuracy (Christensen et al., 2012; Lin et al., 2015).
Few attempts have beenmade to alleviate the inter-day variability
by either using different normalization schemes or seeking a
set of relatively day-robust features in other EEG topics, e.g.,
cognitive load, mental workload, and biometrics (Christensen
et al., 2012; Das et al., 2016; Yin and Zhang, 2017). Till now,
most of previous analytical works (Chanel et al., 2009; Frantzidis
et al., 2010; Lin et al., 2010; Petrantonakis and Hadjileontiadis,
2010; Koelstra et al., 2012; Soleymani et al., 2012; Jenke et al.,
2014; Gupta et al., 2016; Hu et al., 2017) endeavored to
optimizing a predicative emotion-aware model based on a non-
ecological single-day dataset only. However, for an ecological
ABCI scenario, the EEG signals may vary over time, leading
to the alternation of the emotion-related EEG oscillations, and
thereby making a model trained by the EEG signals of a separate
day(s) vulnerable. Relatively fewer efforts have been contributed
to thoroughly explore and tackle the impact of the inter-day EEG
variability associated with emotional responses, which is believed
to be one of critical factors hindering the success of real-life
applications.

To address the issue mentioned above, this work proposed
a signal-filtering strategy based on a core methodology called
robust principal component analysis (RPCA) and incorporated
it into a machine-learning framework. Its capability was
demonstrated in terms of cross-day emotion-classification results
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and corresponding neurophysiological meanings through a 5-
day EEG dataset of 12 subjects. RPCA behaves as a matrix
factorization method and enables parsing the input data matrix
into a low-rank matrix and a sparse matrix. The low-rank matrix
represents relatively regular activity or patterns in the original
input matrix, whereas the sparse matrix accounts for deviant
events. RPCA has been applied to improve the tracking of
sparse moving targets of interest in video surveillance (Guyon
et al., 2012; Bouwmans and Zahzah, 2014) and recently applied
to affective computing to better capture the EEG correlates of
neurocognitive lapses (Wei et al., 2016) as well as emotional
responses (Jao et al., 2015). It is worth noting that this work was
an extension from our proof-of-concept study (Jao et al., 2015)
with considerable improvement in two aspects. First, this work
provided neurophysiological evidence to exclusively elucidate
the meanings underlying RPCA decomposition in emotion
data. Second, a simulated online BCI validation procedure,
i.e., training the data from available days and testing on
the data from an unseen day, was employed to assess the
cross-day classification performance regarding the accuracy and
the number of informative features exploited. The successful
demonstration can shed some light on developing a realistic
emotion-classification analytical framework accounting for the
EEG discrepancy in separate days.

MATERIALS AND METHODS

EEG Dataset
This work assessed the practicability of RPCA framework and
its underlying neurophysiological meanings in alleviating the
inter-day EEG variability on a 5-day dataset of 12 subjects when
they performed a music-listening task (Lin et al., 2015). The
details regarding the music excerpts and experiment setup can
be found in Lin et al. (2015). Briefly, a 14-channel Emotiv EEG
headset, with a default bandwidth of 0.16–43 Hz and a sampling
rate of 128 Hz, was employed to measure the EEG signals. The
subjects participated in the same music listening experiment on
5 different days within one and half weeks (with an average
interval of 7 ± 1.13 days). On each day, they underwent a
three-session protocol composed of the same 24∼37-s music
excerpts to induce two target emotions, happiness and sadness,
in which 12 excerpts for each category were selected with a
consensus label (Eerola and Vuoskoski, 2011). Each session had
four blocks; each of them contained both happy and sad trials
in random order. Figure 1 illustrates the procedures of a two-
trial block. Each trial began with a 15-s eye-closed rest period,
followed by a music excerpt. A beep sound alerted the subjects
to proceed to an emotion-assessment task (assigned either one
of target emotions or neutral based on whey they experienced).
The experiment was self-paced and allowed the subject to press
a button proceeding to the next trial, enabling a moderate rest
if necessary. Such an experiment protocol collected 24 pairs of
∼37-s EEG trials (plus a 15-s eye-closed baseline) and emotion
labels from an individual in each of the 5 recording days. Note
that the trials reported as neutral responses were excluded from
further analysis.

FIGURE 1 | The experiment protocol of a two-trial block. Each trial begins

with a 15-s baseline (B), followed by a ∼37-s music excerpt, and ended with

an emotion-tagging task (R). A beep sound was delivered to alert subjects for

the rating task. The protocol was self-paced and proceeded to next trial after

the subject pressed the button.

EEG Feature Extraction
The raw EEG signals were first submitted to a 1-Hz high-pass
finite impulse response filter to remove possible DC drifts. The
short time Fourier transform was then adopted to estimate the
spectral power of the filtered EEG signals using a 1-s Hamming
window with a 50% overlap, yielding a number of the samples
depended on the time lapse of the given trial (∼37-s). The
averaged band power over the stereotypical frequency bands of
delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (14–30
Hz), and gamma (31–43 Hz) was calculated prior to feature
extraction. Note that Emotiv headset’s specification limited the
gamma frequency band up to 43 Hz.

Given the five time series of spectral bands, this study adopted
a feature-extraction method called MESH (Lin et al., 2014) to
correlate EEG spectral oscillations with emotional responses.
The MESH method not only includes the spectral oscillation
over individual electrodes but also assesses bi-directional power
asymmetry over left-right symmetric electrodes (i.e., laterality)
and fronto-posterior electrodes (i.e., caudality). As such, the 12
channels (excluding T7 and T8 from the 14-ch Emotiv montage)
corresponded to six left-right electrode pairs (i.e., AF3–AF4, F7–
F8, F3–F4, FC5–FC6, P7–P8, and O1–O2, the montage refers to
Figure 2B) and four fronto-posterior pairs (i.e., AF3–O1, F7–P7,
AF4–O2, and F8–P8), resulting in a feature dimension of 110 (22
electrode attributes × five frequency bands). Each feature time
series was normalized to the range of 0 and 1 using the min-max
normalization scheme.

Robust Principal Component Analysis
(RPCA)
Unlike classical principal component analysis (PCA) that
transforms signals into a set of mutually orthogonal variables for
dimensionality reduction, RPCA is amatrix factorizationmethod
that decomposes an input matrix X ǫ Rm×n (m: number of
features, n: number of samples) into two superimposed matrices,
a low-rank matrix L and a sparse matrix S (Candès et al., 2011).
The L accounts for the relatively regular profiles of input signals,
whereas the S models its deviant events. The RPCA can be
mathematically described as the convex optimization problem
(Candès et al., 2011) presented below:

min L,S ‖ L ‖∗ + λ ‖ S ‖1 s.t. X = L+ S , (1)

where ‖ L ‖∗ denotes the nuclear norm of the matrix L,
i.e., the sum of the singular value of L, ‖ S‖1 =

∑
ij |Sij|
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represents l -1 norm of S, and λ is a tuning parameter balancing
the weights of the two terms; we set λ to 1/

√
max (m, n)

according to Candès et al. (2011). RPCA has been successfully
applied tomany signal processing and computer vision problems,
such as, video processing (Bouwmans and Zahzah, 2014), face
recognition (Chen et al., 2012), and music information retrieval
(Yang, 2012) as well as a recent demonstration on affective
computing using EEG signals (Wei et al., 2016). For example,
in the case of video surveillance, RPCA decomposed the still
background scene in L and encompassed the sparse moving
objects in S. It thus facilitated the detection of moving objects
of interest by eliminating the interference from the background.
It is worth noting that the robust PCA algorithm proposed by
Torre and Black (2003) and the RPCA algorithm (Candès et al.,
2011) adopted in this work, though share similar names, are
radically different in their mathematical meanings. The former
is for data dimension reduction, whereas the latter is for matrix
decomposition that enables to parse inputs signals into low-rank
and sparse matrices.

In a music-listening study, it is reasonable to assume
that EEG oscillations associated with emotional responses are
considered as deviant and sparse activity concurrent with
intrinsic background EEG activity. Such background EEG
activity tends to be relatively regular within days yet more
and less diverse across days. The non-stationary background
activity may thus submerge the sparse emotion-related EEG
oscillations of interest and inevitably hinder the robustness of a
cross-day emotion classification framework. With this in mind,
this study hypothesized that the more the emotion-irrelevant
EEG perturbations can be alleviated in each day, the more the
elicited emotion-related EEG oscillations can be revealed. To
test the posed hypothesis, this study adopted RPCA to parse the
MESH matrix (i.e., 110 features × n samples, where n depends
on the number of samples given a trial) into low-rank L and
sparse Smatrices. The resultant L presumably described relatively
regular background EEG activity, while the resultant S oppositely
captured sparse emotion-related dynamics.

EEG Feature Selection and Classification
After applying RPCA framework to the spectral time series,
the processed samples were averaged within each trial for
feature selection and classification. A straightforward method
of F-score feature selection was adopted to elaborate the MESH
feature space (either with or without RPCA pre-processing)
to exploit an optimal subset of informative features prior to
training the classifier. The F-score value refers to the ratio
of between-class vs. within-class variance formed by the
data distribution of a feature. It has been shown that the
features with high F-score values can better discriminate
class distributions (Lin et al., 2010; Jenke et al., 2014). Most
importantly, as the calculated F-score value was compared
to the statistical F-distribution, the corresponding statistical
p-value of each feature (p < 0.05) can be derived to elucidate
the neurophysiological meanings of RPCA-decomposed
low-rank and sparse matrices. In this proof-of-concept
study, a simple Gaussian Naïve Bayes (GNB) classifier was
employed to model the EEG data distributions along two

emotion categories (i.e., happiness vs. sadness). The cross-day
classification accuracy referred to how many trials were correctly
classified.

Validation of RPCA Framework
This study attempted not only to test the effectiveness of the
RPCA framework in alleviating the day-to-day variability in
emotion-related EEG dynamics but also endeavored to unveil
its underlying neurophysiological evidence. Three cross-day
analytical scenarios were conceived and performed accordingly,
including emotion classification, emotion-class distribution, and
emotion-related spatio-spectral features.

First, a realistic add-day-in (ADI) validation framework was
adopted to assess cross-day emotion classification accuracy.
The ADI scheme iteratively included the data from one more
recording day to train a classifier and test its performance against
the data from one unseen recording day. That is, the information
of EEG signals to be tested were entirely disjointed from the data
used for training the model, which complied with a real-life BCI
validation framework. Given a five-day EEG dataset per subject
in this study, the cross-day classification accuracy can be obtained
for four training day scenarios, including (1) Day 1 vs. Day 2, (2)
Days 1–2 vs. Day 3, (3) Days 1–3 vs. Day 4, and (4) Days 1–4
vs. Day 5. The procedures of each ADI framework are detailed as
follows.

1) Train and optimize a GNB classifier
This step first concatenated data from D available training
day(s) (D= 1–4). The concatenated data were then submitted
to F-score feature selection to rank MESH features. To
prevent the plausible bias caused by class imbalance, the
GNB model was trained and optimized given 100 repetitive
outcomes with random samples equally selected (according to
the minimal class) from binary classes. Each randomization
performed a five-fold cross-validation and an add-feature-in
scheme, i.e., iteratively adding one more feature with high F-
score at a time. The optimal MESH feature subspace leading
to a maximal training accuracy could be selected.

2) Test the GNB classifier
The data from an unseen recording day were treated as test
samples, and its initial MESH feature space was trimmed to
fit the subspace optimized in the training phase. The trained
GNB model was then tested on the trimmed data.

The ADI validation framework was applied to the EEG signals
leveraged without and with RPCA processing for comparison.

Second, this study additionally visualized the emotion class
distributions across days following the ADI manner. In this
way, the variability in EEG signals between classes across days
can be explored. We adopted the linear discriminative analysis
(LDA) to reduce the original feature dimensionality (110) to a
2-D discriminative yet comprehensible feature space composed
of the first two LDA components. Note that the LDA was
simply involved in data visualization rather than in classification
task. Furthermore, this study superimposed a decision boundary
over the class clusters of the training data artificially. The
boundary laid perpendicular to the vector of the means of
the clusters and intercepted at their center. The multiple-day
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FIGURE 2 | The single-day emotion-related topographic feature maps with and without RPCA preprocessing. (A) illustrates the informative maps of a representative

subject derived separately by four analytical manners, including EEG signals in eye-closed resting baseline, EEG signals in music listening (Original), RPCA-processed

sparse matrix (RPCA-S) in music listening, and RPCA-processed low-rank matrix (RPCA-L) in music listening. The importance of the features was normalized from 0

to 1 and color-coded from dark blue to brighter yellow, accordingly. The brighter yellow reflected the feature more informative with respect to dark blue (no correlation).

(B) Refers to the electrode montage. (C) The Euclidean distance for topographic outcomes between RPCA-S/RPCA-L/Original vs. eye-closed resting baseline

summarized from 12 subjects. The longer distance indicated most informative EEG dynamics captured by the analytical manner with a reasonable assumption that

the resting baseline was associated with a minimal correlation with emotional responses. ** Refers to a statistical significance with p < 0.01 using a two-sided

Wilcoxon signed rank test.

class distributions plus the conceptualized decision boundaries
intended to demonstrate two facts: how the inter-day variability
shaped the distributions of training and testing data, and to which
extent this variability behaved in EEG signals with and without
RPCA preprocessing.

Last, this study mapped the emotion-related EEG features
that corresponded to high F-score values with statistical
significance (p < 0.05) onto topography. The topographic
mapping was done by using EEGLAB toolbox (Delorme and
Makeig, 2004). Through comparing the topographic outcomes
between a pre-stimulus baseline, i.e., eye-closed resting state,
and a music-listening period, we could somehow elucidate the
neurophysiological meanings underlying the RPCA-decomposed
low-rank and sparse matrices. The low-rank matrix supposedly
contained mostly background EEG dynamics, so that it barely
had spectral characteristics about emotional responses. Thus,
the maps of low-rank matrix exploited in music listening
were presumably similar to those from the resting state.
Furthermore, the ADI classification was also replicated on the
eye-closed baseline. The baseline-music listening comparison
can directly assess the validity of RPCA processing and F-
score feature selection for cross-day emotion classification with
more neurophysiological sense (i.e., EEG signals without and

with music elicitation). Note that for such analysis each of
the pre-stimulus baseline trials was artificially assigned with an
emotion label equal to the one rated right after the subsequent
music-listening trial. In addition, for group analysis, this study
vectorized each topographic outcome and objectively quantified
their similarity using the Euclidean distance measurement. A
longer distance referred to two distinct feature maps being
compared.

RESULTS

Single-Day Topographic Feature Maps
Underlying RPCA Matrices
Figure 2 presents the single-day emotion-relevant EEG spatio-
spectral features explored in music-listening vs. eye-closed
resting scenarios. The comparative outcomes were obtained
for four data matrices separately, including EEG signals in
eye-closed resting baseline, EEG signals in music listening
(Original), RPCA-processed sparse matrix (RPCA-S) in music
listening, and RPCA-processed low-rank matrix (RPCA-L) in
music listening. Figure 2A color-coded the importance (i.e., the
F-score values) of the band-power features onto topography
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(c.f. the electrode montage in Figure 2B) from a representative
subject. All topographic values of four analytical outcomes were
normalized concurrently to the range of 0 and 1 within each day
so that the extent of each feature importance of all topographic
outcomes could be compared across days. The brighter yellow
indicates more informative features, compared to dark blue (no
correlation). As can be seen in the topographic feature maps,
the RPCA-S generally exhibited more emotion-related spectral
features in each band and on each day, compared to its original
input, i.e., Original. In contrast, the RPCA-L simply led to
minor yet fewer informative features (with lighter yellow) on
certain days. The benchmark scenario of eye-closed resting barely
accompanied features. Most of the resting topographies were
annotated with dark blue, similar to the outcomes of RPCA-L.
Note that both the RPCA-L and RPCA-S of the resting baseline
got analogous outcomes irrelevant to emotional responses (but
not shown here).

Figure 2C further quantified to which extent the emotion-
related topographic maps with/without RPCA (i.e., RPCA-S,
RPCA-L, and Original in music listening) were deviant from
those of the benchmark (i.e., the eye-closed baseline) from the
entire group of 12 subjects. To this end, the Euclidean distance
measurement was adopted to calculate the distance between the-
vectorized topographic maps within each day. A longer distance
value indicated the analytical matrix of interest being most
informative under a reasonable assumption that the eye-closed
resting state accounted for the minimal information regarding
emotional responses. As can be seen, RPCA-S differed most from
the eye-closed baseline than both the Original and RPCA-L did (p
< 0.01). Due to the shortest distance, the RPCA-L’s feature maps
were the most similar to the baseline, followed by the Original.

Cross-Day Emotion Class Distributions
with and Without RPCA Processing
Figure 3 illustrates the class distributions of the EEG signals
projected to a 2D LDA feature space from a representative
subject. The row of subplots from the bottom to the
top represents the distributions of the original EEG signals
(Original), its RPCA’s low-rank matrix (RPCA-L), and its RPCA’s
sparse matrix (RPCA-S). The subplots along columns show the
outcome with the ADI manner. As can be seen, the inter-day
variability in Original did negatively shape the class distributions
of the training data based on the relationship between the class
centroids and distributions as the EEG signals were taken into
account from more recording days. In the case of Day 1 vs.
Day 2 in Original, the decision boundary (gray line) for Day 1
seemed to work for Day 2 because the two class centroids of
the two days lined aside moderately. Nevertheless, the separable
class centroids became misleading as considering the training
data from one more recording day, i.e., Days 1–2 vs. Day 3, and
even confusing by adding more days for the condition, i.e., Days
1–3 vs. Day 4, as referenced to their decision boundaries. While
involving four recording days for training (Days 1–4 vs. Day 5),
there was a smaller between-class margin than that of the initial
outcome (Day 1 vs. Day 2). Next, after leveraging the EEG signals
with RPCA processing, the inter-day variability tended to be
mitigated to a certain extent. In the RPCA-S, the interplay of the
class centroids of the training and testing days remained relatively
stable to all ADI conditions, i.e., invulnerable to the number
of recording days involved. Importantly, the decision boundary
got improved marginally yet progressively when considering the
data from more days as training dataset. On the contrary, the
RPCA-L resembled the Original, but exhibited larger covariance

FIGURE 3 | The 2D projection of the cross-day class distributions of the EEG signals by LDA for a representative subject in ADI manner. The rows of subplots indicate

the outcomes leveraged with or without RPCA processing (RPCA-S, sparse matrix; RPCA-L, low-rank matrix; Original, original signals). Triangles and circles are the

centers of the happiness and sadness clusters, respectively, whereas the dotted and solid ellipses reflect their covariance values. The annotations in red and in blue

referred to training and test days, respectively. The gray lines conceptualize the decision boundaries of the training data distributions.
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FIGURE 4 | The cross-day emotion-classification performance in ADI manner. The performance included (A) the classification accuracy and (B) the explored number

of informative features using with and without RPCA framework (RPCA-S, sparse matrix; RPCA-L, low-rank matrix; Original, original signals). The classification task

during music listening was replicated in eye-closed resting period regarded as benchmark. Note that for the classification purpose, a resting period artificially used the

same emotion label as its subsequent music-listening trial. * and ** Refer to a statistical significance p < 0.05 and p < 0.01, respectively, using a two-sided Wilcoxon

signed rank test.

in class distributions. The above results evidently demonstrated
the negative impact of the potential inter-day variability to a
predictive emotion model, but the RPCA framework was capable
of alleviating it to some extent.

Cross-Day Emotion Classification with and
Without RPCA Processing
Figure 4 shows the cross-day emotion-classification performance
with and without using the RPCA framework in the ADI
manner. The classification performance includes the number
of informative features and the binary classification accuracy
explored during music listening vs. eye-closed resting. There
were two main findings in the comparative results. First, the
RPCA framework improved the cross-day classification accuracy.
For the music-listening classification accuracy (right panel in
Figure 4A), the RPCA-decomposed sparse matrix (RPCA-S, red
box) improved the classification accuracy monotonically as more
data were added from additional recording days (Day 1 vs. Day
2: 58.31 ± 12.33%, Days 1–2 vs. Day 3: 61.53 ± 8.62%, Days
1–3 vs. Day 4: 59.65 ± 8.00%, and Days 1–4 vs. Day 5: 64.03
± 8.40%). Such improvement was up to around 6% (p = 0.09
using a two-sided Wilcoxon signed rank test) in the case of
four training days. In contrast, the RPCA-decomposed low-rank
matrix (RPCA-L, blue box) and the original EEG signals without
RPCA preprocessing (Original, black box) did not replicate
such improvement along ADI conditions. Their accuracies were
apparently worse than those of RPAC-S. There was a statistically
significant difference between RPCA-L and RPCA-S for Days
1–3 vs. Day 4 (p < 0.05) and between RPCA-L/Original and
RPCA-S for Days 1–4 vs. Day 5 (p < 0.01), respectively. Opposed
to the above music-listening outcomes, the benchmark of eye-
closed resting (left panel in Figure 4A) neither exhibited distinct
differences with and without RPCA preprocessing within each

ADI condition nor led to a tendency in classification accuracy
along ADI conditions.

Second, the RPCA-S framework advanced the exploitation
of informative features related to emotional responses. For the
music-listening scenario (c.f. right panel of Figure 4B), the
number of feature explored in RPCA-S was found to augment
steadily as pooling EEG signals from one to four recording days
(Day 1 vs. Day 2: 12.67± 5.99, Days 1–2 vs. Day 3: 14.17± 8.43,
Days 1–3 vs. Day 4: 16.75 ± 5.74, and Days 1–4 vs. Day 5: 20.83
± 7.18). The maximal increment was up to around 8 features for
the ADI condition of four training days (p= 0.06). Unlike RPCA-
S, both RPCA-L and Original exhibited features independent of
the ADI conditions and typically yielded fewer features. Both of
them were found significantly worse than RPCA-S for Days 1–4
vs. 5 (p < 0.05). For the eye-closed resting scenario, the number
of features in RPCA-S tended to be comparable to those of RPCA-
L and Original in each ADI condition and be independent to ADI
conditions.

In sum, the RPCA-S led to progressive improvements in
classification performance in terms of the number of informative
features and the cross-day classification accuracy as long as the
EEG signals leveraged from more recording days. This only
worked for the music-listening scenario.

DISCUSSION

The present work studied how the inter-day EEG variability
of emotional responses can be mitigated to facilitate cross-day
emotion classification task, which was largely overlooked in the
literature. This study extended our early proof-of-concept work
(Jao et al., 2015) to validate the capability of the proposed RPCA-
based signal filtering framework from the neurophysiological and
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realistic BCI perspectives through a five-day EEG dataset of 12
subjects. We first validated that the RPCA-decomposed sparse
signals returned representative EEG features reflecting emotional
responses that were relatively consistent across days. We further
demonstrated that such sparse signals helped a machine-learning
framework to exploit more informative features and lead to
a progressive improvement on cross-day emotion-classification
accuracy as EEG signals were engaged from multiple-day
sessions. In contrast, neither its accompaniment low-rank signals
nor the raw EEG features (i.e., without RPCA preprocessing)
could replicate the above cross-day classification outcomes.
The following sections discussed the RPCA findings upon the
neurophysiological validity and machine-learning practicability.

Neurophysiological Validity Underlying
RPCA in Emotion Data
The present work aimed to exploit the underlying
neurophysiological meanings associated with the two
decomposed low-rank and sparse matrices using RPCA.
By the mathematical definition of RPCA, the low-rank and
sparse matrices account for the regular and sparse activities
of the given streaming signals, respectively. The question
herein was about what information the low-rank and sparse
matrices actually account for in the EEG signals collected
in an emotion-elicitation paradigm. There were three facets
empirically indicating that the EEG oscillations captured
in the sparse matrix were profitably linked to the implicit
emotional responses. First, emotional responses elicited by music
listening were considered as sparse activity. The induced EEG
oscillations thus behaved as deviant activity to the concurrent
intrinsic background activity, which presumably conformed
to the mathematical role of the sparse matrix. As referred to
the RPCA applications in other domains, the sparse matrix
was also found to isolate sparse signal dynamics, such as,
foreground moving objects in a video stream (Bouwmans and
Zahzah, 2014), incoherent occlusion and disguise in a face
image (Chen et al., 2012), neurocognitive lapses in driving
(Wei et al., 2016), and a singing voice from music (Yang,
2012).

Second, the resultant music-baseline comparative outcomes
of informative topographic feature maps (c.f., Figure 2) led
to direct evidence. With respect to the sparse matrix, the
low-rank matrix reciprocally dealt with regular activity in the
given signals. Based on the-results of this study, the low-
rank matrix was found to reveal less informative features as
compared to the sparse matrix and its original input (without
RPCA processing), yet tended to be marginally similar to
the control benchmark of the eye-closed baseline scenario
(Figures 2A,C). This thus implied that the low-rank matrix
relatively summarized intrinsic background EEG activity with
a minimal relationship with emotional responses, like the
eye-closed resting. However, one may argue a few features
remained in the analytical scenarios of the eye-closed baseline
and the RPCA-L from the illustrated individual. This may
be attributed to the fact that most of the eye-closed baseline
periods were interleaved with music excerpts (c.f., Figure 1).

The lingering emotion effects (Eryilmaz et al., 2011) might
occur in our study. That is, the transit emotional responses
induced in a regular music excerpt may remain and modulate
the brain activity in subsequent resting state. In addition,
as RPCA essentially involves a convex optimization problem
(Candès et al., 2011), it may not lead to a perfect matrix-
factorization decomposition. Some sparse activity may thus
leak into the low-rank matrix (Han et al., 2017), contributing
some minor information. Most critically, unlike the low-rank
matrix, enormous emotion-relevant features emerged in the
sparse matrix, which behaved most distinctly to the eye-closed
condition.

Third, the music-baseline comparative cross-day classification
performance in accuracy and the number of informative
features (c.f., Figure 4) presented another conclusive
evidence. The eye-closed resting periods barely provided
discriminative information to conduct a binary emotion-
classification task (i.e., around chance level) regardless of
which analytical strategy (especially for the sparse matrix)
was used and how much EEG-recording days were leveraged.
Instead, the sparse matrix only worked valid for the EEG
signals recorded in the music-listening period. Given
more training days, the progressively increased number of
informative features and the cross-day emotion-classification
accuracy evidently inferred the discriminative yet
emotional information exclusively captured by the sparse
matrix.

Impact of the Inter-Day EEG Variability
Through the assessment to a five-day EEG dataset, the original
EEG distributions (without RPCA processing) between training
and test data across days (c.f., Figure 3) were found to
be quite different. The binary clusters from an unseen day
happened to be misleading or even reversal with the pre-
learned class clusters, which exactly replicated the outcomes
in Picard et al. (2001) and Christensen et al. (2012). Because
of such the inconsistent class distributions, a classifier trained
on one day may perform poorly on the test data collected
from the same subject on another day. The resultant cross-day
classification performance (c.f., Figure 4) reflected the negative
impact of the inherent inter-day EEG variability, where involving
more cross-day training sessions helped neither for exploring
more robust informative features nor for optimizing the
discriminative decision boundaries to yield a better classification
accuracy. This implied that performing a multiple-day EEG
collection and analysis barely worked without an efficient
way to deal with day-to-day variability. It is worth noting
that the aforementioned phenomenon may not emerge if
an offline validation was adopted. For example, some works
(Christensen et al., 2012; Liu et al., 2016) computed the
cross-day classification accuracy by averaging the classification
outcomes of all possible combinations of training and test
days. Without a constraint on time ordering (e.g., allowing
using Days 4, 5 to predict Day 1), the chance for including
a day(s) having feature distributions compatible to those of
a test day(s) likely increases (Lin et al., 2015). The plausible
discrepancy of feature distributions on separate days and the
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corresponding degradation in cross-day classification accuracy
might thus be overlooked. Furthermore, such an offline manner
is unlikely the case for an ecological, real-life scenario, i.e.,
we may not use the data of a later day(s) to predict the
emotional responses on a prior day(s). In contrast, the ADI
scheme adopted by the present work considers time ordering and
facilitates more realistic assessment of the impact of inter-day
EEG variability.

The RPCA-based signal-filtering framework was proposed
in the present work for the above purpose. Following the
demonstrated neurophysiological evidence underlying the RPCA
(see detailed discussions in the last subsection), the RPCA-
decomposed low-rank matrix predominantly accounted for
the background EEG activity that seemed to contribute more
to the concerned inter-day EEG variability. That is, the
RPCA-L and Original (before RPCA processing) compared
favorably in cluster distributions along the ADI manner
(c.f., Figure 3). Our exploratory results were in line with
the previous outcome in motor imagery study (Shenoy
et al., 2006), in which different background EEG activity
was reported to shift the data in the feature space. After
mitigating the background EEG perturbations (c.f., Figure 4),
the phenomenon gave a direct support to the outcome of
the improved cross-day classification accuracy in the RPCA-
decomposed sparse matrix (i.e., RPCA-S). The extent of the
improvement in accuracy when given more training days
was attributed to the fact that the RPCA-S elaborated the
class clusters gently yet progressively. Accordingly, the class
distributions and the cross-day classification performance
empirically demonstrated the posed hypothesis that the more
the intrinsic EEG perturbations can be alleviated in each day,
the more the elicited emotion-related EEG oscillations can be
revealed.

This work has a limitation in elucidating plausible causes
contributing the background EEG perturbations in the analyzed
dataset. Some studies (Shenoy et al., 2006; Ahn et al., 2016)
mentioned that the mental states of the subjects, such as, mental
fatigue, attention level, engagement to the task, and sleep quality,
may alter EEG patterns. This thereby suggested that future
emotion study may include a comprehensive behavioral and
mental questionnaire along with emotional labels, facilitating a
systematic assessment of realistic EEG oscillations of emotional
responses.

Comparison to Previous Works
This work performed a binary emotion-classification task
dedicated to an ecologically cross-day EEG dataset (five days).
The realistic ADI validation manner was adopted to obtain
the cross-day emotion-classification performance, which can
straightforwardly infer the practicality of the proposed RPCA
framework toward real-life applications. The study results
showed that the optimal binary classification accuracy (using
the sparse matrix, RPCA-S, c.f., Figure 4) was improved steadily
from 58.31 ± 12.33% to 64.03 ± 8.40% as leveraging more
EEG signals from one to four recording days for training.
Nevertheless, most of previously related works (Koelstra et al.,
2012; Koelstra and Patras, 2013; Lin et al., 2014; Gupta

et al., 2016), in which a binary task was also conducted on
limited data trials (using a long-duration elicitation materials),
performed the analysis on a single-day dataset only, so that
the impact of the inter-day EEG variability was not considered.
As such, this study cannot make a direct comparison to the
previous works, but instead we summarized their reported
within-day binary classification accuracies for reference as
follows: 55.4∼62.0% for different emotion categories (referred
to their Table 7 in Koelstra et al., 2012), 63.5∼71.5% for
different categories and features (Koelstra and Patras, 2013
referred to their EEG results in Table 3), 67∼76% for different
categories and features (referred to their Figure 2 in Lin
et al., 2014), and 58∼69% for different categories and features
(referred to their in Table 5 Gupta et al., 2016). It was
expected that the within-day accuracies that were not negatively
affected by the inter-day variability outperformed the cross-day
outcomes. The resultant cross-day accuracies of 58.31∼64.03%
using different training days in the present study seemed
justifiable.

CONCLUSION

This study proposed a robust principal component analysis
(RPCA)-based signal-filtering strategy and incorporated it into
a machine-learning framework to improve cross-day EEG-
based emotion-classification performance. Through applying
a realistic add-day-in validation manner to a five-day EEG
dataset of 12 subjects, this study first validated that the RPCA-
decomposed sparse signals predominately captured the EEG
oscillations of emotional responses that were relatively consistent
across days, and suppressed the day-fluctuated background
EEG perturbations in its accompaniment low-rank signals.
By leveraging EEG signals from all four recording days for
training and tested for the last unseen day, the maximal
improvement in the number of informative features and
the cross-day classification accuracy appeared up to ∼8 and
∼6%, respectively. The original EEG features (prior to RPCA
processing) neither achieved the cross-day classification task
(i.e., the accuracy was around chance level) nor replicated
the encouraging improvement due to the inter-day EEG
variability.
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