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Abstract

Lymphatic filariasis (LF) threatens nearly 20% of the world’s population and has handicapped 

one-third of the 120 million people currently infected. Current control and elimination programs 

for LF rely on mass drug administration of albendazole plus diethylcarbamazine (DEC) or 

ivermectin. Only the mechanism of action of albendazole is well understood. To gain a better 

insight into antifilarial drug action in vivo, we treated gerbils harbouring patent Brugia malayi 
infections with 6 mg kg−1 DEC, 0.15 mg kg−1 ivermectin or 1 mg kg−1 albendazole. Treatments 

had no effect on the numbers of worms present in the peritoneal cavity of treated animals, so 

effects on gene expression were a direct result of the drug and not complicated by dying parasites. 

Adults and microfilariae were collected 1 and 7 days post-treatment and RNA isolated for 

transcriptomic analysis. The experiment was repeated three times. Ivermectin treatment produced 

the most differentially expressed genes (DEGs), 113. DEC treatment yielded 61 DEGs. 

Albendazole treatment resulted in little change in gene expression, with only 6 genes affected. In 

total, nearly 200 DEGs were identified with little overlap between treatment groups, suggesting 

that these drugs may interfere in different ways with processes important for parasite survival, 

development, and reproduction.
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Introduction

Human infections with filarial nematodes affect about 160 million people worldwide, with 

many more at risk of infection (Fenwick, 2012). Control of the major human filarial 

diseases, lymphatic filariasis (LF) caused by Wuchereria bancrofti and by Brugia spp, and 

river blindness caused by Onchocerca volvulus, is based on annual or semi-annual mass 

administration of anthelmintic drugs which remove microfilariae (Mf) from infected people 

for extended periods and thus interrupt transmission of the parasites via the insect vectors. 

The drugs used for LF are albendazole in combination with diethylcarbamazine (DEC), 

except in areas endemic for O. volvulus where it is used in combination with ivermectin. 

Ivermectin is currently the only anthelmintic used for control of river blindness (Gyapong et 
al., 2005; Ottesen, 2006). Albendazole acts by binding to microtubules (Lacey, 1988) and 

hence blocking cell division and larval development (Cline et al., 1992; Shenoy et al., 1999), 

but the mechanisms of action of DEC and ivermectin against filarial parasites is less clear. 

Ivermectin irreversibly activates nematode glutamate-gated chloride channels (Cully et al., 
1994; Wolstenholme and Rogers, 2005), including those from filaria (Yates and 

Wolstenholme, 2004). The expression of these channels in the excretory/secretory pore of 

Brugia malayi Mf (Moreno et al., 2010) and reproductive tissue ofadult females (Li et al., 
2014) correlates with the observed inhibition of secretion from Mf (Moreno et al., 2010; 

Harischandra et al., 2018) and the long-term sterilization of the females caused by the drug 

(Stolk et al., 2005). DEC has been reported to inhibit arachidonic acid metabolism in Mf 

(Maizels and Denham, 1992), blocking both cyclooxygenase and lipoxygenase.

Both DEC and ivermectin rapidly clear Mf from infected people (Hawking and Laurie, 

1949; Basanez et al., 2008), an important part of their ability to block transmission of LF 

and onchocerciasis. However, in vitro assays do not accurately reproduce the in vivo potency 

of ivermectin against filarial parasites (Tompkins et al., 2010; Storey et al., 2014; 

Wolstenholme et al., 2016). For both DEC and ivermectin, it has been suggested that their 

activity against filarial parasites is aided by the host immune system (King et al., 1982; 

Vickery et al., 1985; Johnson et al., 1988; Maizels and Denham, 1992; Ali et al., 2002; 

McGarry et al., 2005; Vatta et al., 2014; Kwarteng et al., 2016). Ivermectin specifically 

inhibits secretion from B. malayi Mf, which would include many immunomodulatory 

molecules produced by the parasites (Moreno and Geary, 2008; Moreno et al., 2010). The 

only convenient small animal model for human filariasis is B. malayi infection in the 

Mongolian gerbil (Meriones unguiculatus) (Ash and Riley, 1970) yet even in this system 

albendazole, DEC and ivermectin have all been reported to be relatively ineffective (Denham 

et al., 1978; Campbell, 1982; Gaur et al., 2007). We are interested in the effects of the 

antifilarial drugs on the parasites in vivo, and considered that the absence of direct killing 

effect in the gerbil infection model could in fact be advantageous, since it would eliminate 

non-specific changes in gene expression that were due to parasite death and not a direct 

result of the drugs’ actions.
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In order to gain further insights into the effects of the drugs programs we infected gerbils 

with B. malayi and, once the infection was patent, treated the animals with albendazole, 

DEC or ivermectin. Parasites were harvested 1 day and 1 week post-treatment and RNASeq 

used to probe changes in gene expression caused by the drugs. A similar approach has been 

used to examine changes in gene expression in adult female B. malayi caused by ivermectin 

and flubendazole exposure in vitro (Ballesteros et al., 2016a; O’Neill et al., 2016), and 

microarray experiments found changes in both host- and parasite-encoded genes following 

treatment of gerbils with DEC (Weinkopff et al., 2008). The in vivo effects of doxycycline 

and tetracycline treatments on Wolbachia and B. malayi have been studied using microarrays 

(Ghedin et al., 2009; Rao et al., 2012) and Laing et al. (2012) examined the effects of 

ivermectin on a drug-resistant strain of Caenorhabditis elegans, but we believe that this is the 

first comprehensive attempt to study the effects of the anthelmintic drugs currently used in 

mass drug administration on gene expression, in vivo, for a human filarial parasite.

Materials and methods

Parasite infections of gerbils

Brugia malayi L3 larvae were provided by the Filariasis Research Reagent Resource (FR3) 

(Michalski et al., 2011). All animal experiments were carried out in strict accordance with 

national and local guidelines and were approved by the University of Georgia IACUC (AUP 

A2015 08–039). Adult male gerbils (Meriones unguiculatus) were injected intraperitoneally 

with 300 B. malayi L3 and the infection allowed to become patent for 4 months. Gerbils 

were separated into one of four treatment groups: albendazole (Sigma, St Louis, MO, USA), 

DEC (DEC citrate salt, Sigma), ivermectin (Sigma) and control (1% v/v DMSO vehicle). 

Each gerbil was weighed to calculate the exact required dose prior to subcutaneous drug 

administration. The drug doses administered were: albendazole – 1 mg kg−1, DEC – 6 mg 

kg−1 and ivermectin – 0.15 mg kg−1. All the drug solutions were freshly made up 

immediately before administration to the infected animals. Twenty-four hours after 

treatment, half of the gerbils from each group (3) were euthanized by exposure to CO2 for 

parasite collection. The other half of the gerbils were euthanized 7 days after drug treatment. 

This experiment was repeated in triplicate. After euthanasia the peritoneal cavity was opened 

with a scalpel to allow collection of adult parasites with tweezers. Mf were collected via 
peritoneal lavage with Earle’s Balanced Salt Solution (EBSS) (Life Technologies, Carlsbad, 

CA, USA). After collecting worms from the peritoneal cavity, the abdominal cavity and 

testes were also examined for additional adult parasites. Upon retrieval, adult parasites were 

placed in 90 mm petri dishes in EBSS before being counted by sex and washed twice more. 

Mf were placed in 50 mL centrifuge tubes and the tubes were filled to capacity before Mf 

were counted. They were then centrifuged at 1200 × g for 10 min. This process was carried 

out twice more for three washes. Half of the Mf from each treatment group were exsheathed 

with calcium chloride. 20 mm of calcium chloride was added to a tube containing Mf in 

EBSS, shaken, and incubated at 37 °C for 30 min as described (Devaney and Howells, 

1979). After the final washing, 10–15 adults (by sex, treatment group) and ~250 000 Mf 

were placed in a 1.5 mL microcentrifuge tube with 1 mL of RNAlater® (Sigma-Aldrich, St. 

Louis, MO) and incubated at 4 °C overnight before being transferred to −80 °C, per 

manufacturer’s instruction.
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RNA extraction

All surfaces (including gloves) and pipettes used for RNA extraction were treated with 

RNase AWAY™ (Life Technologies, Grand Island, NY, USA). Tubes were treated with 

diethylpyrocarbonate (DEPC; Sigma) to inhibit RNase. All water used in the process was 

nuclease-free. RNA was extracted from frozen B. malayi adults and Mf. Sample preparation 

for adults was carried out with several similar, but slightly varied methods. The majority of 

samples were obtained using the RNeasy Plant Mini Kit (Qiagen, Germantown, MD, USA). 

Lysis buffer RLT with 10 μL 2-mercaptoethanol/mL−1 was added to the frozen sample for 

homogenization with a mortar and pestle. Liquid nitrogen was added to the sample to re-

freeze it and aid in tissue disruption. After crushing with liquid nitrogen twice, the sample 

was aliquoted into DEPC-treated tubes to which additional lysis buffer was added. A 25-

gauge needle (Becton Dickinson, Franklin Lakes, NJ, USA) was used to further homogenize 

tissue, which was drawn up and expelled from the syringe 25 times. Lysed tissue was 

transferred into a QIAshredder spin column, and RNA was cleaned and eluted following kit 

instructions. Samples were also obtained using the Direct-zol™ RNA Mini Prep Kit (Zymo 

Research, Irvine, CA, USA). Samples were homogenized as above using TRIzol® Reagent 

(Life Technologies) and aliquoted into multiple tubes before being centrifuged for 10 min at 

12 000 × g to pellet the solid material. The supernatant was transferred to a new tube and 

RNA was purified and eluted following the kit protocol. The ‘LogSpin’ method developed 

by Yaffe et al. (2012) was also used, combining homogenization in TRIzol® and purification 

and washing with mini prep columns and sodium acetate and 75% ethanol.

RNA extraction from Mf was mainly performed using a modified TRIzol® protocol. 1.5 mL 

of TRIzol® was added to one sample of ~500 000 frozen B. malayi Mf and homogenized 

using a mortar and pestle, with the sample repeatedly frozen and crushed with liquid 

nitrogen. Samples were aliquoted three times into 2 mL tubes with additional TRIzol® 

added. A 25-gauge needle, followed by a 30-gauge needle was used to further homogenize 

tissue, which was drawn up and expelled from the syringe 25 times. Tubes were centrifuged 

for 10 min at 12 000 × g to pellet solid material. The supernatant was added to a new tube 

and mixed with 0.2 mL of chloroform (Sigma), and shaken for 30 seconds. After a 3-min 

incubation at room temperature, the samples were centrifuged again for 15 min under the 

same specifications. The aqueous layer was added to an RNA Clean and Concentrator™ 

spin column (Zymo Research) and the procedure was completed as per product instructions. 

RNA samples eluted in nuclease-free water were analysed on a NanoDrop 2000 

Spectrophotometer (Thermo Fisher Scientific, Pittsburgh, PA) to determine their 

concentration and to measure the 260/280 absorbance ratio. Samples with a 260/280 ratio 

above 1.75 were analysed for integrity on an Agilent 2100 Bioanalyzer (Agilent 

Technologies, Santa Clara, CA, USA) using an RNA 6000 Nano chip.

RNASeq analysis

Total RNA (1–100 μg), was isolated from groups of pooled individuals for each treatment 

and time point. The number of individuals required per sample to yield sufficient RNA 

ranged from female, 8–25; male, 25–60; and Mf, 2.5–5.0 × 105. RIN values ≥7.0 were 

obtained for adult worm samples while values for Mf samples were typically lower, with a 

minimum RIN score ≥5.5. Three biological replicates were performed and analysed for all 
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samples except for the Mf 7 days post-treatment, where RNA for only two replicates was 

submitted for sequencing. Samples were submitted to the UGA Georgia Genomics Facility 

and libraries were synthesized using a TruSeq Stranded Total RNA LT Sample Prep Kit 

(Illumina, San Diego, CA, USA). Paired-end sequencing was performed on three Illumina 

NexSeq 500 runs (150 bp, high output).

Raw read data were demultiplexed and converted to fastqc using bcl2fastq from Illumina. 

Bioinformatics analyses were carried out by the UGA Quantitative Biology Consulting 

Group as follows: Raw and trimmed read data were quality assessed using FastQC (ver. 

0.11.4) software (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and residual 

adapter/index removal and quality trimming was done with Trimmomatic software (Bolger 

et al., 2014). A minimum read length cutoff of 50 bases was employed and the average 

sample quality was typically above QC 30. The average loss of data after trimming was 

typically between 5 and 10%. Only surviving paired reads were used in subsequent 

alignments to reference genomes. The B. malayi genome (build WS253) and GFF3 file were 

downloaded from Wormbase (ftp://ftp.wormbase.org/pub/wormbase/releases/WS253/

species/b_malayi/PRJNA10729/) and the Wolbachia endosymbiont (strain TRS) reference 

genome from NCBI (at ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq/Bacteria/

Wolbachia_endosymbiont_TRS_of_Brugia_malayi_uid58107/), respectively. Bowtie2, ver. 

2.2.3, (Langmead and Salzberg, 2012) indices were constructed for both. The B. malayi 
GFF3 file was converted to GTF format using the gffread script Cufflinks, ver. 2.2.1, 

(Trapnell et al., 2010) followed by file sorting with Integrated Genomics Viewer software 

(Robinson et al., 2011). Each sample was mapped to the B. malayi genome using Tophat2, 

ver. 2.0.14, (Kim et al., 2013) run at default settings. Mapping resulted in a typical 

concordant pair alignment of >90%. Several libraries were also aligned to the Wolbachia 
genome using Tophat2 and, in those cases, the concordant pair alignment rate was ≤0.1% for 

all samples tested indicating that filtering for Wolbachia contamination was unnecessary. 

Custom Perl scripts were used to: (1) generate run scripts for name sorting each Tophat 

BAM file with SAMtools (Li et al., 2009) and (2) generate scripts for count extraction using 

HTSeq (Anders et al., 2015). HTSeq output files containing gene-to-count information for 

each sample were concatenated with AWK to generate the final count matrices used in 

subsequent expression analyses. The DESeq2 Bioconductor package (Love et al., 2014) was 

used in the R computing environment to normalize count data, estimate dispersion and fit a 

negative binomial model for analysis of differentially expressed genes (DEGs). For each 

comparison group, a metadata table was generated containing the relevant sample and 

replicate associations and a secondary (batch) analysis column was included to account for 

the differences in replicate sample collection times within each group. P values were 

adjusted for multiple testing for determination of false discovery rate (FDR) using the 

Benjamini-Hochberg correction (Benjamini and Hochberg, 1995). Regularized logarithm 

(rlog) transformation of raw count matrices was used for principal component analysis 

(PCA).

Differential expression results were filtered based on a FDR of less than 5% and output was 

imported into Microsoft Excel for the inclusion of gene annotations and sorting. DEGs were 

designated by their WormBase Gene ID numbers (ex. WBGene00223871), and were 

translated into their respective B. malayi gene names (ex. Bm3610) using WormBait. This 
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program was designed specifically for this study and is freely available for download at 

https://github.com/c-anna/WormBait. This program uses the WormBase public RESTful API 

(http://www.wormbase.org/about/userguide/for_developers/API-REST#10-10) to collect 

various pieces of information about genes and proteins such as orthologs, gene classes, and 

gene models, quickly compiling information and producing a CSV report with the collected 

information suitable for further review in Microsoft Excel.

Sequence data are available at NCBI BioProject ID PRJNA388112.

Quantitative polymerase chain reaction (qPCR)

Sequences from WormBase GeneIDs were used to design primers for selected DEG hits 

using the GenScript Real-time PCR (TaqMan) primer design tool (www.genescript.com/ssl-

bin/app/primer). Design parameters were set to return primers and probes for amplicons 

between 50 and 150 bp and the same ranges for minimum and maximum melting 

temperatures. Each primer set was designed to span an exon-exon junction on either side, 

preventing any contaminating gDNA in each sample from being amplified. Two endogenous 

housekeeping genes, NADH dehydrogenase subunit 1 (NADH), and histone H3 were chosen 

as internal controls. The primer/probe sets for NADH1 and histone H3 were chosen based 

on their use as endogenous controls in earlier studies (Li et al., 2004; Lustigman et al., 
2014). The primer set for NADH1 was not explicitly designed to span exons because it could 

not be manually defined due to discrepancies in gene naming conventions in WormBase and 

NCBI. The histone H3 probe was explicitly designed to span exons, based on the availability 

of the sequence in WormBase. Primer/probe sets for adults were designed based on DEGs 

compiled from the WS249 release of WormBase. With the release of the WS253 assembly, 

adult gene hits were compiled again alongside Mf gene hits. Details of the primers and 

probes used are in Supplementary Table 1. Primer and probe sets for the target gene of 

interest and the histone H3 endogenous control were prepared in quadruplicate. Each 

reaction was run on an Mx3000P Thermocycler (Stratagene) using Mx3000 software v 4.01. 

Fluorescence threshold data (Ct values) were collected for ROX (reference dye), HEX 

(histone probe), and FAM (target probe). Reactions were run for 40 cycles with an annealing 

temperature of 55 °C for 1 min and an extension temperature of 60 °C for 1 min.

Results

Drug treatment of infected gerbils

None of the drugs we tested have been reported to have any phenotypic effect on Mf in vitro 
at concentrations relevant to those observed in treated people. Since it has been suggested 

that the activity of DEC and ivermectin might depend on the host immune system, we 

decided to study the effects of in vivo administration of the anthelmintic drugs on gene 

expression in adult and Mf stages of B. malayi. As the gerbil is the only convenient small 

animal model for B. malayi infection, we used gerbils that had been infected with about 300 

intraperitoneal L3; this infection route was chosen because of the greater ease of recovery of 

the parasites after treatment. We treated animals harbouring a patent infection, 4 months 

post-inoculation of the L3, with either albendazole, DEC or ivermectin at concentrations 

equivalent to those used in the LF elimination programs. Parasites were harvested from the 
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peritoneal cavities of euthanized gerbils 24 h or 7 days posttreatment. None of the drug 

treatments had any significant effect on the number of adult or larval worms recovered at 

these times (Table 1).

Transcriptomic effects of the drug treatments on adult and larval B. malayi

RNA was isolated from all of these parasite populations and subjected to Illumina 

sequencing. A total of 1.1 × 108 total paired reads were obtained, resulting in a collective 

3102 × coverage of the B. malayi transcriptome and 1898 X coverage of the B. malayi 
genome (Ghedin et al., 2007). Eighty percent or more of reads from each of the three 

sequencing runs mapped to the reference genome concordantly. The average overall 

mapping rate was 91.8% for adults and 82.9% for Mf. Reads covered 98% or more of the 

WS253 release of the B. malayi genome assembly (Supplementary Table 2).

PCA of the transcriptomic data (Fig. 1) showed that the data from parasites collected from 

different treatment groups within an individual experiment tended to be more similar to each 

other than to those of the same treatment groups in the three replicates. Despite the use of an 

inbred laboratory strain of B. malayi and host animals purchased from the same vendor over 

a fairly short period of time, the batch effects between experimental groups were more 

pronounced than the effects of treatment.

A total of 119 DEGs, that is genes whose expression differed in a statistically significant 

way between drug-treated and control samples, were identified in adult males and females, 

and 84 were found in Mf (Table 2; Supplementary Table 3). DEGs were grouped by drug 

treatment (Fig. 2a, and life stage (Fig. 2b and c)) to visualize their number and distribution. 

Of the 203 identified DEGs, 189 were specific to a particular drug treatment and/or parasite 

life stage. There were few overlaps in the DEGs among any of the treatment groups, or 

between males, females and Mf. Five of the 6 DEGs seen in the albendazole-treated female 

worms were also affected by the ivermectin treatment of female worms, with very similar 

levels of change observed. The only gene uniquely affected by the albendazole treatment 

was Bm8178, an ortholog of the C. elegans K05F1.9 and ZK354.7 genes. In C. elegans, 

these genes are affected by various noxious stimuli and are enriched in the germ line (Ortiz 

et al., 2014). No DEGs were observed in males or Mf following albendazole treatment. 

There were eight genes whose expression was significantly altered by both DEC and 

ivermectin, seven in females and one in Mf, at 7 days post-treatment.

Gene annotation information for DEGIDs were parsed from WormBase 

(www.wormbase.org) using the program WormBait (https://github.com/c-anna/WormBait) 

and included orthologs identified in C. elegans, O. volvulus and Homo sapiens. Gene 

ontology (GO) and pathway analysis was carried out with PANTHER (Mi et al., 2016) using 

the C. elegans orthologs of B. malayi gene hits (Supplementary Table 4).

DEGs following DEC treatment

One day after treatment with DEC only five DEGs were identified, all in male worms; in 

contrast, there were no DEGs in males 7 days after treatment, whereas there were multiple 

genes showing changes in expression in both females and Mf at this time point (Table 2). 

The ortholog of cdh-1, Bm8476, encoding a cadherin, was the only gene upregulated by 
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DEC treatment of males; the other male-specific genes were downregulated and have 

functions associated with metabolic processes. Seven days post-treatment, most of the DEGs 

in females were upregulated and five biological processes including RNA metabolism and 

regulation of RNA pol II transcription, as well as pathways related to Alzheimer Disease-

presenilin and Wnt signaling, were significantly overrepresented in this group (Table 3). All 

of the female downregulated DEGs at 7 days post-treatment were annotated with ‘cellular 

process’ as the only biological process, with binding and catalytic activity as the molecular 

function. In Mf, nine of the 10 DEGs were downregulated 7 days post-treatment. No GO 

terms were significantly over-represented in this group. The only upregulated transcript, 

Bm1750, is an ortholog of hlh-1, a helix-loop-helix transcription factor.

DEGs following ivermectin treatment

In ivermectin-treated worms, some genes were differentially expressed 1 day after treatment 

in males and Mf, but not females (Table 2). The Mf produced the largest number of DEGs 

for any group 1 day after treatment with ivermectin. The number of DEGs in males seen at 1 

or 7 days post-treatment was similar, although there was not a single gene whose expression 

was altered at both times. Seven days after treatment only one gene, Bm41, was 

differentially expressed in Mf, and expression of this gene was also changed in DEC-treated 

Mf at this time. Expression of Bm41 decreases during L2 development in the mosquito 

vector (Choi et al., 2014). Twenty-five transcripts were significantly affected in females 7 

days post-treatment. Collectively examining transcripts in adults and Mf that were up- or 

downregulated by ivermectin, six biological processes were shared including cellular 

component organization or biogenesis, cellular process, developmental process, localization, 

metabolic process and multicellular organismal process. Six additional processes were only 

associated with upregulated genes: biological adhesion, biological regulation, immune 

system process, locomotion, reproduction and response to stimulus (Table 3). Across all 

transcripts upregulated by ivermectin, products of genes involved in the endothelin signaling 

pathway were overrepresented in ivermectin-treated Mf 1 day post-treatment, including 

Bma-AEX-5, Bma-GCY-9 and Bma-LIT-1. In the Mf, there was also significant over-

representation of the biological processes chromosome segregation, metabolic process and 

tubulin complex in the upregulated transcripts, suggesting that cell division might be 

affected by the drug treatment. There were no significantly over-represented GO terms in the 

downregulated genes, all of which were involved in cellular or metabolic processes. In 

males, all DEGs at 1 day were downregulated, with cytokinesis and motor activity 

significantly over-represented GO terms in this group. Nicotinic acetylcholine receptor 

signalling was the only over-represented pathway. At 7 days, three of the up-regulated 

transcripts in males, Bm7894, Bm9729 and Bm8043, encoded collagens. In females the only 

GO term over-represented amongst the DEGs at 7 days was a developmental process. One 

gene, Bm17065, was downregulated in females 7 days post-treatment, but upregulated in 

males at the same time-point. Bm17065 encodes a small protein with no annotated functions 

or C. elegans ortholog. Seven genes, Bm5144, Bm6215, Bm6122, Bm6123, Bm3958, 

Bm1811 and Bm5103, were upregulated in females 7 days post-treatment with both DEC 

and ivermectin. These genes encode HIL-1 (DNA-binding protein), LIT-1 (protein 

phosphorylation), two calcium-binding cell adhesion proteins, SOX-2 (transcription factor), 

LAT-1 (G-protein coupled receptor) and HLH-2 (transcription factor), respectively.
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qPCR confirmation of expression changes

In order to confirm the changes in gene expression identified by RNASeq, we carried out 

qPCR on selected target genes to compare expression between single treated samples and 

time-matched controls. The target genes (Supplementary Table 4) were chosen to represent 

both time points and all treatments in males, females, and Mf, and included both up- and 

downregulated genes. For all nine target genes tested, changes in gene expression from 

qPCR were in the same direction as those given by DESeq2, though in several instances the 

qPCR data suggested that the magnitude of the changes was greater than the DESeq 

analysis.

Discussion

Drug treatment of the B. malayi infection in gerbils had no effect on the parasite numbers in 

the peritoneal cavity either 1 day or 7 days after treatment (Table 1). Though this may seem 

to be initially surprising it is consistent with previous observations. Treatment of sub-

cutaneous B. pahangi infections of gerbils with an oral dose of 0.2 mg kg−1 ivermectin had 

no effect on adult worm numbers, did not clear circulating Mf, and only reduced their 

numbers by ~85% 3 weeks after treatment (Rao et al., 1990; Bosshardt et al., 1995). 

Treatment of a peritoneal B. malayi infection with 0.2 mg kg−1 ivermectin also had no effect 

on adult worm numbers 1 week after treatment (Dooley et al., 2015). For DEC, 5 days of 

treatment with 100 mg kg−1 (more than 10 times the dose used here) did cause a transient 

clearance of B. malayi Mf and a 50% reduction in adult worms. The same treatment regime 

with albendazole (100 times the treatment used here) had no effect on Mf numbers until 21 

days post-treatment, but did clear adult worms (Rao et al., 2008). The absence of any 

measurable parasite killing in these experiments had one clear benefit; it allowed us to 

examine the effects of exposure to the drugs in vivo on the parasite transcriptome in the 

absence of any non-specific changes in gene expression due to dead or dying parasites. This 

approach was vindicated by the clear differences between the results obtained following 

treatment with the three drugs, which we believe are due to the direct effects of the drugs on 

the nematodes. The absence of any genes that were affected by all of the treatments is 

probably due to the absence of non-specific changes associated with parasite death. Overall, 

we observed changes in the expression of a small number of genes. Both the number of 

DEGs and the fold changes in expression that we observed following treatment were smaller 

than we predicted. Part of the explanation for this was batch effects revealed by the PCA, 

showing that gene expression in parasites of different treatment groups in the same 

experiment tended to be more similar than that in parasites of the same treatment group in 

different experiments (Fig. 1). This was despite the inbred nature of the B. malayi strain 

used (Michalski et al., 2011), the common source for the gerbils and our best attempts to 

maintain a consistent environment between the three biological replicates; this observation 

emphasizes the variability in gene expression likely to be observed between infections even 

with inbred parasite and host populations. This level of variation between the biological 

replicates may also explain the differences in the apparent extent of the differential 

expression we saw between the RNASeq analysis and the qPCR data (Supplementary Table 

4), as the latter were obtained from only one of the experiments used in the former.
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There were clear differences in the results obtained following treatment with the three drugs, 

with albendazole treatment resulting in changes in the expression of only a few genes, all in 

females 7 days post-treatment. Albendazole acts via inhibiting the polymerization of 

nematode tubulin (Lacey, 1988), though an effect on the Wolbachia endosymbiont has also 

been postulated (Serbus et al., 2012). The effectiveness of the albendazole treatment may 

have been reduced by the need for its metabolic activation causing a reduced bioavailability 

(Marriner and Bogan, 1980; Hennessy et al., 1989). These results will not be considered 

further, except to note that this treatment group acts as a further control for non-specific 

variations in transcript levels and strengthens the case that the changes in gene expression 

seen after DEC and ivermectin treatment were drug-specific and a direct consequence of 

treatment with those compounds. This outcome was different from that reported after in 
vitro exposure of B. malayi female worms to flubendazole (O’Neill et al., 2016) but for the 

reasons given above it seems unlikely that the parasites in our experiment were exposed to 

drug concentrations at all close to those used in the in vitro experiment.

The DEC and ivermectin treatments produced marked gender-specific effects on gene 

expression in adult worms. Effects on gene expression in males became apparent earlier than 

in females after both drugs, though ivermectin had a more pronounced effect on Mf than did 

DEC. The faster effects on males may be due to their smaller size and more rapid 

penetration of the drugs. The Mf data suggest that ivermectin does more direct damage to 

them than does DEC, as 24 h post-treatment ivermectin-treated Mf had the highest number 

of DEG of any of the experimental groups – 73. This result suggests that the drug treatment 

is having a rapid effect on the Mf, even though this does not result in any parasite death. In 

the context of a human infection, it may be that similar changes have a sufficiently 

deleterious effect on Mf to lead to their rapid removal from the circulation. After DEC 

treatment, changes were seen at 24 h in the expression of a handful of genes in adult males, 

with effects on females and Mf only observed 7 days after treatment. The limited overlap in 

the transcripts affected by DEC vs ivermectin treatment suggests that the effects we saw 

were specific to the two drugs and did not reflect generalized responses to drug-induced 

damage. The seven genes upregulated in female worms treated with either DEC or 

ivermectin do indicate some common responses, with increases in some transcription factors 

and cell-adhesion molecules. None of the genes whose expression was altered in the DEC- 

and ivermectin-treated animals was directly related to the presumed drug targets, 

arachidonic acid metabolism or glutamate-gated chloride channels, respectively (Maizels 

and Denham, 1992; Cully et al., 1994; Wolstenholme and Rogers, 2005; Wolstenholme, 

2011). Ivermectin treatment was associated with a reduction in transcripts involved in motor 

activity and nicotinic receptor signalling in males after 24 h, which could argue for an effect 

of the drug on locomotion. In vitro, males are paralyzed more rapidly than females by 

exposure to ivermectin (Tompkins et al., 2010), so they might be more susceptible to this 

effect of the drug. Alternatively, given that this effect was not seen in males after 7 days, it 

may be that a similar transient effect also took place in females but between 1 and 7 days 

post-treatment and so was not detected by our experimental design. Ivermectin and DEC 

both cause a long-term reduction in Mf numbers in infected people (Stolk et al., 2005), 

which has been correlated with expression of the glutamate-gated chloride channels in the 

reproductive tissues (Li et al., 2014). In this context, it is interesting that ‘developmental 
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process’ was the only GO term overrepresented amongst the genes whose expression was 

increased 7 days post-ivermectin expression, which might reflect the inhibition of Mf 

development and release caused by the drug. These genes included the orthologs of the C. 
elegans genes hil-1, lit-1, hmr-1, sox-2, lat-1 & hlh-2 (Kaletta et al., 1997; Costa et al., 1998; 

Portman and Emmons, 2000; Jedrusik et al., 2002; Langenhan et al., 2009; Kagias et al., 
2012). In contrast, only one of the genes whose expression was decreased by the drug 

treatment, Bm2841, has a C. elegans ortholog, oac-9.

Taken together, the picture that emerges is of early effects of ivermectin on Mf, consistent 

with a direct action of the drug against the larvae, which may then facilitate clearance from 

the circulation in human hosts, possibly involving an immune response against a weakened 

parasite population. In addition to increased transcription and possibly cell division in the 

Mf, the identification of increased endothelin-like signalling may point to heightened 

production of specific signalling peptides. In C. elegans GCY-9 is responsible for carbon 

dioxide avoidance via increased expression of FLP-19 (Smith et al., 2013; Romanos et al., 
2017); while B. malayi Mf may not normally be exposed to higher concentrations of carbon 

dioxide, this upregulation may reflect their detection of and response to deleterious effects 

caused by the drug. Bm6544 is one of a group of differentially-expressed genes whose C. 
elegans ortholog expression is regulated by noxious stimuli or might otherwise be predicted 

to respond to stress (Supplementary Table 5); a single ABC transporter transcript (Bm3156, 

which encodes an ortholog of C. elegans wht-4, an ABCG sub-family member) was 

upregulated in Mf 24 h post-treatment. ABC transporters have been proposed to be the major 

mediators of ivermectin detoxification by nematodes (Lespine et al., 2012) and ABCG 

transporters are involved in a wide variety of transport processes, including lipophilic drugs 

(Velamakanni et al., 2007).

The previous transcriptomic studies of drug treatment on B. malayi was carried out in vitro 
using adult females and used different mapping platforms and parameters for identifying 

DEGs (Ballesteros et al., 2016a; O’Neill et al., 2016). Our in vivo study should have 

removed the complicating effects of in vitro culture on these parasites (Ballesteros et al., 
2016b). We found no changes in the expression of any genes in adult female worms 24 h 

post-treatment with any of the drugs, compared with the 34 DEG found by Ballesteros et al. 
(2016a) following in vitro exposure to 100 nm ivermectin. One immediate difficulty in 

comparing the two sets of data is that we do not know what effective concentration of 

ivermectin the parasites were actually exposed to in our in vivo experiment and little or 

nothing is known about the pharmacokinetics of the drug in gerbils. In mice, a sub-

cutaneous injection of 0.2 mg kg−1 ivermectin resulted in a plasma concentration of ~100 

nM 2 h post-injection, falling by about 60% at 24 h (Kiki-Mvouaka et al., 2010). If those 

concentrations are also maintained in the peritoneal cavity and the pharmacokinetics of the 

drug in gerbils is similar to that in mice, then the parasites in both in vivo and in vitro 
experiments might have been exposed to similar drug concentrations. It seems unlikely that 

the 300 nm and 1 μm ivermectin treatments carried out by Ballesteros et al. (2016a) reflect 

drug exposure in our infected animals. However, they were some common DEG between the 

two studies. Three of our hits, Bm10580, Bm6544 and Bm8043 are regulated in vitro by 

ivermectin (Ballesteros et al., 2016a). Bm4605, Bm8043, Bm7894 and Bm9021 are four 

cuticle collagens whose expression was up-regulated in males 7 days post-treatment with 
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IVM in vivo, whereas expression of these same genes was downregulated in females treated 

in vitro with IVM for 5 days (Ballesteros et al., 2016a); these genes were up-regulated in 
vitro in female nematodes that were not treated with ivermectin (Ballesteros et al., 2016b). 

These changes in collagen expression may reflect damage and repair to the cuticle following 

drug exposure or in vitro cultivation.

In summary, we found few changes in gene expression that were due to albendazole 

treatment. For DEC, there are early limited effects on males and more delayed and extensive 

effects on gene expression in females and in Mf. Ivermectin caused a rapid change in gene 

expression in Mf, from which they largely recovered by 7 days post-treatment, whereas 

effects on female gene expression were only apparent after 7 days. Male gene expression 

was altered at both time points, though different genes were affected 1 day and 7 days after 

treatment. The early effect of ivermectin on males seemed to be transient and muscle 

function was a major target. Though this study does not provide a definitive mechanism for 

the antifilarial effect of DEC or ivermectin, it does confirm the complexity of those effects 

and suggest future avenues for investigation, such as using RNAi to knock-down the 

transcripts identified here. Current and future studies are aimed at confirming the role of the 

DEG identified here in the mode of action of these drugs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Principal Component Analysis of the RNASeq data.
For each set of samples (Mf, adult males and adult females at 1 day and 7 days post-

treatment) the replicates are colour-coded; replicate 1 is in red, replicate 2 is in blue and 

replicate 3 is in green. For each replicate the principal components are shown for the control 

samples (o), albendazole-treated (Δ), DEC-treated (*) and ivermectin-treated worms (□).
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Fig. 2. Limited overlap in differential gene expression between drug treatments.
(a) Of the 203 differentially expressed genes, only 13 were affected by more than one drug 

treatment at any life-stage. Five genes were differentially expressed in both ivermectin- and 

albendazole-treated worms and eight in both ivermectin- and DEC-treated worms. (b) Of the 

119 genes whose expression was affected in adult worms, five were altered in both 

ivermectin- and albendazole-treated parasites and seven in ivermectin- and DEC-treated 

ones. (c) Of the 83 genes whose expression was altered in Mf at any time following 

treatment with any drug, only one was affected following either ivermectin or DEC, at 7 

days post-treatment. IVM 1 is the group of DEG 1 day after treatment with ivermectin, IVM 

7 is the DEG group after 7 days and DEC 7 is the group of DEG 7 days after treatment with 

DEC.
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