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Abstract: Antimetabolites of folic acid represent a large group of drugs and drug candidates, includ-
ing those for cancer chemotherapy. In this current review, the most common methods and approaches
are presented for the synthesis of therapeutically significant antimetabolites of folic acid, which
are Methotrexate (MTX), Raltitrexed (Tomudex, ZD1694), Pralatrexate, Pemetrexed, TNP-351, and
Lometrexol. In addition, the applications or uses of these folic acid antimetabolites are also discussed.
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1. Introduction

Antimetabolites, which are antagonists of natural metabolites, belong to a group of
highly efficient anticancer drugs. Based on the chemical structure, these groups can be
divided into several sub-groups, such as non-natural amino-acids [1] or peptides [2,3],
including phospha-analogues [4], analogues of purine and pyrimidine bases, such as
competitors in the synthesis of the nucleic acids [5,6], as well as vitamin actions including
folic acid [7], hormones [8], coenzymes [9], and other substrates responsible for the normal
functioning of cells and tissues of the human body.

The mechanism of antimetabolites action is based on their ability to enter into com-
petitive relationships with structurally similar metabolites of the living, which leads to a
lack of the corresponding metabolite and a decrease in the activity of vital biochemical
processes in the cell. In order to interfere with the synthesis of the DNA constituents, the
most common antimetabolites should be structural analogues of purine and pyrimidine
bases/nucleosides, or of folate cofactors [10].

In this current review, we analyze the most common approaches for the synthesis of
therapeutically significant antimetabolites of folic acid [11–13], such as Methotrexate (MTX),
Raltitrexed (Tomudex, ZD1694), Pralatrexate, Pemetrexed, TNP-351, and Lometrexol.

2. Discussion
2.1. Mechanism of Antifolates Action

Folic acid (1) first has to be reduced to THFA (2) by dihydrofolate reductase (Figure 1),
after which it can attach various one-carbon groups and transfer them to other molecules.
In the reaction, once catalyzed by thymidylate synthase, deoxyuridine monophosphate
(deoxy-UMP or dUMP) is converted to deoxythymidine monophosphate (deoxy-TMP
or dTMP), producing a methylene group from 5,10-methylene-THFA; the latter is oxi-
dized into dihydrofolic acid and must be reduced again to participate in further reactions.
Methotrexate (MTX) and other folic acid antagonists with a high affinity for dihydrofolate
reductase (K, 0.01–0.2 nmol/L) disrupt the formation of THFA, causing a deficiency of
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reduced folates and an accumulation of toxic dihydrofolic acid polyglutamates. At the same
time, the transfer reactions of one-carbon groups, which are necessary for the synthesis
of purines and dTMP, are inhibited; as a result, the synthesis of nucleic acids and other
metabolic processes are disrupted. The toxic action of methotrexate is prevented by calcium
folinate (the calcium salt of 5-formyl-THFA), which enters the cell via a reduced folate
transporter and is converted into the other THFA derivatives [14] (Scheme 1).
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Figure 1. Structure of folic acid (1) and tetrahydrofolic acid (THFA) (2) and their antimetabolites. 

2.2. Methotrexate: (S)-2-(4-(((2,4-Diaminopteridin-6-yl)Methyl)(Methyl)Amino)benzamido) 
Pentanedioic Acid (MTX, Rheumatrex, Amethopterin, Abitrexate, Trexall, Methylaminopterin, 
Mexate, Metatrexan) 

The discovery of the first folic acid antagonist, methotrexate (MTX), with its promis-
ing activity for the treatment of a variety of human cancers, prompted the search for other 
folate analogs [18]. As a structural analogue of folic acid, methotrexate inhibits the activity 
of the enzyme folate reductase, which prevents the conversion of folic acid into tetrahy-
drofolic acid, which is involved in cell metabolism and reproduction. Methotrexate is rec-
ommended for acute childhood leukemia; chorionepithelioma of the uterus; cancer of the 
breast, lungs, testicles, and other malignant tumors in adults (in combination with other 
antiblastoma drugs); and is also used as an immunosuppressive agent. 

The most common synthetic strategy for the preparation of MTX 3 involves the post-
modification of 3,4-dihydropteridine-2,4-diamines 9, as depicted in Scheme 2.  
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Figure 1. Structure of folic acid (1) and tetrahydrofolic acid (THFA) (2) and their antimetabolites.

Once it became clear that methotrexate directly inhibits not only dihydrofolate re-
ductase but also the enzymes for the synthesis of purines and thymidylate synthase, the
coenzymes of which are reduced folates, a search commenced for folic acid antagonists
that selectively inhibit these enzymes. By replacing the N-5, N-8 and N-10 atoms and
modifying the side chains of the methotrexate molecule, it was possible to synthesize
drugs that retain their inherent ability to form stable polyglutamates inside the cell, but
better penetrate the tumor [15], such as the following: raltitrexed, a thymidylate synthase
inhibitor; lometrexol, a purine synthesis inhibitor; and pemetrexed, which combines both
mechanisms of action [16].

Most folic acid antimetabolites are only partially selective for tumor cells and affect
rapidly proliferating normal cells, including bone marrow and gastrointestinal mucosa.
Folic acid antagonists act in the S-period and are most active against cells in the logarithmic
growth phase [17].
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Scheme 1. Main target processes for antifolates in living cells.

2.2. Methotrexate: (S)-2-(4-(((2,4-Diaminopteridin-6-yl)Methyl)(Methyl)Amino)benzamido)
Pentanedioic Acid (MTX, Rheumatrex, Amethopterin, Abitrexate, Trexall, Methylaminopterin,
Mexate, Metatrexan)

The discovery of the first folic acid antagonist, methotrexate (MTX), with its promising
activity for the treatment of a variety of human cancers, prompted the search for other folate
analogs [18]. As a structural analogue of folic acid, methotrexate inhibits the activity of the
enzyme folate reductase, which prevents the conversion of folic acid into tetrahydrofolic
acid, which is involved in cell metabolism and reproduction. Methotrexate is recommended
for acute childhood leukemia; chorionepithelioma of the uterus; cancer of the breast, lungs,
testicles, and other malignant tumors in adults (in combination with other antiblastoma
drugs); and is also used as an immunosuppressive agent.

The most common synthetic strategy for the preparation of MTX 3 involves the post-
modification of 3,4-dihydropteridine-2,4-diamines 9, as depicted in Scheme 2.

Molecules 2022, 27, x FOR PEER REVIEW 3 of 24 
 

 

N

N

N

HN

HN

O

N
H

O

OH

OHO

O

H2N N
H

H
N

N

HN

HN

O

N
H

O

OH

OHO

O

H2N
Folic acid
       1

N

O

N
H

O OH

O

OH

N

N

N

N

NH2

H2N

N

N

N

N

NH2

H2N

O NH

OH

O

OH

O

N

N
HN

O

N
H

O
H2N

O OH

OH

O

N

N
HN

O

H
N

NH2
H2N

O OH

OH

O

Lometrexol (6R,6S)

N
H

N

O NH

HN

O

H2N

HO

OH

O

O

N

O

HN

O
OH

O
OH

N

N

O

S

Tetrahydrofolic acid (THFA)
2

Methotrexate (MTX)
3

Raltitrexed
4

Pralatrexate
5

Pemetrexed (PMX)
6

TNP-351
7 8  

Figure 1. Structure of folic acid (1) and tetrahydrofolic acid (THFA) (2) and their antimetabolites. 

2.2. Methotrexate: (S)-2-(4-(((2,4-Diaminopteridin-6-yl)Methyl)(Methyl)Amino)benzamido) 
Pentanedioic Acid (MTX, Rheumatrex, Amethopterin, Abitrexate, Trexall, Methylaminopterin, 
Mexate, Metatrexan) 

The discovery of the first folic acid antagonist, methotrexate (MTX), with its promis-
ing activity for the treatment of a variety of human cancers, prompted the search for other 
folate analogs [18]. As a structural analogue of folic acid, methotrexate inhibits the activity 
of the enzyme folate reductase, which prevents the conversion of folic acid into tetrahy-
drofolic acid, which is involved in cell metabolism and reproduction. Methotrexate is rec-
ommended for acute childhood leukemia; chorionepithelioma of the uterus; cancer of the 
breast, lungs, testicles, and other malignant tumors in adults (in combination with other 
antiblastoma drugs); and is also used as an immunosuppressive agent. 

The most common synthetic strategy for the preparation of MTX 3 involves the post-
modification of 3,4-dihydropteridine-2,4-diamines 9, as depicted in Scheme 2.  

N

NX

N

NH

NH2

NH2

N

O

N
H

O OH

O

OH

N

N

N

N

NH2

H2N

Methotrexate (MTX)
3

9

 
Scheme 2. Synthetic strategy towards MTX by the post-modification of 3,4-dihydropteridine-2,4-diamines 9.

Thus, MTX was obtained by the reaction of 2,4-diamino-6-bromomethylpteridine hydro-
bromide 11 with barium salt dehydrate [19] or Zn2+ salt [20] of p-(N-methyl)-aminobenzoyl-L-
glutamic acid 10 in 87.5% and 56.1% yields, accordingly (Scheme 3).
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lowed by basic saponification (Scheme 4) provided lower yields of the target product [21].
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Scheme 4. Synthesis of MTX by the reaction of 2,4-diamino-6-bromomethylpteridine hydrobromide
11 with diethyl p-(N-methyl)-aminobenzoyl-L-glutamate 12.

Another approach involves the substitution of the azide group in 4-(N-methyl-N′-(6”-
aminopteroil-methyleno)aminobenzoic acid derivative 13 in a reaction with L-glutamic
acid 14 in DMSO at room temperature in the presence of tetramethylguanidine (TMG) as
the base (Scheme 5) [22]. The reaction resulted in the corresponding desired MTX in a
quantitative yield, which is the main advantage of this method.
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Scheme 5. Quantitative synthesis of MTX by the reaction of 4-(N-methyl-N′-(6′′-aminopteroil-
methyleno)aminobenzoic acid derivative 13 with L-glutamic acid 14.

In addition, MTX was obtained in a 75.7% yield by means of the transformation of
its more stable and synthetically available 4-oxoderivative (methopterin hydrate) (15) in
the presence of pyridine, p-toluenesulfonic acid monohydrate and 1,1,1,3,3,3-hexamethyl-
disilazane (HMDZ) (Scheme 6) [23].

Along with MTX, its 13C-multilabelled forms with 13C-enrichment at 2, 7, 9, 4, 7, 8a,
9 and 2, 4a,b positions were synthesized from the di-tert-butyl ester of MTX 16 for the
NMR study of the mechanisms of drug–enzyme interactions (Scheme 7) [24]. The reaction
was carried out by performing ‘benzylic’ bromination, followed by the substitution of
the bromine atom by the di-t-butyl N-(p-methylaminobenzoyl)-L-glutamate. The acid
treatment of each of the formed methotrexate di-t-butyl esters yielded the corresponding
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13C-enriched methotrexate in 60–90% yields. So far, this is the only method reported for the
synthesis of C13-MTX.

Molecules 2022, 27, x FOR PEER REVIEW 5 of 24 
 

 

3, 75.7%

N

O

N
H

O OH

O

OH

N

N

N

HN

O

H2N H2O

HMDZ
pyridine,
PTSA hydrate

15

N

O

N
H

O OH

O

OH

N

N

N

N

NH2

H2N

 
Scheme 6. Synthesis of MTX from 4-oxoderivative of MTX (methopterin hydrate) (15). 

Along with MTX, its 13C-multilabelled forms with 13C-enrichment at 2 ,7 ,9 ,4 ,7, 8a, 9 
and 2, 4a,b positions were synthesized from the di-tert-butyl ester of MTX 16 for the NMR 
study of the mechanisms of drug–enzyme interactions (Scheme 7) [24]. The reaction was 
carried out by performing ‘benzylic’ bromination, followed by the substitution of the bro-
mine atom by the di-t-butyl N-(p-methylaminobenzoyl)-L-glutamate. The acid treatment 
of each of the formed methotrexate di-t-butyl esters yielded the corresponding 13C-en-
riched methotrexate in 60–90% yields. So far, this is the only method reported for the syn-
thesis of C13-MTX. 

3, 60-90%

N

O

N
H

O O

O

O

N

N

N

N

NH2

H2N
16

rt N

O

N
H

O OH

O

OH

N

N

N

N

NH2

H2N

TFA

HN

O NH
O

O

O

O

+

N

N
Br

N

N

NH2

NH2

BrH

11
N

N

N

N

NH2

NH2

Br2, (BzO)2

AcOH reflux

11

∆

 
Scheme 7. Multistep synthesis of MTX. 

In another method for the synthesis of MTX 3, the pro-drug of MTX, N-(L-α-amino-
acyl)-derivative of methotrexate 18, was initially prepared by a reaction between the di-
tert-butyl ester of MTX 16 and N-tert-butyloxycarbonyl-L-leucine derivative 17, followed 
by the acidic deprotection of protective groups [25]. Subsequently, the obtained pro-drug 
18 was successfully converted into MTX via the enzymatic cleavage by porcine microso-
mal leucine aminopeptidase (Scheme 8). Unfortunately, the authors did not provide any 
yields due to the format of the publication. 

Scheme 6. Synthesis of MTX from 4-oxoderivative of MTX (methopterin hydrate) (15).

Molecules 2022, 27, x FOR PEER REVIEW 5 of 24 
 

 

3, 75.7%

N

O

N
H

O OH

O

OH

N

N

N

HN

O

H2N H2O

HMDZ
pyridine,
PTSA hydrate

15

N

O

N
H

O OH

O

OH

N

N

N

N

NH2

H2N

 
Scheme 6. Synthesis of MTX from 4-oxoderivative of MTX (methopterin hydrate) (15). 

Along with MTX, its 13C-multilabelled forms with 13C-enrichment at 2 ,7 ,9 ,4 ,7, 8a, 9 
and 2, 4a,b positions were synthesized from the di-tert-butyl ester of MTX 16 for the NMR 
study of the mechanisms of drug–enzyme interactions (Scheme 7) [24]. The reaction was 
carried out by performing ‘benzylic’ bromination, followed by the substitution of the bro-
mine atom by the di-t-butyl N-(p-methylaminobenzoyl)-L-glutamate. The acid treatment 
of each of the formed methotrexate di-t-butyl esters yielded the corresponding 13C-en-
riched methotrexate in 60–90% yields. So far, this is the only method reported for the syn-
thesis of C13-MTX. 

3, 60-90%

N

O

N
H

O O

O

O

N

N

N

N

NH2

H2N
16

rt N

O

N
H

O OH

O

OH

N

N

N

N

NH2

H2N

TFA

HN

O NH
O

O

O

O

+

N

N
Br

N

N

NH2

NH2

BrH

11
N

N

N

N

NH2

NH2

Br2, (BzO)2

AcOH reflux

11

∆

 
Scheme 7. Multistep synthesis of MTX. 

In another method for the synthesis of MTX 3, the pro-drug of MTX, N-(L-α-amino-
acyl)-derivative of methotrexate 18, was initially prepared by a reaction between the di-
tert-butyl ester of MTX 16 and N-tert-butyloxycarbonyl-L-leucine derivative 17, followed 
by the acidic deprotection of protective groups [25]. Subsequently, the obtained pro-drug 
18 was successfully converted into MTX via the enzymatic cleavage by porcine microso-
mal leucine aminopeptidase (Scheme 8). Unfortunately, the authors did not provide any 
yields due to the format of the publication. 

Scheme 7. Multistep synthesis of MTX.

In another method for the synthesis of MTX 3, the pro-drug of MTX, N-(L-α-aminoacyl)-
derivative of methotrexate 18, was initially prepared by a reaction between the di-tert-butyl
ester of MTX 16 and N-tert-butyloxycarbonyl-L-leucine derivative 17, followed by the
acidic deprotection of protective groups [25]. Subsequently, the obtained pro-drug 18 was
successfully converted into MTX via the enzymatic cleavage by porcine microsomal leucine
aminopeptidase (Scheme 8). Unfortunately, the authors did not provide any yields due to
the format of the publication.

Free-form MTX was obtained from the conjugate of the o-nitrobenzyl alcohol deriva-
tive and MTX 19 during a photolysis experiment in aqueous methanol under UV-light
irradiation [26]. This technique was considered by the authors as a possible way to trans-
port the MTX to the cancer cells with the release of MTX free form at up to 50% at a pH
level of 7.4 (Scheme 9).
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In the literature, there are less common synthetic approaches available that involve 
the construction of a 3,4-dihydropteridine core starting from aminopyrimidines 21 
(Scheme 10). 

Scheme 9. UV-light promoted synthesis of MTX from 19. Reproduced with the permission of
reference [26]. Copyright © 2011, Elsevier Ltd.

In the literature, there are less common synthetic approaches available that involve the
construction of a 3,4-dihydropteridine core starting from aminopyrimidines 21 (Scheme 10).
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In this context, MTX was obtained by the tandem multicomponent reaction between
Zn2+ salt of N-(4-N-methylaminobenzoil)-L-glutamic acid 10b, 1,1,3-tribromoacetone 23
and 2,2,5,6-tetraaminopyrimidine sulfate 22 under mild conditions (Scheme 11) [27]. This
method has a noticeable advantage, such as the possibility to carry out several reactions in
one step without the isolation of intermediates during each step.
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In another method, the MTX core was constructed by means of a heterocyclization reac-
tion between commercially available guanidine acetate 24 and easily derived diethyl (4-(((5-
amino-6-cyanopyrazin-2-yl)methyl)(methyl)amino)benzoyl)glutamate 25 under heating
conditions, followed by basic hydrolysis (Scheme 12) [28].
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Scheme 12. Synthesis of MTX by the reaction between guanidine acetate 24 and diethyl (4-(((5-amino-
6-cyanopyrazin-2-yl)methyl)(methyl)amino)benzoyl)glutamate 25.

Lastly, the approach for MTX 3 involves a reaction between 2,4,5,6-tetraaminopyrimidine
hydrosulphate 22, 2,3-dibromopropionaldehyde 26, and N-4-(methylamino)benzoyl)-L-
glutamic acid 12 disodium salt under oxidative conditions (iodine in the presence of KI)
(Scheme 13) [29]. In this article, the authors were more concerned about the purity of the
obtained compounds than their yields.

2.3. Raltitrexed: (2S)-2-[[5-[Methyl-[(2-Methyl-4-oxo-3H-Quinazolin-6-yl)Methyl]Amino]
Thiophene-2-Carbonyl]Amino]Pentanedioic Acid (Tomudex, ZD1694)

Raltitrexed (Tomudex) is a more recent, specific, mixed, and non-competitive in-
hibitor of thymidylate synthase indicated for use in cancer therapy, especially colorectal
cancer [30–32].
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The thiophene system 4a and its related thiazole 4b yielded analogues that were con-
siderably more efficient than the parent benzene series as inhibitors of L1210 cell growth. 
Although, in general, these heterocycles were somewhat poorer inhibitors of the isolated 
TS enzyme. Raltitrexed 4a (R = CH3) was synthesized in a 41% yield starting with the thi-
ophene-2-carboxylic acid, as shown in Scheme 15. 

Scheme 13. Synthesis of MTX by the reaction between 2,4,5,6-tetraaminopyrimidine hydrosulphate
22, 2,3-dibromopropionaldehyde 26, and N-4-(methylamino)benzoyl)-L-glutamic acid 12 disodium
salt under oxidative conditions.

In 1991, Marsham et al. reported the synthesis of a series of C2-methyl-N10-alkylquinazoline-
based antifolates, in which the benzene ring was replaced by the heterocycles, i.e., thiophene,
thiazole, thiadiazole, pyridine, and pyrimidine (Scheme 14) [33].
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Scheme 14. Structures of a series of C2-methyl-N10-alkylquinazoline-based antifolates. Reproduced
with the permission of reference [33]. Copyright © 1991, American Chemical Society.

The thiophene system 4a and its related thiazole 4b yielded analogues that were
considerably more efficient than the parent benzene series as inhibitors of L1210 cell
growth. Although, in general, these heterocycles were somewhat poorer inhibitors of the
isolated TS enzyme. Raltitrexed 4a (R = CH3) was synthesized in a 41% yield starting with
the thiophene-2-carboxylic acid, as shown in Scheme 15.
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Another route to Raltitrexed was reported that started with thiophene-2,5-dicarboxylic
acid 31, which was then converted in four steps to diethyl (5-(methylamino)thiophene-2-
carbonyl)-L-glutamate 35. This was followed by an alkylation reaction of the last one with
6-bromomethyl-2-methyl-4-quinazolinone 30 and basic hydrolysis, which resulted in the
target product 4a (Scheme 16) [34].
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A similar route to Raltitrexed was reported by Yao et al. starting with 5-nitrothiophene-
2-carboxylic acid 37 via the sequence of NaBH4 reduction, alkylation, and saponification
(Scheme 17) [35]. The target product was isolated in a lower yield.
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Raltitrexed was also prepared by using the same compound in less reaction steps as
reported by Xiqun et al. (Scheme 18) [36].
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using diethyl (5-(N-methylacetamido)thiophene-2-carbonyl)-L-glutamate 41 as the starting
material (Scheme 19) [37].
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glutamate 41 as the starting material.

2.4. Pralatrexate (Folotyn):
N-4-[1-(2,4-Diaminopteridin-6-yl)Pent-4-yn-2-yl]Benzoyl-L-Glutamic Acid

Pralatrexate 25 is another folate antagonist and antineoplastic agent with confirmed
activity for the treatment of relapsed or refractory peripheral T-cell lymphoma (PTCL).
Pralatrexate was approved for medical use in the United States in September 2009, as the
first treatment for Peripheral T-cell Lymphoma (PTCL) [38,39], an often-aggressive type of
non-Hodgkins lymphoma [40].

Successive alkylation of dimethyl homoterephthalate 43 with propargyl bromide 44
and 2,4-diamino-6-(bromomethy1)pteridine 11 followed by ester saponification at room
temperature resulted in 2,4-diamino-4-deoxy-10-carboxy-10-propargy1-10-deazapteroic
acid 46. Subsequently, compound 46 was readily decarboxylated by heating in DMSO at
120 ◦C to yield diamino-10-propargyl-10-deazapteroic acid 47 as a precursor of Pralatrexate
5. Additionally, the coupling of 47 with diethyl L-glutamate followed by ester hydrolysis,
yielded Pralatrexate 5 (Scheme 20) [41].
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Pemetrexed (PMX) 30 is a folate antagonist and antineoplastic agent, used in the 
treatment of non-small cell lung cancer [51–54] and malignant mesothelioma [55]. The 
mechanism of action of PMX is based on the inhibition of three enzymes responsible for 
the purine and pyrimidine synthesis—thymidylate synthase (TS), dihydrofolate reductase 
(DHFR), and glycinamide ribonucleotide formyltransferase [56]—which prevents the for-
mation of DNA and RNA, which are responsible for the growth of normal and cancer 
cells. 

Scheme 20. Synthesis of Pralatrexate starting from the reaction between dimethyl homoterephthalate
43 and propargyl bromide. Reproduced with the permission of reference [41]. Copyright © 1993,
American Chemical Society.

After the abovementioned publication, many improved procedures were reported for
the preparation of Pralatrexate [42–48]. The synthesis of optically pure diastereomers of
Pralatrexate has also been reported [49].

Another approach to producing Pralatrexate was developed by Alla et al. (2013), start-
ing with ethyl 4-formylbenzoate 48; however, the yield was not specified (Scheme 21) [50].
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2.5. Pemetrexed: (S)-2-(4-(2-(2-Amino-4-oxo-4,7-Dihydro-1H-Pyrrolo[2,3-d]Pyrimidin-5-
yl)Ethyl)Benzamido)Pentanedioic Acid (PMX, ALIMTA, LY231514, MTA)

Pemetrexed (PMX) 30 is a folate antagonist and antineoplastic agent, used in the
treatment of non-small cell lung cancer [51–54] and malignant mesothelioma [55]. The
mechanism of action of PMX is based on the inhibition of three enzymes responsible for
the purine and pyrimidine synthesis—thymidylate synthase (TS), dihydrofolate reduc-
tase (DHFR), and glycinamide ribonucleotide formyltransferase [56]—which prevents
the formation of DNA and RNA, which are responsible for the growth of normal and
cancer cells.

The first synthetic approach toward PMX was reported starting with tert-butyl-4-
formylbenzoate 54. This aliphatic precursor was heterocyclized to the PMX diethyl ester 60
in a few steps, which was converted to PMX 6 by performing hydrolysis (Scheme 22) [57].
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Mitchell-Ryan et al. reported the synthesis of 5-substituted pyrrolo[2,3-d]pyrimidine
antifolates with one-to-six bridge carbons and a benzoyl ring in the side chain as antitumor
agents [58]. The compound with a 4-carbon bridge was the most active analogue and
it potentially inhibited the proliferation of the folate receptor (FR) α-expressing Chinese
hamster ovary and KB human tumor cells. PMX was synthesized from ethyl 4-iodobenzoate
61, and 1-butene-4-ol 62 using a Heck cross-coupling reaction followed by bromination of
the aldehyde at alpha-position. Further heterocyclization with basic hydrolysis and the
formation of amide from diethyl-L-glutamate resulted in acid derivative 60. In the final
step, PMX 6 was obtained by the basic hydrolysis of the ester groups in a glutamate moiety
(Scheme 23).
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As an improvement to the abovementioned method, the preparation of lysin salt of
PMX was reported [59].

Michalak et al. reported the synthesis of PMX along with its common impurities/side
products, starting with 4-[2-(2-amino-4-oxo-4,7-dihydro-1H-pyrrolo[2,3-d]pyrimidin-5-
yl)ethyl]benzoic acid 28 [60].

In the method reported by Tailor et al. for the synthesis of PMX, ethyl-4-(3-oxopropyl)benzoate
67 was used as a starting compound [61–63]. After the Henry reaction with nitromethane,
the product was converted to the semi-product with 2,6-diaminopyrimidin-4-ol 69. The
heterocyclization of this semi-product resulted in pyrrolo[2,3-d]pyrimidine derivative 70,
which, followed by its functionalization with diethyl-L-glutamate and basic hydrolysis,
resulted in the desired product 6 in a 92% yield (Scheme 24).

The same research group reported an improved synthesis of PMX, starting from
dimethyl (4-ethynylbenzoyl)-L-glutamate 73 and N-(4-oxo-4,7-dihydro-3H-pyrrolo[2,3-
d]pyrimidin-2-yl)pivalamide 71 [64]. The sequence of iodination, reduction, Sonogashira
cross-coupling, reduction reactions, and basic hydrolysis in the last step, resulted in the
final product, PMX, in a 67% yield (Scheme 25).
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The same authors also reported the synthesis of PMX starting from methyl (E)-3-(but-
2-en-1-yl(3,4-dimethoxybenzyl)amino)-3-oxopropanoate [65]. The last one was cyclized
to methyl-1-(3,4-dimethoxybenzyl)-2-oxo-4-vinylpyrrolidine-3-carboxylate by the reaction
of Mn(III) and Cu(II) acetates. The oxo-group was then converted to the thioxo-group
upon treatment with P2S5. After the heterocyclization reaction, the obtained 2-amino-7-
(3,4-dimethoxybenzyl)-5-vinyl-4a,5,6,7-tetrahydro-4H-pyrrolo[2,3-d]pyrimidin-4-one was
subjected to a Heck cross-coupling reaction with diethyl 4-iodobenzoylglutamate. Addition-
ally, the coupling product was identified as one with unexpected double bond migration
products in vinyl-bridged pyrrolinopyrimidine to form the ethano-bridged pyrrolopyrimi-
dine. Thus, the authors avoided the reduction of the unsaturated bridge and the subsequent
oxidation of the pyrroline ring at the same time. According to the authors, the protection of
the N-7 position eliminates the PMX cell growth’s inhibitory activity. In addition, deprotec-
tion of the N-7 position was finally achieved upon treatment with a H2SO4/TFA mixture
to facilitate the PMX precursor in a 30% yield, which resulted in the target product after
saponification (Scheme 26).
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Scheme 26. Synthesis of Pemetrexed starting from methyl (E)-3-(but-2-en-1-yl(3,4-
dimethoxybenzyl)amino)-3-oxopropanoate 75.

Finally, very recently, a method for PMX synthesis was developed by means of the
reaction of an anomeric amide agent with a secondary amine precursor followed by the
deprotection of protective groups (Scheme 27) [66].
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Scheme 27. Synthesis of Pemetrexed by the reaction of anomeric amide agent with secondary amine
precursor followed by the deprotection of protective groups.

2.6. TNP-351: (2S)-2-[[4-[3-(2,4-Diamino-7H-Pyrrolo[2,3-d]Pyrimidin-5-yl)Propyl]benzoyl]Amino]
Pentanedioic Acid (HY-19095)

TNP-351 is another antifolate from the same family as PMX. As a dihydrofolate
reductase (DHFR) inhibitor, TNP-351 has good potential for the treatment of not only
leukemia cells but also solid tumor cells, both in vitro and in vivo [67]. The structure of
TNP-351 contains three methylene bridges instead of two as in PMX and two amino groups
in pyrimidine core.

So far, only two synthetic approaches to TNP-351 7 have been reported; the first one in-
cludes construction of the key intermediary acyclic skeleton, 5-[4-(tert-butoxycarbonyl)phenyl]-
2-(dicyanomethyl)pentanoate 85, cyclization with guanidine, followed by reduction to
pyrrolo[2,3-d]pyrimidine derivatives 87, and subsequent glutamate coupling and saponi-
fication. These antifolates were more growth-inhibitory by approximately one order of
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magnitude than methotrexate (MTX) against KB human epidermoid carcinoma cells and
A549 human non-small cell lung carcinoma cells with in vitro culture (Scheme 28) [68].
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The second method belongs to the same article, where the synthesis of TNP-351 has
been reported along with PMX synthesis (Scheme 29) [57].
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2.7. Lometrexol: (2S)-2-[[4-[2-[(6R)-2-Amino-4-oxo-5,6,7,8-Tetrahydro-1H-Pyrido[2,3-
d]Pyrimidin-6-yl]Ethyl]Benzoyl]Amino]Pentanedioic Acid (LY 264618, DDATHF-B,
Lometrexolum)

Lometrexol (6R)-8 is a folate analogue antimetabolite with antineoplastic activity [69–71].
As the 6R diastereomer of 5,10-dideazatetrahydrofolate, lometrexol inhibits glycinamide
ribonucleotide formyltransferase (GARFT), the enzyme that catalyzes the first step in the
de novo purine biosynthetic pathway, thereby inhibiting DNA synthesis, arresting cells
in the S phase of the cell cycle, and inhibiting tumor cell proliferation. The agent is active
against tumors that are resistant to the folate antagonist methotrexate.
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Lometrexol has been used in trials for the treatment of lung cancer, drug/agent toxicity
by tissues/organs, as well as for the treatment of unspecified adult solid tumors.

Taylor et al. reported several approaches to Lometrexol. The first of their approaches
relates to the synthesis of (mixture of diastereomers) (6S,6R)-Lometrexol 8 with a satisfac-
tory yield starting from 5-methyl-2-((4-nitrophenyl)thio)nicotinonitrile 95 (Scheme 30) [72].
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In another work, Taylor et al. developed a convenient method for the synthesis of 
(6S,6R)-Lometrexol 8 with good yield via N-(6-bromo-4-oxo-3,4-dihydropyrido[2,3-d]py-
rimidin-2-yl)pivalamide starting with 2,6-diaminopyrimidin-4(3H)-one (Scheme 32) [74]. 

Scheme 30. Synthesis of Lometrexol starting from 5-methyl-2-((4-nitrophenyl)thio)nicotinonitrile 95.

A key intermediate 109 for the subsequent synthesis of (6S,6R)-Lometrexol was also
prepared by Taylor et al. via a regiospecific intermolecular inverse electron demand Diels-
Alder reaction between fused 1,2,4-triazines, 2-N-pivaloyl-7-substituted-6-azapterins, and
enamine (Scheme 31) [73].
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In another work, Taylor et al. developed a convenient method for the synthesis
of (6S,6R)-Lometrexol 8 with good yield via N-(6-bromo-4-oxo-3,4-dihydropyrido[2,3-
d]pyrimidin-2-yl)pivalamide starting with 2,6-diaminopyrimidin-4(3H)-one (Scheme 32) [74].
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Similarly, Wittig olefination was used by Piper et al. for the synthesis of (6S,6R)-Lo-
metrexol starting from 2,4-diaminopyrido[2,3-d]pyrimidine-6-carboxaldehyde 120, de-
rived from 6-carbonytrile, and [4-(methoxycarbonyl)benzylidene]triphenylphosphorane 
to yield 9,10-ethenyl precursor 122 [76]. Standard hydrolytic deamination produced 5,10-
dideazafolic acid 123, which was further converted to 5,10-dideazaaminopterin via a cou-
pling reaction with dimethyl L-glutamate by using (EtO)2POCN, followed by hydrogena-
tion and ester hydrolysis which led to the final product 8 (Scheme 34). 

Scheme 32. Synthesis of (6S,6R)-Lometrexol 8 via N-(6-bromo-4-oxo-3,4-dihydropyrido[2,3-
d]pyrimidin-2-yl)pivalamide starting from 2,6-diaminopyrimidin-4(3H)-one.

Boschelli et al. performed Wittig olefination of 2-acetyl-6-formyl-5-deazapterine to
prepare (6S,6R)-Lometrexol in three synthetic steps instead of Sonogashira cross-coupling
of 2-pyvaloyl-6-formyl-5-deazapterine (Scheme 33) [75].
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Scheme 33. Synthesis of (6S,6R)-Lometrexol 8 by the Wittig olefination of 2-acetyl-6-formyl-5-deazapterine.

Similarly, Wittig olefination was used by Piper et al. for the synthesis of (6S,6R)-
Lometrexol starting from 2,4-diaminopyrido[2,3-d]pyrimidine-6-carboxaldehyde 120, de-
rived from 6-carbonytrile, and [4-(methoxycarbonyl)benzylidene]triphenylphosphorane
to yield 9,10-ethenyl precursor 122 [76]. Standard hydrolytic deamination produced 5,10-
dideazafolic acid 123, which was further converted to 5,10-dideazaaminopterin via a
coupling reaction with dimethyl L-glutamate by using (EtO)2POCN, followed by hydro-
genation and ester hydrolysis which led to the final product 8 (Scheme 34).
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In another approach, the lipase-catalyzed enantioselective esterification of 2-(4-bro-
mophenethyl)propane-1,3-diol, derived in several steps from 2-(4-bromphenyl)acetic 
acid, was utilized in the asymmetric synthesis of key (R)-2-amino-6-(4-bromophenethyl)-

Scheme 34. Synthesis of (6S,6R)-Lometrexol starting from 2,4-diaminopyrido[2,3-d]pyrimidine-
6-carboxaldehyde.

Currently, only two synthetic approaches toward diastereometrically pure 6R-Lometrexol
are reported in the literature. In this context, the synthesis of 6R-Lometrexol was carried
out starting from a double deprotected DDAH4Pte–OH 126, which was obtained with
preparative chiral-HPLC in a mixture of diastereomers derived from the route based on
the work of Taylor et al. [77]. After the transformation of the benzoic acid residue to a
derivative which includes azides, the azide derivative was converted to the final product
by the reaction of L-glutamic acid in DMSO in the presence of TEA (Scheme 35) [78].
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In another approach, the lipase-catalyzed enantioselective esterification of 2-(4-bromophenethyl)
propane-1,3-diol, derived in several steps from 2-(4-bromphenyl)acetic acid, was utilized in
the asymmetric synthesis of key (R)-2-amino-6-(4-bromophenethyl)-5,6,7,8-tetrahydropyrido
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pyrimidin-4(3H)-one, which resulted in the target product in two synthetic steps
(Scheme 36) [79,80].
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3. Conclusions and Future Perspectives

In summary, this review represents the analysis of the most up-to-date synthetic ap-
proaches for the synthesis of therapeutically significant analogues of folic acid, such as
Lometrexol, Methotrexate, Pemetrexed, Pralatrexate, Raltitrexed, and TNP-351. Among the
other folic acid analogues exhibiting antimalarial/antiprotozoal [81] and broad-spectrum
antimicrobial activity [82–84], the importance and effectiveness of the abovementioned
six analogues of folic acid as drugs or drug candidates for the treatment of diseases with
a social significance, such as various types of cancers, severe psoriasis, and rheumatoid
arthritis, were reported in a large number of original research publications and review
articles [18,30–32,40,51–55,67,69–71]. Even though folates were reported to be somehow
connected with the severeness of COVID-19 [85–87], several recent studies suggested the ef-
fectiveness of antifolates for the therapy of patients with coronavirus SARS-CoV-2 [85,88,89],
along with the enhancement of the antiviral efficacy of remdesivir [88], treatment of fungal
infections with COVID-19-like symptoms [90], as well as treatment of fungal infections
among COVID-19 patients [90].

Most of the synthetic strategies for these important scaffolds presented in research
articles and patents are based on similar approaches and have only minor differences
from each other. So far, no attention has been paid to methods based on transitional
metal (TM)-catalyzation or the TM-free direct C-H-activation/C-H-functionalization of
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aza-aromatic rings as the most atom- and step-efficient approaches. We hope that our
review will encourage future interest in this research area.
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