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This paper proposes a new deconvolutionmethod for 3D fluorescence wide-fieldmicroscopy.Most previous
methods are insufficient in terms of restoring a 3D cell structure, since a point spread function (PSF) is
simply assumed as depth-invariant, whereas a PSF of microscopy changes significantly along the optical
axis. A few methods that consider a depth-variant PSF have been proposed; however, they are impractical,
since they are non-blind approaches that use a known PSF in a pre-measuring condition, whereas an
imaging condition of a target image is different from that of the pre-measuring. To solve these problems,
this paper proposes a blind approach to estimate depth-variant specimen-dependent PSF and restore 3D cell
structure. It is shown by experiments on that the proposed method outperforms the previous ones in terms
of suppressing axial blur. The proposed method is composed of the following three steps: First, a
non-parametric averaged PSF is estimated by the Richardson Lucy algorithm, whose initial parameter is
given by the central depth prediction from intensity analysis. Second, the estimated PSF is fitted to Gibson’s
parametric PSF model via optimization, and depth-variant PSFs are generated. Third, a 3D cell structure is
restored by using a depth-variant version of a generalized expectation-maximization.

3D wide-field fluorescence microscopy (WFM) is an essential tool in many disciplines, particularly
biological and medical sciences. WFM provides molecular specificity by visualizing only biomole-
cules where fluorescence dyes can be selectively responded under a dark background. This property

makes it possible to obtain micrographs with high contrast. Applying 3DWFM to observe 3D cellular structures
refers to optical sectioning, that is, generating a series of discrete 2D image planes (x-y plane)1.

3DWFM, however, has several issues, such as out-of-focus blur obscuring the entire in-focus detail and thereby
reducing the contrast of the in-focus object. Two major approaches to overcome these problems have been
devised1. The first approach is to apply new microscopy optics. Confocal microscopy, the most widely used
approach, suppresses out-of-focus blur by means of a pinhole. On the other hand, it causes limitations of slow
image acquisition and photobleaching. The second approach is to apply image restoration by a deconvolution
algorithm. It enhances the resolution and contrast of blurred WFM images that do not have any limitation
mentioned above in the first approach. In this study, the second approach was focused on, and a method for
deconvolution of 3D WFM images is proposed.

To implement the proposed image deconvolution algorithm, it is most important to obtain an accurate point
spread function (PSF) of a 3DWFM imaging system.One of themain characteristics of a PSF of 3DWFM is depth
variance along the optical axis (z axis), while general camera model ignores this variance2. This characteristic is
because an aberration of WFM is caused by mismatch between the refractive indices of the immersion medium
and the specimen. As the optical system focuses on a deeper specimen, the aberration increases. This aberration
phenomenon is the mechanism of the depth-variant characteristics for 3D WFM.

Aiming to improve the resolution and contrast of 3DWFM through image deconvolution, numerous studies
have been carried out3. Most of them have conducted depth-invariant image restoration owing to a simplicity of
PSF modelling4–7. If the specimen is thin enough, the depth variance of PSF can be ignored, and their methods
suppress the blur effectively, thereby increasing the resolution of 3D WFM up to that of confocal microscopy8.
However, in case of an average size of common specimen (10–20mm), the axial blur along the z axis still remains9.
For instance, the diameter of the blurred image of a 2500nm bead was measured as 4760nm (with axial blur) and
2867nm (with transverse blur), and after deconvolution of these values under the assumption that the specimen is
thin enough, these results were respectively 4000nm and 2664nm10. These deconvoluted values indicate that the
restored image is lengthened along the optical axis. This phenomenon, called elongation, occurs when the image
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is restored by using a depth-invariant PSF which is only suitable for a
specific plane2. In consideration of the fact that the general size of an
animal cell is 10–20mm, namely,much thicker than the 2500nm bead,
the depth variance of PSF cannot be neglected. To handle the elonga-
tion problem, several researches have considered a depth-variant
PSF. However, they tried experiments accompanied with pre-PSF
measurement2,11 or only simulation9,12.
As for the pre-PSF measurement performed in previous studies, it

was assumed that an actual PSF can be approximated by the captured
3D image of a point-like micro-bead. However, in the process of
replacing a micro-bead with a cell specimen, the actual imaging
condition including the optical path changes. This change makes
the difference between the actual PSF and the result of pre-PSF
measurement. In addition, a point-like micro-bead is merely a
‘point-like’ sphere and cannot be a perfect point source. For the
above-mentioned reasons, the PSF should be estimated directly from
captured images without any pre-measurement. This study focused
not on simulation but on amore practical method that can be applied
to a raw image and does not involve any pre-experiments for obtain-
ing PSF information.
In order to evaluate and compare quantitative performances for

actual WFM image, this paper uses the WFM observation data of
precisely 2500nm diameter hollow sphere fluorescence micro-bead.
Its diameter and shape becomes a ground truth. The diameter and
the relative contrast between shell and sphere inside would be quant-
itative performance indicators10,7. Also, since the data is open to
public, it enables comparing performances with the same data.
Previous non-blind approaches evaluated their quantitative perfor-
mances using simulation experiments2,11,9,12. Because they know the
ground truth, they could use widely used performance indicators in
general image restoration field such asmean square error, correlation
coefficient values and so on. In some blind approaches, they evalu-
ated their quantitative performances with simulation image that are
generated by arbitrary PSF due to lack of ground truth image13,14.
However, since the simulation image is generated under their
assumption such as depth-invariant or symmetric PSF that are dif-
ferent from real one, they could get advantageous deconvolution
result and it cannot be connected to the quantitative performance
in actual image.Moreover, each study implements experiments using
different images and initial PSFs, which makes difficulty to compare
performances. Therefore, we used the open data of actual WFM
image and could compare quantitative performances of our algo-
rithm with existing software and algorithm.
Our algorithm estimates depth-variant specimen-dependent PSF

under the specimen homogeneity (x-y invariant PSF). Our algorithm
first roughly finds the PSF for centre of object by intensity analysis of
the observed image. Then the PSF is modified through Richardson
Lucy algorithm so as to maximize the conditional probability of the
observed image given the PSF. To generate depth-variant PSFs, the
modified PSF is parameterized using maximum likelihood function.
Finally, depth-variant PSFs for every single depth in observed image
are generated adjusting the depth parameter. Using generated depth-
variant PSFs, the true object is estimated by penalized RL algorithm.
The major contributions of this study are as follows. First, a new

practical WFM image deconvolution algorithm that reflects the
depth variance of a PSF and actual imaging conditions is proposed.
Second, it showed remarkable experimental results compared to the
existing studies, and showed that our the proposed algorithm solved
the problem of elongation and improved axial resolution. Third, our
system is superior to other methods with regard to reducing the
computational time.

Results
Datasets of the C. Elegans embryo cell and fluorescent micro-bead
images were used in two experiments. The first experiment on cells
aimed to show the applicability and the qualitative performance of

the proposed algorithm for biological images. The second experi-
ment on beads, applied the proposed algorithm to the images of a
fluorescent micro-bead whose size and shape were given. It was thus
possible to evaluate the performance of the proposed algorithm
quantitatively by comparing its quantitative performance to those
of three different deconvolution software packages (Huygens Pro,
AutoDeblur, Deconvolution Lab) as reported byGriffa10 and another
depth-invariant method by Soulez7. The datasets can be downloaded
from the website of the Biomedical Imaging Group in EPFL (http://
bigwww.epfl.ch/deconvolution).

C. Elegans embryo cell. The dataset is the observation image of a
C. Elegans embryo cell with a3 100, 1.4NA oil UPlanSApo objective.
Enough image stacks should be taken to allow overall shape of a
specimen to be observed. Unfortunately, the dataset did not satisfy
this condition and bring artefacts on boundaries of the restored
image. To avoid the boundary effect, a dataset that is pre-
processed by a minimum filter is used (see Method section). The
data cube used was composed of 672 3 712 3 216 voxels of size
64.5nm3 64.5nm3 200nm. The PSF size (x3 y3 z) was set to 151
3 151 3 57 voxels of size 64.5nm 3 64.5nm 3 200nm. After
deconvolution, the restored image was cropped to the original
volume 672 3 712 3 104. The dataset was composed of three
stacks of images corresponding to three wavelengths. CY3 (red
634nm), FITC (green 531nm) and DAPI (blue 447nm) staining
represented the point-wise spots of protein, microtubule filaments
and chromosomes in the nuclei, respectively. Each wavelength image
was processed separately.
To compare the performance of the proposed algorithm with

those of existing algorithms, the results of deconvolution by a com-
mercial software package DeconvolutionLab as well as those
obtained by the proposed deconvolution algorithm are depicted in
Figure 1. All the experiments using ours and DeconvolutionLab were
implemented with the same number of iterations 150. Table 1 sum-
marizes the experimental conditions. The x – y, y – z and x – z profiles
shown in Figure 1 are depicted when z 5 63, x 5 260 and y 5
450 pixel, respectively. Performance of each algorithm was exam-
ined in terms of qualitative visibility and computational cost.
In raw data, the image detail is represented in a narrow intensity

range. The acquired images corresponding to the CY3, FITC and
DAPI channels have intensity ranges of (215–2842), (209–2929)
and (206–2687), respectively. Each image was deconvoluted, the
ranges were widened to (0–45898), (0–24773) and (0–16292),
respectively.
An observed image of a C. Elegans embryo cell is shown in

Figure 1(a). Since the image is blurry and unsharpened, it is
difficult to identify its cellular components. A set of images
restored by using DeconvolutionLab with a PSF downloaded
from Biomedical Imaging Group in EPFL(http://bigwww.epfl.ch/
deconvolution/?p5bio), which was generated without considera-
tion of actual aberration, is shown in Figure 1(b). As shown in
the figure, only components that had strong intensity remained,
and even the remaining components are blurry. The result of
image restoration using the depth-invariant PSF which was esti-
mated in step 2 of the proposed algorithm (see Methods section)
is shown in Figure 1(c). The result is still blurry, but it is
improved from the viewpoint of observing specific components.
It can be inferred from this result that the downloaded PSF did
not reflect the actual imaging condition. The result obtained with
the proposed accelerated generalized expectation-maximization
(GEM) algorithm with the depth-invariant PSF is shown in
Figure 1(d). The proposed algorithm had a clearer visibility than
DeconvolutionLab after the same number of iterations since the
image restoration was designed to guarantee the convergence and
converge fast by means of vector extrapolation. The result of
deconvolution by the proposed algorithm used depth-variant
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PSFs is depicted in Figure 1(e). While the restored image in
Figure 1(d) is almost the same as that in Figure 1(e), the restored
image in figure 1(f) shows that the elongation phenomenon was
suppressed by our depth-variant GEM image algorithm.
Moreover, it seems that the depth-variant GEM algorithm

removed blur more effectively than the depth-invariant one, as
represented in the pink elliptical area in Figure 1(f). When the
observed C. Elegans embryo cell image in Figure 1(a) is com-
pared with the restored image in Figure 1(e), it becomes clear
that the proposed algorithm improves the visibility of the cellular

Figure 1 | Result of image restorations by proposed algorithm and by DeconvolutionLab.
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structure. In addition, blue chromosomes, green filaments and
red spots can be distinguished.
The processing time when DeconvolutionLab was used was five

hours. The depth-invariant version of the proposed algorithm took
only 113 minutes, which is obviously much faster than
DeconvolutionLab. While the proposed depth-variant algorithm
achieved better performance than that of the depth-invariant one
in terms of qualitative visibility, it took more computational time
(27.5 hours) than the depth-invariant version. In other words, a
trade-off between performance and computational time exists.

Fluorescent micro-bead. Observations of a InSpeck green
fluorescent hollow bead with a diameter of 2500nm were used as a
fluorescent micro-bead dataset. The observations were taken with an
Olympus Cell R microscope with a 3 63, 1.4 NA oil-immersion
objective. The data cube was composed of 256 3 256 3 128 voxels
with size 64.5nm3 64.5nm3 160nm. The PSF size (x3 y3 z) was
set to 151 3 151 3 57 voxels of size 64.5nm 3 64.5nm 3 160nm.
The diameter of the restored image was measured in terms of the

full width at half maximum (FWHM). As the FWHM value became
closer to the real diameter (2500nm), the method was regarded as
better one. The relative contrast between the border and the centre of
the sphere used as a performance indicator because it was already
known that the fluorescent bead was empty inside. As the relative
contrast became higher, the boundary between the shell of the fluor-
escent bead and the hollow bead inside became more clearly
distinguishable.
Observed images and images restored by the proposed algorithm

are shown in Figure 2. The images were normalized by dividing
maximum intensity. Images observed along the transverse axis and
the optical axis are shown in Figures 2(a) and (d), respectively.
Images of a clear sphere shape restored from the ambiguous images
in Figures 2(a) and (d) respectively are shown in Figures 2(b) and (e).
Intensity profiles along the centre line (dotted line) in Figures 2(a)
and (b) are plotted in Figure 2(c), in which the horizontal axis repre-
sents the position of the transverse axis. Blue and red lines depict the
intensity of the observed and restored images, respectively. As can be
seen from Figure 2(c), the border between the shell of the bead and
the centre of the hollow sphere is definitely distinguishable. The
relative contrast was calculated from the transverse intensity profiles
in Figure 2(c). The axial intensity profiles shown in Figure 2(f) show
the same tendency as those shown in Figure 2(c).
It is apparent from Figures 2(a) and (d) that the observed image is

especially blurred along the optical axis in comparison to the trans-
verse axis. As shown by the restored image and the intensity profile in
Figures 2(e) and (f), respectively, the proposed algorithm clearly
removed the blur along the optical axis. This result demonstrates
that the elongation phenomenon was effectively suppressed. (The
supplemental video shows the restoration process.).
To compare the quantitative evaluation, bead diameter error and

relative contrast after previous deconvolution methods were applied
to the images are listed in Table 2. As previously mentioned, the bead
diameter was calculated as FWHM.
Parameter values of the observed image are presented in the ‘Raw

data’ column. From the FWHM error values of raw data, it is clear
that the blur was far severer along the optical than transverse axis. As
the FWHM error of a deconvolution result gets closer to the zero, the

deconvolution has better performance. As shown in Table 2, the axial
FWHM error value given by the proposed algorithm was superior to
those given by the other algorithms, which was closest to zero. This is
because all of them except our algorithm assumed depth-invariant
PSFs; thus, this result indicated the importance of applying depth-
variant PSFs. The error in the axial FWHM value given by the pro-
posed algorithm is 151nm, which is less than the voxel size along the
optical axis (160nm). Although the error in the transverse FWHM
value given by the proposed algorithm is 155nm, which is equivalent
to 2.34 pixels on the transverse axis, the proposed algorithm gives the
best transverse FWHM value. Besides, the relative contrast given by
the proposed algorithm is also superior to those values given by the
other algorithms. That is, the relative contrast given by the proposed
method algorithm is 97%, and those values given by the other algo-
rithms do not surpass 90%.

Discussion
This study was undertaken to design a deconvolution algorithm for
3D WFM. Our proposed method removed axial blur effectively and
solved the elongation problem via an accurate PSF estimation and a
depth-variant image restoration. The proposed algorithm estimates a
parameterized PSF reflecting actual imaging conditions from
observed image, and it generates depth-variant PSFs controlling
the depth parameter. A depth-variant image restoration algorithm,
which is accelerated by vector extrapolation, was implemented.
Results of the C. Elegans embryo cell and fluorescent bead experi-
ment show that the proposed algorithm removes axial blur that could
not be removed by algorithms developed in previous studies.
Moreover, to compare quantitative performances of our algorithm
with existing software and algorithm, we used the open dataset of
2500nm hollow sphere fluorescence bead. The quantitative perform-
ance values diameter error and relative contrast given by the pro-
posed algorithm are superior to those given by a commercial software
package used in this study. These findings suggest that 3D WFM
images should be restored by a depth-variant deconvolution, and
they imply that the PSF from an observation is more accurate than
PSF measurement.
The bead used in this experiment is relatively thin and has about

the size of bacteria. For very deep specimens, dataset generation of
the object over 10 um would be worth for 3D deconvolution of
WFM. Other possible directions for future work include fast algo-
rithm for the depth-variant image restoration, xyz variant asymmet-
ric PSF modelling and extending the proposed algorithm to other
applications. The execution time for the proposed algorithm is dis-
cussed in the Results section, yet the algorithm does not operate in
minutes. In our algorithm, simplex method for PSF parameter fitting
and depth-variant convolution operator take most of processing
time. Faster parameter fitting method and effective calculation such
as distributed processing for depth-variant convolution operator
would produce faster deconvolutionmethod. According to the result
of the experiment with fluorescent beads, the restored image has a
shape of an asymmetric sphere. In this study, however, it was
assumed that the PSF is x–y symmetric. The xyz asymmetric PSF
would be a next task for the solution of the distorted result. Also, it is
expected that not only z but also xy variant deconvolution would
express inhomogeneity of specimen and improve accuracy of decon-
volution result. Furthermore, the proposed algorithm can be also

Table 1 | Experimental conditions for comparison

Algorithm PSF

(b) RL (DeconvolutionLab) PSF data from BIG
(c) Depth-invariant PSF in step 2
(d) GEM (Proposed algorithm) Depth-invariant PSF in step 2
(e) Proposed depth-variant PSF
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Figure 2 | Blind depth-variant deconvolution results of 3D real fluorescence micro-bead images. Transverse intensity profiles in (c) are cuts along the

blue dotted line in image (a) and the red dotted line in image (b). Axial intensity profiles in (f) are cuts along the blue dotted line in image (d) and the red

dotted line in image (e).

Table 2 | Performance comparison of previous7 and proposed methods

Raw data Huygens AutoDeblur DeconvLab ISBI 2012 Proposed

Transverse
FWHM 367 209 209 164 236 155
error (nm)
Axial
FWHM 2260 1500 2140 1660 477 151
error (nm)
Relative

18 53 78 68 88 97
Contrast (%)
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applicable to other image models that have a space-variant PSF such
as astronomical image.

Methods
The acquired 3D image, g, could be modelled by a 3D convolution between a 3D
depth-variant PSF h and the true object f under noise model n:

g(p)~n
X
O

f (po)h(p,po)

 !
~n((f � h)(p)) ð1Þ

Where po5{xo,yo,zo} and ro5{xo,yo} denote 3D and 2D object positions in
object domain O, respectively. p5{x,y,z} and r5{x,y} are 3D and 2D image
positions in image domain I, respectively. In this paper, the true object function
illustrates the object in the air and does not depict image of the object in
specimen layer. The PSF includes the object elongation effect due to refractive
index mismatch. Since WFM images are taken in a dark room, the noise model
of observed images follows a Poisson distribution15. As seen as eq (1), the PSF h
varies according to positions of object po and image p. Since this paper ignores
insignificant inhomogeneties in specimen layer16, the PSF variance along x and y
axis (in one depth) is ignored. The aim of this study is to estimate the true
object f from the acquired image g.

The proposed algorithm is composed of the following three steps: (1) estimation of
a depth-invariant PSF, (2) generation of a depth-variant PSF and (3) restoration of a
depth-variant image.

In step 1, a single non-parameterized PSF hstep1(p) for an overall region is esti-
mated. For constructing depth-variant PSFs, nonparametric hstep1(p) is converted to
parametric PSF model hstep2(r2ro,z;zo). Controlling the depth parameter zo makes it
possible to obtain depth-variant PSFs. Depth-variant image restoration, which is
accelerated by vector extrapolation, is then implemented18.

Step 1. Estimation of depth-invariant PSF. In step 1, an initial PSF is estimated first.
Before the procedure for estimating PSF is explained, the method for generating the
initial PSF and its specific setting are explained. The accuracy of the estimated PSF
depends on the initial PSF. To generate the initial PSF, the Gibson and Lanni PSF
model, which is based on Kirchhoffs integral formula (one of the most widely used
PSF models for WFM), was applied16. This model generates a 3D WFM PSF by
substituting optical parameters. These parameters are refractive indices and optical
distances, which are determined by analyzing the intensity profile and objective lens
information. The Gibson and Lanni PSF model is given as

h r{ro,z,zo,nsð Þ~
ð1
0
eik0L z,zo ,ns ,rð ÞJ0 k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r{roð Þ2

q
NAr

� �
rdr

����
����
2

ð2Þ

where k0 denotes the vacuum wave number, NA is the numerical aperture, and

L z,zo,ns,rð Þ represents the optical path difference (OPD) between the design and
actual conditions. J0 denotes the Bessel function of the first kind of the zero.

A schematic of the optical path in a WFM is shown in Figure 3. The OPD,
L z,zo,rð Þ, causes spherical aberration, which is modelled as19

L z,zo,ns,rð Þ~zo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ns2{NA2r2

q
z zo{z{

zoni
ns

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni2{NA2r2

q� �
, ð3Þ

where ns and ni represent the refractive indices of the specimen and the immersion
layer. Since the refractive index of internal cellular components (1.33–1.37) are
usually similar to those of water, initial ns is set as the refractive index of water17. If user
uses other types of samples such as glycerol solution, the refractive index value for
initial PSF would be changed. Meanwhile ni depends on the composition of
immersion layer. In the case an oil-immersion objective is used, ni is taken as the
refractive index of oil.

Unknown parameter zo denotes the position of the object on the z axis. The initial
zo setting is calculated from the intensity profile of the captured image. To make it
easier to understand, setting of parameter zo is depicted in Figure 3. The object part is
set as normalized intensities greater than [(min(g(z))1max(z)))/2] at the origin of the
x and y axes. Zo is then set as the central position zc of the object part, under the
assumption that the lowest position of the object part as zo5 0. Then the initial PSF, h
(r2ro,z;zo 5 zc,ns), is generated by using Equation (2)(3).

After the initial PSF is generated, a single PSF for the overall region is esti-
mated. In this step, a non-parameterized and image-based PSF model is used,
while the initial PSF is is derived from the parameterized equation. This is
because the non-parameterized PSF estimation is quicker than parameterized PSF
estimation.

The equation for finding the true object and the PSF that maximize the conditional
probability of the observed image is given as

f̂ , ĥ~ argmax
f̂ ,ĥ

p gjf , hð Þf g ð4Þ

Since a WFM image follows a Poisson distribution, an objective function can be
expressed as

p gjf , hð Þ~ P
p[I

(f � h)(p)g(p)exp {(f � h)(p)ð Þ
g(p)!

ð5Þ

Due to difficulty in differentiating eq (5), the problem from maximizing eq (5) is
changed to minimizing the following negative log-likelihood function:20

Jdata(f , h)~
X
I

f � h{g log(f � h)zlog(g!)ð Þ ð6Þ

After eq (6) is differentiated with respect to f and h, the derivative is equated with zero
to yield the following equation21:

Figure 3 | A schematic of optical path in WFM; the left graph illustrates the normalized intensity along the z axis to help understanding of initial
parameter zo.When the initial parameter zo is set, the normalized intensity that is bigger than [(min(g(z))1max(z)))/2] in the centre of the x and y axes is

supposed to be the object.
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f̂ kz1(p)~f k(p) hmirror � g

h � f̂ k

 !
(p) ð7Þ

where k indicates the iteration number. hmirror(p)5 h(2p) and fmirror(p)5 f(2p)
represent the mirrored PSF and true object, respectively. This equation is called a
blind Richardson-Lucy (RL) algorithm, which is often used for deconvolution of the
data in a Poisson distribution. The blind RL algorithm iteratively estimates the true
object f and the non-parameterized PSF h simultaneously from the acquired image g
and the initial PSF, h(r2ro,z;zo 5 zc,ns). The initial f is the acquired image, g. In this
step, however, the blind algorithm is utilized only for estimating the PSF. The esti-
mated PSF, ĥ~hstep1, is considered as the actual PSF corresponding to the centre of
the object.

Step 2. Generation of depth-variant PSF. To construct depth-variant PSFs from a
non-parameterized model, it is required to estimate PSFs for each depth. That
estimation, however, is difficult and takes a lot of computational time. If the PSF is
converted to a parameterized model, depth-variant PSFs could be effectively
generated by controlling parameter zo.

To do so, it is necessary to estimate zo and ns of Equation (2) that minimizes a
negative log-likelihood of a given hstep1(pi) Poisson distribution.

ẑo,n̂sð Þ~ argmin
zo ,ns

X
I

h r{ro,z; zo,nsð Þ{hstep1 log h r{ro,z; zo,nsð Þð Þ� �( )
ð8Þ

Equation (8) is minimized by a simplex method, which is a simple and fast math-
ematical optimization22. Iteratively, Equation (8) is implemented until convergence.
A parameterized PSF, hstep2(r{ro,z; zo,ns)~h(r{ro,z; ẑo,n̂s), that reflects the posi-
tion and the refractive index of the specimen can then be obtained.

Specific parameter settings and parameter curves in the case of the above-described
experiments with a fluorescent bead and C. Elegans embryo cell are described in the
following. Since the datasets were taken by an oil-immersion lens, the refractive index
of the immersion layer is set as ni51.518. Curves of parameter zo for PSF fitting are
shown in Figure 4. In our bead and C.Elegans embryo cell experiments, the refractive
index parameter ns showed no variation. It can be seen from the figure that the
parameter-fitting procedure needs only few iterations and that the parameter curves
all converge. In our experiments, the iteration was stopped if the parameter did not
change three times in a row.

The PSF equation, namely, (2)(3), into which zo~ẑo and ns~n̂sis substituted
becomes the actual parameterized PSF for the central depth of the object. And then,
depth-variant PSFs are generated by shifting parameter zo in accordance with the
axial resolution of the acquired image.

Step 3. Restoration of depth-variant image. In this step, a penalized depth-variant
RL algorithm is used for restoring the depth-variant image. An image following a
Poisson distribution is relatively weaker in respect to noise than a Gaussian
distribution; thus, the penalized version of the RL algorithm23 was chosen. The
penalized RL algorithm restores the image by maximizing the penalized likelihood
function, defined as follows:

Jpenalized~Jdata(f ,h)zcR fð Þ ð9Þ

where c is the regularization parameter. The total variation regularization constraint,
which preserves edges due to its linear penalty on difference between adjacent pixels,
was set as follows:

R fð Þ~
X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

+fk k22z2
q

ð10Þ

The regularization parameters were set as c~0:5|10{5 and 0.13 1023 for the cell
and bead experiments, respectively.

The total variation penalty couples each pixel in the restoration with its adjacent
neighbours in such a way that a direct derivative for maximizing the penalized
likelihood function is not possible24. As the means of solving this problem, most
previous studies approximated the difference between adjacent pixels as the differ-
ence between the value of a current pixel and the values of the neighbouring pixels
from the previous iteration23,7. However, a restored image using the approximation is
not accurate since this method does not converge to the solution monotonically. The
generalized expectation-maximization (GEM) algorithm was thus chosen to evaluate
the derivatives indirectly by using the quadratic surrogates of the regularization
term25. The final form of the depth-variant GEM algorithm is given as follows11:
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where c
^
and m represent curvature and sub-iteration, respectively. a( f (k,m)) and

b( f (k,m)) are defined as
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This iterative technique, however, is slow to converge toward the final result.
To increase the speed of convergence, vector extrapolation is applied18. The
acceleration method predicts where each pixel in the image is going from the
correction obtained by each iteration. A new point ck is predicted, and the
GEM algorithm is applied to generate the next estimate f k11 and gradient dk as
follows:

ck ~f kzak f k{f k{1
� �

~f kzak Q f k{1
� �

{f k{1
� �

~f kzakdk{1

f k{1 ~ckzdk~Q f k
� �
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dkð ÞT dk{1

dk{1ð ÞT dk{1

ð13Þ

Changes in the objective function, FWHM and relative contrast value during
iteration of image restoration of the fluorescent bead image are shown in
Figures 5(a), (b) and (c), respectively. The objective function represents a
negative log-likelihood function, which is calculated from Equation (9). The
smaller the negative log-likelihood function, the more accurately the true
object is estimated. In Figure 5(a), it is clear that the objective function
converges enough. The iteration is stopped when the relative contrast and
FWHM values does not change; accordingly, the results were obtained after 87
iterations. In Figure 5(b), the axial FWHM value changes rapidly for ten
iterations, whereas the transverse FWHM curve changes smoothly. In Figure 5
(c), the relative contrast rapidly increases in the early stage, namely, a similar
tendency with the axial FWHM curve.

Preparation of data set. To compare the quantitative performance of the proposed
algorithm with that of other algorithms, it was tested by using the same data sets as
those used in previous studies. The data sets are composed of stacks of images of a
2.5mm diameter fluorescent microbead and a C. Elegans embryo. In the case of the
data sets for the C. Elegans embryo cell, not enough z stacks were taken to visualize

Figure 4 | Stability of parameter zo optimization.
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whole shape of the object. To prevent the artefact occurring at the boundary, the data
size was extended, and a minimum filter was applied to the extended area as follows.

First, after a 6723 7123 216 matrix was generated, the raw data of a C. Elegans
embryo image (6723 7123 104)was put in the centre of the generatedmatrix (57–160
plane along z axis). Then, intensity values for the unfilled areas were determined by
the minimum filter. Undetermined values bordering determined values were calcu-
lated as follows. The minimum values obtained by the minimum filter were found in
the 33 3 matrix of neighbouring determined pixels, and the unfilled pixels right
above or below the neighbouring determined pixels were filled in. In this way, the
whole matrix was fully filled and could be used for the experiments. Through this
procedure, enough z stacks could be obtained until most of the intensities along the z
axis disappeared, thereby reducing artefacts at the boundary. After image restoration,
the restored image was then cropped back to the same size as the raw image.

Computational features. All procedures were carried out in MATLAB 2014a on
parallel Intel Xeon E5-2680 processors (2.8 GHz) 448GB RAM, running Windows.
Total computational time for the fluorescent bead experiment was about
265 minutes. step 1 took 5 minutes. The parameter estimation for PSF fitting and the
depth-variant PSF generation in step 2 took 70 minutes and 120 minutes,
respectively. Step 3 for image restoration took 70 minutes.
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