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*To whom correspondence should be addressed.

Associate Editor: Oliver Stegle

Received on February 28, 2018; revised on May 10, 2018; editorial decision on June 26, 2018; accepted on July 10, 2018

Abstract

Motivation: Familial aggregation analysis is an important early step for characterizing the genetic

determinants of phenotypes in epidemiological studies. To facilitate this analysis, a collection of

methods to detect familial aggregation in large pedigrees has been made available recently.

However, efficacy of these methods in real world scenarios remains largely unknown. Here, we

assess the performance of five aggregation methods to identify individuals or groups of related

individuals affected by a Mendelian trait within a large set of decoys. We investigate method per-

formance under a representative set of combinations of causal variant penetrance, trait prevalence

and number of affected generations in the pedigree. These methods are then applied to assess fa-

milial aggregation of familial hypercholesterolemia and stroke, in the context of the Cooperative

Health Research in South Tyrol (CHRIS) study.

Results: We find that in some situations statistical hypothesis testing with a binomial null distribu-

tion achieves performance similar to methods that are based on kinship information, while kinship

based methods perform better when information is available on fewer generations. Potential case

families from the CHRIS study are reported and the results are discussed taking into account

insights from the performance assessment.

Availability and implementation: The familial aggregation analysis package is freely available at

the Bioconductor repository, http://www.bioconductor.org/packages/FamAgg.

Contact: christian.weichenberger@eurac.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Familial aggregation (FA) analysis is classically the first step in gen-

etic epidemiology studies (Khoury et al., 1993). Aim of FA analysis

is to identify groups of related individuals carrying the same symp-

toms or disease due to some underlying shared mechanism. A wide

range of diseases has been previously analyzed with FA methods

(Naj and Beaty, 2017), including cancer (Tokuhata and Lilienfeld,

1963), cardiovascular disease (Feinleib et al., 1977) and more re-

cently autoimmune disease (Kuo et al., 2015) and insomnia (Jarrin

et al., 2017). The increasing availability of large pedigrees for

epidemiological research provides both an opportunity and a chal-

lenge for FA analysis, especially considering that such large pedi-

grees are often incomplete and with no regular structure. When

pedigrees lack a regular structure, kinship-based methods have pro-

ven to be successful in modeling aggregation in terms of distance be-

tween individuals (Hill, 1980; Savica et al., 2016; Sveinbjornsdottir

et al., 2000). Even though research in this field initiated decades

ago, little effort has been made to disseminate aggregation methods

and make them available as software tools for use by the scientific

community. We therefore have recently developed FamAgg (Rainer
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et al., 2016), an open source R Bioconductor package providing

both established and novel approaches to investigate FA for binary

traits in large pedigrees. An exemplary application has demonstrated

the potential of kinship-based methods in detecting FA.

Nevertheless, a formal comparison between those methods in the

context of large and unstructured pedigrees has not yet been made,

making it unclear under which scenarios these methods may per-

form better or worse.

Here, we report on the performance assessment of different

kinship-based approaches for FA. Formal comparisons were based

on the structure of the pedigrees from the Minnesota Breast Cancer

Family study (MBC) (Sellers et al., 1999), which are publicly avail-

able and allow reproducible tests. Using such pedigree structure as a

backbone, we simulated FA scenarios by generating randomly dis-

ease cases in families under a dominant model of inheritance.

Methods were then tested for their capability to identify these dis-

ease cases in case families among a set of control families with ran-

domly assigned diseased individuals. Finally, we provide

applications of the methods to a real context by assessing the aggre-

gation of familial hypercholesterolemia and stroke in the

Cooperative Health Research in South Tyrol (CHRIS) study

(Pattaro et al., 2015), the former representing a disease that is still

largely under-diagnosed and under-treated (Abul-Husn et al., 2016;

Nordestgaard et al., 2013).

2 Materials and methods

2.1 Dataset
The performance assessment analysis is based on the pedigree struc-

ture of the publicly available MBC dataset (Sellers et al., 1999),

which consists of genealogic information on 426 independent fami-

lies whose founders entered a longitudinal study on breast cancer in

the state of Minnesota (USA) in 1944. After removing 10 060 indi-

viduals with no gender information or no relatives (singletons), 18

021 related subjects were available. We further dropped 11 families

for different practical reasons, leaving 415 families with 16 719 indi-

viduals available for analysis. These families are organized into two

to five generations with a median family size of 36 individuals.

2.2 Performance assessment
Assessment is set up such that aggregation methods are required to

identify families characterized by a Mendelian disease (case families)

among control families with an unspecific random disease back-

ground. The choice of a Mendelian trait presents a suitable test

setup, as it reflects a real-world scenario where kinship plays an im-

portant role among affected individuals.

We create case families in the MBC dataset by running

RarePedSim software (Li et al., 2015) to randomly generate disease

cases under a Mendelian autosomal dominant model of inheritance

(briefly, Mendelian) with full penetrance and no phenocopy effects.

The result is at least one affected founder (one individual case) in

each case family, who passes on the trait to descendants according

to the aforementioned model.

Three parameters are allowed to vary in order to generate a

range of scenarios: the disease penetrance (Q), the disease preva-

lence (R) and the number of generations (G). Penetrance Q describes

the fraction of cases that also express the phenotype. We test scen-

arios under Q¼100% (full penetrance), 60% (moderate) and 30%

(low). For a case family, penetrance Q<100%, is achieved by ran-

domly turning (100 � Q)% of the affected individuals to non-

affected. Prevalence R is defined as the simple proportion of disease

cases on the total number of subjects in the pedigrees. The term

prevalence is used for convenience and it is not referred to any refer-

ence population. For control families, we randomly choose affected

individuals by simulating a Bernoulli trial with success probabilities

P¼1/10 (10%), 1/16 (6.25%), 1/25 (4%), 1/50 (2%) and 1/80

(1.25%), such that the proportion of affected individuals in the

overall population corresponds to prevalence R¼P. Ultimately, the

third parameter controls the number of generations (G) that are

affected by the Mendelian trait, and mimics a spontaneous mutation

or a mutation that is introduced into the family by marriage. We

start with a case family as generated by RarePedSim, and keep the

disease status of a sub-branch with G generations. For the remaining

family members the disease status is cleared and reassigned accord-

ing to the prevalence model described before. This procedure is car-

ried out for G¼2 and G¼3 generations. When investigating all

generations of a case family (G ¼ all), we transfer the affected indi-

viduals as output by RarePedSim without masking any individuals.

Table 1 summarizes the parameter space covered by the perform-

ance assessment.

Generally, the assessment comprises of a case family that carries

a Mendelian trait and control families. We therefore define a family

set Fa to consist of all 415 families where family number a (1 � a �
415) is the case family and all other families b 6¼ a are controls. In

total, we obtain 415 family sets Fi, each with one case family and

414 control families. Case families are further parameterized by the

number of affected generations G and causal variant penetrance Q,

whereas affected individuals in controls are generated according to

trait prevalence R described above. We note that for each possible

parameter combination G, Q and R, the controls of family set Fa are

generated independently and randomly.

2.3 Familial aggregation analysis
The assessment evaluates the performance of several tests for FA

without stratification provided by the FamAgg Bioconductor pack-

age (Rainer et al., 2016), which utilize the kinship coefficient

(Malécot, 1948), a measure that quantifies relationship between two

individuals in a pedigree by computing the probability that an allele

is shared identical-by-descent at a given locus. These methods have

been previously described in detail (Rainer et al., 2016). Briefly,

each method calculates a specific test statistic from the observed

family data, and a sampling distribution under the null hypothesis is

generated empirically by random sampling 50 000 times the same

number of affected individuals from the pool of all 415 families.

The genealogical index of familiality (IF) test calculates the mean

kinship coefficient between all affected individuals of a family (Hill,

1980). For an individual i, the kinship sum (KS) test computes the

sum of kinship coefficients for all other affected family members.

Table 1. Number of generations used in the performance assess-

ment for each penetrance/prevalence pair

Penetrance (Q)

Prevalence (R) 100% (full) 60% (moderate) 30% (low)

10% 3/all 3/all —a

6.25% 3/all 3/all —

4% 2/3/all 2/3/all 2/3/all

2% 2/3/all 2/3/all 2/3/all

1.25% 2/3/all 2/3/all —

aNo assessment was performed for penetrance/prevalence pairs indicated

by a dash.
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Kinship group tests utilize the most distant relative of a specific

affected individual i to define a group of individuals more closely

related to the affected individual. The group ratio (GR) test simply

counts the number of affected persons in that group, whereas the

group closest relative (GC) test records the kinship coefficient of the

closest affected relative in the group. We have added a binomial test

(PB) that estimates the probability to detect by chance a family of

size n with �k affected members given trait prevalence R, i.e. we

perform hypothesis testing with a random variable X � B(n, R).

This binomial test has now been integrated into the FamAgg pack-

age. Tests are assessed on their ability to identify the case family

based on computed P values. This can readily be done for the IF and

PB tests, which report P values on families only. For the KS, GR and

GC tests that report a P value for each affected individual, we take

the lowest P value within a family. We adjust for multiple hypoth-

esis testing employing Benjamini-Hochberg correction at a false dis-

covery rate (FDR) of 0.05. We notice that distinct unadjusted P

values may cluster within the same FDR level. Therefore, unless

otherwise noted, ranking is performed on unadjusted P values to

preserve order and avoid ties. In addition, significance is reported at

the aforementioned FDR. We use the notations Praw and Padj for un-

adjusted and adjusted P values, respectively.

2.4 Performance measures
For evaluation of a given aggregation method with fixed parameters

G, Q and R, results obtained for all 415 family sets are combined,

giving rise to 415 cases and 415�414¼171 810 controls. Given a

P value cutoff t, a binary classification is established based on the

knowledge of cases and controls, defining true positives (TP) and

false negatives (FN) (cases with P value � t and > t, respectively),

and false positives and true negatives (controls with P value � t and

> t, respectively) (Baldi et al., 2000). Since this scenario defines a

heavily imbalanced dataset with on average one case in 415 families,

we analyze test performance by precision/recall curves, which put

emphasis on detectability of true positives (Davis and Goadrich,

2006). These two performance measures are defined as follows: pre-

cision ¼ TP/(TP þ FP) and recall ¼ TP/(TP þ FN), whereas preci-

sion is also known as the positive predictive value, and recall as the

true positive rate or sensitivity.

2.5 Application to the CHRIS study
We apply FA tests to data from the CHRIS study, a population-

based study carried out in an alpine Italian valley (Pattaro et al.,

2015). The recruitment area includes several municipalities, each

one characterized by a main center and small villages and settle-

ments. Recruitment is performed municipality-wise, and the pedi-

gree structure reflects the geographical landscape of the area. All

participants underwent blood drawing following overnight fasting.

Medical history was reconstructed via standardized computer

assisted questionnaires. Drugs used for treatment were barcode

scanned and classified according to the Anatomical Therapeutic

Chemical (ATC) classification code. The study received ethical ap-

proval by the Ethical Committee of the Healthcare System of the

Autonomous Province of Bolzano. All participants gave written

informed consent.

After removing singletons, the dataset includes 4373 phenotyped

individuals who reported two generations of ancestors resulting in

186 pedigrees with a total of 9024 individuals, out of which 4651

remain unphenotyped, but are used for establishing kinship (Noce

et al., 2017). One exceptionally large family (termed ‘XL’) includes

3676 phenotyped and 3997 unphenotyped individuals. However,

this family’s tree exhibits a highly horizontal structure with the fur-

thest two individuals being separated by 65 individuals along the

shortest path within only five generations. Excluding family XL,

family sizes range between 3 and 45 members.

Pedigree information is used to identify familial clusters of

hypercholesterolemia (HC), a condition with high serum levels of

total cholesterol or low density lipoprotein (LDL), which presents a

risk factor for arteriosclerosis and development of coronary heart

disease (Carmena et al., 2004). We define HC as either total choles-

terol level >290 mg/dl or low-density lipoprotein cholesterol (LDL

cholesterol) level >190 mg/dl (Bertolini et al., 2017; Simon Broome

Register Group, 1991), provided that triglyceride levels are

<200 mg/dl (National Heart Lung and Blood Institute, 2002). We

identify 296 HC cases out of 4979, corresponding to a disease

prevalence of R¼5.94%. When removing singletons, we find 265

affected out of 4373, which gives R¼6.06%. Information on pre-

scription of statins (ATC classification code C10) is not considered a

case of HC, but is used for descriptive purposes during family

analysis.

In the CHRIS study, stroke is assessed based on the Jackson

Heart Study (Sempos et al., 1999) screening questionnaire. We util-

ize here the question ‘Have you ever been told by a doctor that you

had a stroke?’, resulting in 54 cases of self-reported incidences of

stroke (R¼1.23%) (see Section 5 of the Supplementary Material for

more details.).

3 Results

3.1 Performance assessment
Each FA test was applied to a set of 415 families, where one particu-

lar family (case family) included affected individuals following an

autosomal dominant inheritance mode. Each family was assigned as

case family and combined with the remaining 414 control families,

resulting in 415 family sets. Case families were parameterized by

trait penetrance Q and number of affected generations G, and con-

trols were generated according to prevalence R. Aggregation tests

were challenged to identify cases in 415 family sets for an extensive

combination of parameters G, Q and R. Certain parameter combi-

nations were not examined, as they either resulted in cases indistin-

guishable from the background (e.g. high prevalence, low

penetrance and two affected generations) or represented trivial cases

(see Table 1).

3.1.1 Assessment by family set

Two questions need to be addressed when analyzing the perform-

ance of an aggregation test for a given family set: first, what is the

rank of the case family and second, is the reported case statistically

significant? As mentioned in the Materials and methods section,

ranking is performed on unadjusted P values, and significance is

reported at a FDR of 0.05.

Figure 1 shows the assessment results for moderately and fully

penetrant traits restricted to two and three generations. Generally,

for moderate penetrance and high prevalence scenarios the aggrega-

tion tests are operating in the limit of detectability (Fig. 1a and b).

For fully penetrant scenarios the performance of the different meth-

ods improves considerably (Fig. 1c and d), as expressed by a mani-

fold increase of top three ranking cases (black and dark gray bars in

Fig. 1). Furthermore, the performance is lower for G¼2 than when

three generations are considered (Fig. 1b and d versus a and c). Tests

PB and KS were frequently the best performing methods regarding

the number of top ranking case families (Fig. 1, crosses and dots).
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For a more challenging G¼2, KS test had an advantage over PB

test. It also turned out that GC and GR tests reported a high number

of significant cases among top three results, but usually they result

in no further cases among the insignificant top three hits. However,

for other parameter combinations the number of top three ranking

case families found by GC and GR tests were similar to those identi-

fied by KS and PB tests. (See Supplementary Figures S1–S9 for all

parameter sets.) We note in advance that despite their good perform-

ance in ranking case families in the top three, tests GC and GR are

characterized by a high number of false positives, such that results

should be treated cautiously. A detailed analysis of cases differenti-

ated by rank, significance and number of affected individuals is

given by Supplementary Figures S10–S41.

The overlap of top ranking cases among the different methods is

provided in Figure 2. The agreement is lower for higher prevalence

(R¼6.25%), with a considerable number of unique top rank cases

identified by PB, followed by IF and KS. The agreement between

methods increased for lower prevalence (R¼2%). Overall, with

decreasing difficulty, expressed by higher G, lower R or higher Q,

we observed higher agreement in ranking cases on the top (we refer

to Supplementary Figures S42–S73 for a comprehensive set of over-

lap analysis plots).

3.1.2 Assessment by binary classifier

In the previous section, we have compared aggregation tests by

investigating the rank of the affected case family within a family set

in combination with Padj � 0.05 cutoff for assessing significant ag-

gregation. In a second analysis, we have formulated the question of

overall test performance as a binary classification problem based on

Padj, where for a fixed parameter set G, Q and R all 415 family sets

were treated as a single set with 415 cases and 415�414 controls.

Fig. 1. Number of case families by test rank and prevalence. For a fixed number of generations G and a fixed penetrance Q, each panel of this figure shows the

number of cases a test has found for different rank ranges. Additionally, panels are further divided into groups describing prevalence R, ordered from highest

prevalence (left) to lowest (right). Each such prevalence group then visualizes the number of cases a test has detected for a certain rank range by bar heights. The

ranges partition the set of 415 cases and the associated bars are colored as follows: black, case is a significant hit in the top three; dark gray, case ranks in the top

three, but is insignificant; gray, case ranks between four and 10, independent of significance; light gray, case ranks higher than 10. A white point is positioned at a

test’s number of top scoring significant cases and a gray cross stands for the number of overall top scoring cases. (a) Three generations and 60% penetrance.

Generally, tests perform better with decreasing trait prevalence R, as cases become easier distinguishable from controls due to lower background noise. We

point out that IF test sticks out with the lowest number of significant top and top three hits. For R� 4%, tests GC and GR have the highest number of significant

top three ranking cases. (b) Two generations and 60% penetrance. Notice that no assessment was carried out for prevalence R¼ 10% and R¼ 6.25%, due to ex-

cess background noise generated by the controls. Spreading a trait across multiple generations increases test performance, as becomes evident when comparing

the results from two affected generations (this panel) with those obtained by three [panel (a)]. (c) Three generations and full penetrance. A notable boost of test

performance is observed when traits are switched from moderately to fully penetrant [panel (a) versus this panel]. Interestingly, PB test outperforms KS test for

high prevalence settings R¼ 10% and R¼6.25%. (d) Two generations and full penetrance
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For selected parameters, Figure 3 summarizes the results by means

of precision/recall curves where threshold Padj ¼ 0.05 is marked by

a circle. The performance curves for the GC and GR tests start with

precision value well below 1.0 and remain at constant precision

until a certain recall value. This is due to a mixture of cases and con-

trols that both were reported with the same, small Praw value, imply-

ing that these two tests report false positives even at moderate recall

and high significance level. Frequently, we observe a short recovery

phase indicated by increased precision, during which many cases are

detected (e.g. Fig. 3a). After reaching a local maximum, precision

drops due to an excess of false positives.

The PB and KS methods stood out by performing consistently

better than the other three tests regarding precision and recall.

Noteworthy, even though at low recall, tests PB, KS and IF are char-

acterized by reasonably high precision values at the significance cut-

off of Padj¼0.05, distinguishing them as acceptable methods for FA

analysis under the scenarios evaluated. The IF test usually lacks per-

formance when compared to PB and KS tests, but showed some

advantages when applied to small subfamilies with two generations

or low to moderate trait penetrance (cf. Supplementary Figures S75–

S77, S82, S85 and S96).

3.2 Familial aggregation in the CHRIS population study
We have applied different methods to detect FA to the CHRIS study

in order to identify potential cases of familial hypercholesterolemia

and stroke. We note that CHRIS pedigrees are characterized by nu-

clear families that were joined by a varying number of non-

participating parents and grandparents.

3.2.1 Detection of familial cases of hypercholesterolemia

In the CHRIS study, we found the HC threshold levels (defined in

Materials and methods) of total cholesterol, LDL cholesterol, and

triglyceride as the 97th, 93rd, and 94th percentile, respectively.

Overall, applying the proposed HC criteria resulted in a disease

prevalence R of 5.94% in the study.

Due to the large family XL, analyzing the CHRIS pedigrees rep-

resented a challenge, especially for methods based on families rather

than individuals (IF and PB), as they might not have been able to

fully capture the finer inheritance patterns between affected partici-

pants within that family. Family XL contained 236 out of all 265

affected participants. Interestingly, this family was identified by the

IF test with Padj ¼ 1.41�10�3. The PB test did not report any sig-

nificant family (Praw(family XL) ¼ 0.18), which may be indicative

that the proportion of affected individuals found in family XL is in

Fig. 2. Top rank case family overlaps via UpSet plots. Each plot visualizes the

overlap of rank 1 case families between the five aggregation methods, inde-

pendent of significance. The diagrams show on the lower left hand side the

set size for rank 1 case families for each method, one per row. The central

element is a dot matrix, and filled dots connected by lines indicate the sets

that are overlapping, and the magnitude of the overlap is shown in the bar

plot above. A single dot without any connecting lines refers to those elements

of a set that do not overlap with any other set. The plots are limited to 20

overlaps out of 25–1¼31 possible overlaps and are sorted by overlap size.

Plots were generated with UpSetR (Conway et al., 2017). (a) Overlaps for

three generations, 60% penetrance, and 6.25% prevalence. PB test identifies

53 families that no other test has put on the top rank. Tests IF and KS also

show some ability to uniquely place cases on top. Overall, 140 out of 415

cases (34%) were identified by tests PB, KS or IF. (b) Same parameters as in

panel (a), but prevalence R¼2%. Lowering the trait prevalence, the five tests

agree for 86 case families (21%) by ranking them on the top. Another 64 cases

are top ranked jointly by tests PB, KS, GC and GR. There is high agreement

between methods, and compared to the scenario presented in panel (a), no

single method is able to distinguish itself from the other aggregation tests

Fig. 3. Binary classification performance evaluation by precision/recall plots.

The binary classifier curves show precision (y-axis) versus recall (x-axis) val-

ues based on Padj for selected parameters G, Q and R. An ideal curve would

remain at precision 1.0 till it reaches the recall value of 1.0 and then drop in a

single step to zero. Since all plots are based on 415 positives (the cases), the

x-axis can also be interpreted on an absolute scale, e.g. a recall of 0.4 corre-

sponds to 0.4� 415¼ 166 cases. The recall/precision pair where Padj ¼ 0.05 is

marked by a circle. Tests are denoted by color and line thickness as given by

the figure legends. Panels shown here correspond to data also presented in

Figures 1 and 2. (a and b) Parameters as in Figure 2a and 2b, respectively. We

refer to Supplementary Material Section 4 for a detailed discussion on the

shape of the curves
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line with the overall disease prevalence in the cohort. One the other

hand, tests GR and GS resulted in 26 and 27 significant groups of

individuals, respectively. Ultimately, the KS test did not report any

significant results, but 11 participants were found as borderline

cases with Padj ¼ 0.0528, all of them belonging to family XL. These

11 individuals form five distinct groups of up to nine affected rela-

tives sharing kinship. Remarkably, all these groups also showed up

in the top nine and top 15 hits reported by GC and GR tests, respect-

ively (Table 2). Each of these groups can be seen as a separate fam-

ily, since affected members do not share kinship between the groups.

Therefore, we computed the Praw values based on the number of

phenotyped and affected individuals just as they would be obtained

when applying the PB test to the group (see Methods). Remarkably,

the ranking by these Praw values is identical to the order obtained by

KS test.

Table 2 shows that family group A has 20 members, five of them

were affected by HC. The remaining groups B to E were at least

three times as large and have only a few more affected individuals,

which are rather spread out across the pedigrees and are therefore

less likely to be carrier of fHC. Family group A, shown in Figure 4,

revealed the most compact pedigree. The oldest two generations I

and II were not phenotyped, as they only were reported by the par-

ticipants, but helped in connecting the family members. Three out of

the five siblings with parents II.5 and II.6 are affected, where one of

the unaffected is taking statins (sister III.6) and the other unaffected

(III.11) did not participate in the study. One young offspring of these

siblings is also affected (male IV.1), whereas the others are unaffect-

ed. No cases of HC are found in the sub-pedigree formed by the

parents of female III.3, indicating that this part of the family does

not contribute to the affected male IV.1. Individual III.1 represents

the fifth case in this family group and belongs to the maternal part

of the family formed by parents II.5 and 6. On the paternal side we

observe one individual under statin therapy (female III.15) and her

brother with high triglyceride levels. Taken together, this group of

affected individuals represents a possible candidate for fHC within

the CHRIS dataset. When relating this result to our assessment, we

found prevalence R¼6.25% and penetrance Q¼60% limited to

three generations an appropriate parameter set reflecting the fHC

scenario. At the significance level of Padj ¼ 0.0528 for the KS assess-

ment, we observed with these parameters a precision of 0.51 (cf.

Fig. 3a).

3.2.2 Detection of familial cases of stroke

When performing FA analysis of stroke within CHRIS study partici-

pants, we have identified a nuclear family consisting of an affected

mother (age group 80s) and both of her sons (age group 60s), all

affected by stroke. In the performance assessment, this situation is

best described by a fully penetrant trait in two generations with dis-

ease prevalence R¼1.25% (cf. Fig. 1d). All kinship-based methods

identified this trio as a significant cluster (Padj < 0.05). Section 5 of

the Supplementary Material provides further information that this

family exhibits a high level of stroke aggregation.

4 Discussion

We have completed a performance assessment in order to investigate

the ability of different methods to detect trait aggregation in large

families, covering a range of trait prevalence and penetrance param-

eters, as well as the number of affected generations for a given set of

pedigrees with phenotyped individuals. Overall, the PB test consist-

ently displays high performance. Remarkably, this test was able to

Table 2. Top scoring family groups for HC with associated results of familial aggregation tests

KSa GC GR PB

Groupb Nc Nkaff
d Naff

e Praw Rankf Praw Padj Rank Praw Padj Rank Praw
g

A 20 5 5 2.00 � 10�4 1 1.50 � 10�4 2.61 � 10�3 5 1.40 � 10�4 3.04 � 10�3 4 5.88 � 10�3

B 67 8 9 5.23 � 10�4 2 1.55 � 10�3 1.69 � 10�2 8 6.60 � 10�4 8.20 � 10�3 7 1.95 � 10�2

C 63 7 8 2.05 � 10�3 6.5 1.18 � 10�3 1.47 � 10�2 7 1.80 � 10�4 3.13 � 10�3 5 3.60 � 10�2

D 82 6 8 2.05 � 10�3 6.5 1.87 � 10�3 1.81 � 10�2 9 1.30 � 10�4 3.04 � 10�3 3 1.24 � 10�1

E 114 9 10 2.19 � 10�3 10 2.70 � 10�4 3.92 � 10�3 6 5.80 � 10�3 3.36 � 10�2 15 1.54 � 10�1

aTable is sorted by Praw of KS test and refers to all individuals with Padj ¼ 0.0528 (the best Padj observed for KS test).
bIsolated group of individuals within family XL that maximizes the number of affected people sharing kinship.
cNumber of phenotyped individuals in the group.
dNumber of affected individuals that share kinship within the group.
eOverall number of affected individuals in the group, irrespective of kinship.
fRank denotes the position in the specific aggregation test result list. In case of ties, ranks are averaged.
gResult as would be returned by the PB test for a family with N members and Naff affected family members and Bernoulli trail success probability P¼265/

4373, which is the prevalence of HC in the CHRIS study excluding singletons.

Fig. 4. Family tree of group A (part of family XL). The pedigree has been con-

structed to include the complete sibship plus spouses of all five affected

members (filled black symbols). Known non-participating relatives are

denoted by gray symbols, whereas unaffected participants are indicated by

empty symbols. Below each individual we list up to three lines: the individu-

al’s integer identifier; an age range specifying the decade of the individual’s

age at participation (e.g. 30s for thirties, ranging from 30 to 39 years), or a hy-

phen (‘-’) if the age is unknown; and a code detailing the participant’s pheno-

type: C, high total cholesterol level; L, high LDL level; S, prescription of statins

(ATC code C10); T, high triglyceride level. Most affected participants are

related to individuals II.5 and II.6 either as parents or grandparents, and indi-

vidual III.6 is on statin medication. Male III.13 has high triglyceride levels but

is otherwise unaffected by HC, however his sister III.15 is treated with statins
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rank on top more cases for more challenging high trait prevalence

(R¼10% and R¼6.25%) scenarios than the other tests based on

kinship. Conversely, the PB test was inferior to KS for incomplete

penetrance and very low prevalence (R�2%) in up to three affected

generations. Under such circumstances, kinship-based tests were

more selective in detecting cases. In several scenarios with only two

affected generations the IF test has demonstrated small advantages.

For low and moderate penetrance, the KS test performed slightly

better than the PB test. The ability of KS to identify individual cases

in arbitrarily large families (in contrast to PB and IF), makes it a

very good all-round aggregation test. Tests GC and GR clearly over-

estimate the significance of reported results, and should only be

taken as an indicator to support hypothesis building based on the

other tests’ results.

By looking at the overlap of the methods’ top ranking cases

(Fig. 3, Supplementary Figures S42–S73), we identified several ten-

dencies. First, tests GC and GR tend to report redundant results, as

they frequently reported the same cases on top. Second, for low

prevalence (R�4%), there was considerable agreement between the

different tests. Most importantly however, for many parameter com-

binations, PB is the only test being able to identify many cases.

Therefore, the current best strategy is to combine the sensitivity of

PB with the kinship awareness of KS, and which should inspire fu-

ture development of more powerful aggregation methods.

Analysis of the performance assessment suggests a strategy to ef-

ficiently exploit the advantages of each aggregation test, as we have

demonstrated in the fHC and stroke examples. The results indicate

that it is advisable to run all tests from the FamAgg package and

compare the top ranking families. Significance is assigned by choos-

ing a false discovery rate threshold Padj, preferably �0.05, since this

allows to better interpret the findings by comparison with the per-

formance assessment results. The higher the number of agreement

between tests PB, KS and IF, the higher the confidence that can be

put on the findings. The KS test should always list the family in

question as top or very high ranking, and if the family size is not too

large, the PB test should confirm the KS results. Hits also detected

by the IF test are further strengthening the overall analysis, especial-

ly when they are significant at a false discovery rate �0.05, since

this test showed very high precision at this level of significance. (The

IF test reported significant clustering of stroke and fHC cases in fam-

ily XL.) On the other hand, due to the low precision of GC and GR

aggregation methods, a positive hit from these tests should only be

considered supportive for other tests’ results.

It should be recalled that in the performance assessment we ob-

serve many large families (median family size is 36 members) with

all generations phenotyped, whereas the CHRIS study contains one

distinguished family (family XL) that constitutes 84% of all 4373

phenotyped individuals and a set of smaller families (median family

size 6). Furthermore, half of the individuals in the CHRIS pedigrees

are not phenotyped, as they have been reported as ancestors of par-

ticipants. Typically, these are the oldest two generations and are of

great aid for establishing remote relationships between participants,

but they also hamper a direct comparison with the performance as-

sessment, which is based on fully phenotyped pedigree data. In the

reported case of familial stroke, the comparison could be made dir-

ectly. However, in the fHC example, we have taken a compromise

and compared to a scenario with three affected generations, even

though the grandparents remained unphenotyped. We find this an

acceptable approach, especially since the disease was modeled as not

fully penetrant. Affected individuals outside this sub-pedigree are

then considered non-familial cases of HC, in agreement with the

model introduced in the performance assessment. We are planning

to further investigate the identified candidate family by examining

the affected members for potential causal variants of fHC (Dron and

Hegele, 2016).
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Naj,A.C. and Beaty,T.H. (2017) Detecting familial aggregation. Methods

Mol. Biol., 1666, 133–169.

National Heart Lung and Blood Institute (2002) Third report of the national

cholesterol education program (NCEP) expert panel on detection, evalu-

ation, and treatment of high blood cholesterol in adults (Adult Treatment

Panel III) final report. Circulation, 106, 3143–3421.

Noce,D. et al. (2017) Sequential recruitment of study participants

may inflate genetic heritability estimates. Hum. Genet., 136,

743–757.

Nordestgaard,B.G. et al. (2013) Familial hypercholesterolaemia is underdiag-

nosed and undertreated in the general population: guidance for clinicians to

prevent coronary heart disease: consensus statement of the European

Atherosclerosis Society. Eur. Heart J., 34, 3478–90a.

Pattaro,C. et al. (2015) The Cooperative Health Research in South Tyrol

(CHRIS) study: rationale, objectives, and preliminary results. J. Transl.

Med., 13, 348.

Rainer,J. et al. (2016) FamAgg: an R package to evaluate familial aggregation

of traits in large pedigrees. Bioinformatics, 32, 1583–1585.

Savica,R. et al. (2016) Familial aggregation of Parkinson disease in Utah: a

population-based analysis using death certificates. Neurol. Genet., 2, e65.

Assessment of familial aggregation methods 75

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty541#supplementary-data
Deleted Text: less than or equal to 
Deleted Text: ,
Deleted Text:  
Deleted Text: , 
Deleted Text:  
10.1093/sleep/zsw053
10.1093/sleep/zsw053


Sellers,T.A. et al. (1999) Fifty-year follow-up of cancer incidence in a historic-

al cohort of Minnesota breast cancer families. Cancer Epidemiol.

Biomarkers Prev., 8, 1051–1057.

Sempos,C.T. et al. (1999) Overview of the Jackson Heart Study: a study of car-

diovascular diseases in African American men and women. Am. J. Med. Sci.,

317, 142–146.

Simon Broome Register Group (1991) Risk of fatal coronary heart disease in

familial hypercholesterolaemia. BMJ, 303, 893–896.

Sveinbjornsdottir,S. et al. (2000) Familial aggregation of Parkinson’s disease

in Iceland. N. Engl. J. Med., 343, 1765–1770.

Tokuhata,G.K. and Lilienfeld,A.M. (1963) Familial aggregation of lung can-

cer in humans. J. Natl. Cancer Inst., 30, 289–312.

76 C.X.Weichenberger et al.


	bty541-TF1
	bty541-TF2
	bty541-TF3
	bty541-TF4
	bty541-TF5
	bty541-TF6
	bty541-TF7
	bty541-TF8

