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Simple Summary: Plant feed additives have been used in animal diets for improving animal health
and welfare. Thus, hemp (Cannabis sativa) and its products received attention and much research
has been conducted to evaluate the effects of Cannabis sativa compounds in animals. Among various
substances of this plant, cannabidiol showed desirable effects such as relieving pain and inflammation
reduction in some studies. Considering the importance of animal welfare, especially in poultry
production, the use of cannabidiol can be effective here.

Abstract: In recent years, interest in hemp use has grown owing to its chemical and medicinal
properties. Several parts of this plant, such as seeds, leaves, flowers, and stems are used in medicine,
industry, and environmental preservation. Although there were legal restrictions on hemp exploita-
tion in some countries due to the trace presence of THC as a psychoactive element, many countries
have legalized it in recent years. Cannabidiol or CBD is a non-psychoactive phytocannabinoid that
can activate the endocannabinoid system and its receptors in the central and peripheral nervous
system in bodies of different species. Cannabidiol has anti-inflammatory, antioxidative, analgesic, and
anti-depressant effects. This review investigates various aspects of cannabidiol use and its potential
in animals and humans.
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1. Introduction

Cannabis sativa, generally known as hemp, is an oleaginous angiosperm annual plant
from the Cannabaceae family [1]. Its use dates back to 8000 BC [2]. Cultivation of this plant
originated in Central Asia (China) [3] and after that expanded across Asia (India, Iran, and
Pakistan), South America, Africa, and throughout Europe during medieval times. Hemp
has received attention due to its rapid growth rate and high biomass production [2,4].
Every part of this multifunctional plant, such as its seeds, leaves, flowers, fiber and shives,
is exploited in the fabric and textile industry, the paper industry, construction, acoustic and
thermal insulation (the walls, floors, and roofs), antibacterial detergents, biodegradable
plastic, animal bedding, medicine, nutritional supplements, and environmental conserva-
tion [5]. This plant’s nutraceutical or health-promoting properties are due to the presence
of almost 500 chemical compounds, e.g., flavonoids (cannaflavin and kaempferol), terpenes
(limonene and α-pinene), phytocannabinoids (tetrahydrocannabinolic acid, cannabidiolic
acid, cannabichromenic acid, and cannabigerolic acid), amino acids, polyunsaturated fatty
acids (PUFAs) in the oil pressed from the seeds, minerals, and phenols [6]. Phenolic
compounds prevent gastrointestinal disorders [5].

Cannabidiol (CBD) is a phytocannabinoid derived from flowers, leaves and, to a lesser
extent, stems. Cannabidiolic acid (CBDA) can change to CBD due to heat exposure [3]. CBD
oil was proven to be efficient for therapeutic purposes such as controlling epilepsy, pain
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and inflammation, anorexia, nausea, anxiety disorders, and insomnia [5,7]. Furthermore,
this substance relieves multiple sclerosis pain in humans [8].

Since Yamauchi et al. conducted the first scientific research on the extraction of the
chemical components of Cannabis in 1968, interest in the use of industrial hemp and CBD
in animal and human nutrition research has grown in recent years [9,10].

The following subjects will be discussed in this review:

• Hemp classification, laws and regulations on its use;
• CBD structure, extraction, and the mechanism of action in the body;
• CBD anti-inflammatory, hepatic and antioxidative effects;
• Hemp in livestock feeding.

2. Description of Cannabis
2.1. Categorization and Botanical Features

Hemp is included in the Cannabaceae family with four subspecies: sativa, indica,
ruderalis, and afghanica [11]. The previous classification categorized Cannabis as just
marijuana and hemp, which was a mistake [12]. The difference among the subspecies is
because of the interaction of genetics and environment [3], climate, the shape of the plant,
and their use [10]. Sativa and indica are divided into different varieties [1], as demonstrated
in Table 1.

Table 1. Different varieties of Cannabis [1].

Species Varieties

Domesticated Wild

Cannabis sativa sativa spontanea

Cannabis indica indica kafiristanica

Hemp is an angiosperm dioecious plant with a strong root that can enter deeply into
the soil [2]. The best growth occurs between 13 and 22 ◦C in moist nutrient-balanced
soils with a pH around six which is rich in nitrogen, potassium, phosphorus, copper, and
magnesium, but susceptible to soil compaction [2,3]. Hemp functions well for enhancing
soil quality, thus it can be an appropriate choice for use in crop rotation procedures [13].
Staminate plants bloom earlier compared to pistillate ones [14]. Males are taller, whereas
females are shorter and have many flowers [10]. Plants cultivated for CBD and oilseed
hemp should be kept at some distance to gain better branches and flowers, but fiber hemp
has a better stalk growth when planted at high density [13]. Fiber quality is affected by
density, infectious fungi, and irrigation [15].

Among several recognized phytocannabinoids, tetrahydrocannabinol (THC) and
cannabidiol (CBD) are the two most essential components. THC is a psychoactive com-
pound that is used for recreational purposes. On the other hand, CBD is a non-psychoactive
compound known for antioxidant, anti-inflammatory, antipsychotic, anxiolytic, and an-
ticonvulsant effects [16,17]. CBD can prevent oxidative stress and be effective in cancer,
diabetes, cardiovascular and neurodegenerative diseases [18].

Cannabis indica, mostly known as marijuana or medical Cannabis, is bushier [2] and has
intoxicative features which may have medicinal importance [19]. Cannabis indica contains
a higher level of THC, specifically ∆9-tetrahydrocannabinol (∆9-THC), whereas Cannabis
sativa, known as hemp or Industrial Hemp, is taller. The importance of hemp is for the
seed and fiber used in several products and their medicinal value [2]. This plant has no
intoxicative features. Compared to indica, it has low levels of THC (less than 0.3 wt. %)
and higher levels of CBD. BT allele in medical Cannabis encodes tetra-hydrocannabinolic
acid synthase, whilst in Industrial Hemp, canabidiolic acid synthase (CBDA) is encoded by
BD allele [20]. In a study conducted on female flower transcriptome of hemp and medical
Cannabis, an upregulation in the pathway of THC production in medical Cannabis was
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observed compared to hemp [21]. This can explain the difference between a 10% THC
level in medical Cannabis and a 0.3% or less THC level in hemp [22]. In another study,
Sawler et al. [23] analyzed 43 hemp and 81 medical Cannabis samples acquired from 14,301
single-nucleotide polymorphisms. This research showed noticeable genetic differences
between these two plants—medical Cannabis had a narrow genetics base whilst hemp was
more heterogeneous [23].

2.2. Laws and Legal Restrictions

In the 1930s, hemp use was prohibited in Canada by the Narcotics Management
Act [4,24] due to its previous categorization as being the same type as marijuana. During
the Second World War, the United States Department of Agriculture (USDA) persuaded
farmers to cultivate hemp [25]. After the war, prohibition was imposed. Simultaneously,
hemp was produced to a small extent in some areas of the world, e.g., Eastern Europe,
China, Spain, France, and the Soviet Union [26]. The hemp production ban was removed
in 1998 in Canada [24].

There is a narrow line for identifying Cannabis as a drug plant or a non-drug one. In
the United States and most of European countries including Poland—the maximum THC
level for industrial hemp should be 0.3% and 0.2%, respectively [24,27].

As mentioned before, the regulations would be different among the countries related
to the therapeutic use of Cannabis (CBD oil extracted from dried flowers) in humans and
animals. In Canada, some European countries, and some states of the USA, physicians
prescribe many cannabinoid medicines for humans [28]. Based on the European Food
Safety Authority (EFSA), hemp seed, hemp expeller, hemp oil, hemp flour and hemp fiber
can be utilized in the feed of different animal species. However, this depends on the amount
added to the diet [29]. In COMMISSION REGULATION (EU) 2017/1017 of 15 June 2017,
the maximum content of THC was set as 0.2% [30].

2.3. Nutrients

Various hemp-containing products such as tea, oil, and beer can be used in the food
industry [5]. In recent years, hemp seeds, hemp seed cakes, and hemp seed oil have been
added to animal feed. Hempseed and hempseed cake can be a good source of protein and
fat in the diet, while hemp oil is added to the feed to provide essential fatty acids [5]. Fatty
acids and lipids are derived from seeds [10], while cannabinoids, particularly CBD and
terpenes, can be extracted from trichomes of flowers in hemp [5].

Seeds are excellent sources of polyunsaturated fatty acids (PUFAs), 20–25% digestible
proteins such as albumin and essential amino acids in high levels (arginine, methionine,
and cysteine), carbohydrates (25–35%), vitamins, for instance, γ-tocopherol at an amount
of 60.85 mg/100 g dry matter, and minerals [4,31,32].

Hempseed oil is rich in PUFAs at an amount of 25–35%, up to 90% consisting of
α-linoleic acid (ALA) 18:3 (ω-3) 16%, linoleic acid (LA), 18:2 (ω-6) average 56%, with a
3.5:1 ratio ω-6 to ω-3 [5], γ-linoleic acid (GLA) and stearidonic acid (SDA). Hempseed
oil reduces cholesterol levels [33]. Moreover, it contains natural antioxidants [34]. Hemp
flowers contain carbohydrates, fiber, vitamins, minerals (Fe, Zn, Cu, and Mn), and essential
amino acids [2].

3. CBD Structure
3.1. Chemical Structure

CBD is a phytocannabinoid with the formula C21H30O2 and a relative molecular mass
of 314.464 g. mol−1 [35]. The structure of CBD is shown in Figure 1. This molecule consists
of a cyclohexene ring (A), a phenolic ring (B), and a pentyl chain. The activity of CBD is
attributed to the location of three carbon positions [35]:

(1) In the cyclohexene ring at C-1 with a methyl group,
(2) In the phenolic ring at C-1′ and C-5′ with a hydroxyl group, and
(3) In the phenolic ring at C-3′ with the pentyl chain.
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3.2. Biosynthesis

Cannabidiol is produced in the glandular trichomes of the female hemp flowers [10].
Figure 2 depicts the stages of CBD biosynthesis. Two main precursors (olivetolic acid and
geranyl diphosphate) are synthesized in separate pathways [3]. Approximately 95% of the
CBD is found in an acidic form such as cannabidiolic acid (CBDA) in fresh biomass [36].
Decarboxylation can be spontaneous, thermal, or alkaline [10]. Terpenes and terpenoids
responsible for flavor and aroma can be lost during the decarboxylation process, a disad-
vantage of decarboxylation [37].
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4. Methods of Extraction

CBD extraction and purification can be challenging processes due to the presence of
THC. The appropriate method should be practical and have the most negligible CBD loss.

There are different stages in Cannabis processing: selection of variety, cultivation,
harvesting, and extraction [10]. In the hemp industry, extraction can be performed from
trichomes (chemical extraction) or hempseeds (mechanical extraction) [10]. In the trichome
category, cannabinoids and terpenes are extracted. Figure 3 shows the general procedure
for cannabidiol extraction. After harvesting, flowers are trimmed (manually or using
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machines) and should be dried at a low temperature without exposure to the sunlight to
inhibit photochemical transformation.
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The highest concentration of cannabinoids is found on the flower trichomes surface;
hence, mechanical methods such as pressing would not be appropriate for extraction [10].
Intense crushing increases the risk of producing undesirable substances [38]. Organic
Solvent Extraction (OSE), Supercritical Fluid Extraction (SFE), and Soxhlet Extraction (SE)
can be used mostly as methods of extractions in this category. For extraction processing,
polar solvents such as ethanol, methanol, iso-propanol, and dimethyl ether are applied [10].
During the exposure to the solvent, co-extracts such as moisture and heavy residues (heavy
metals, pigments, and fatty acids as a black wax) are eliminated. In the winterization stage,
the wax is separated below −70 ◦C, which takes 24 h [39,40]. After winterization, the
solvent can be recycled and returned to the process [10].

To obtain a pure product, chromatography, crystallization or distillation can be ex-
ploited [40,41]. Mechanical methods such as press extraction and microwave-assisted
extraction (MAE) are used for fatty acid extraction from hempseed oil. Various chemical
CBD extraction methods are described in the following subsections.

4.1. Soxhlet Method

This method has been widespread for plant oil extraction [42] and some organics such
as vanillin [43], coffee [44], marijuana cigarette [45], and orange juice [46]. In this method,
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the substance is constantly exposed to a stream of the solvent during the operation. More-
over, the particle size of the substance should be considered. This method is undesirable
currently due to the excessive solvent and energy needs, making it a less popular method
today [47,48].

Some researchers used the Soxhlet method to extract some compounds from hemp.
Pandohee et al. derived cannabinoids from Cannabis with the Soxhlet method in consec-
utive batches of ethyl acetate. Before the operation, roots and leaves were grounded and
treated under 368 µm. In the first batch, 0.5 g of the powder and 300 mL of ethyl acetate
were made at 78 ◦C for 1.5 h. The second batch consisted of extraction repetition with 300
mL of solvent for 1 h, and finally, the combination of extractions vacuumed at 40 ◦C [49].
Chang et al. extracted cannabinoids from hemp seed with 300 mL methanol for 8 h at 90
◦C and cooled at 15 ◦C afterwards [50].

4.2. Immersion Method (Maceration)

The substance is immersed in the solvent for a period of time. Generally, this term is
used for conventional extraction methods, including OSE methods. The extraction method
is named according to the used solvent. Ethanol and methanol solvents, for instance, are
widespread for cannabinoid extraction due to their polar properties and boiling point.
However, ethanol is preferable due to its lower toxicity [10].

Soxhlet and Immersion methods caused some safety and environmental concerns;
thus other methods are applied for effective extraction.

4.3. Supercritical Fluids Extraction (SFE)

Different fluids are applied in the SFE process, such as methanol, ethanol, carbon diox-
ide, water, sulfur hexafluoride, nitrous oxide, and n-pentane [51]. Since CO2 is non-toxic,
non-flammable, and affordable, it has been employed extensively in the SFE method [52,53].
To obtain an efficient extract, pressure and temperature increase to the critical condition
of CO2 (Pc = 7.38 MPa, Tc = 30.98 ◦C). Recovering and reusing carbon dioxide during the
process is another advantage of the SC-CO2 method. Furthermore, co-solvents moderate
the solute and solvent and produce more efficient extraction [10]. Water, acids [54], esters,
ketones, alcohols, and aldehydes [55] are employed as co-solvents.

The supercritical extraction method is expensive, so the OSE method is still more
commonly in use. SC-CO2 has a medium to low potential for extraction of cannabinoids and
terpenes [10]. However, ethanol has a greater solubility range—cannabinoid and terpene
solubility decreased on winterization and a reduction in temperature and, consequently,
there were more sediments [10].

Grinding, ultrasonication, and high-pressure homogenization are applied as pretreat-
ment methods (the two latter ones are used at a small scale) for both cannabinoids and
lipids [38,50,56].

4.4. Supercritical Hot Water Extraction

In this method, pressurized hot water is employed as a solvent with equivalent
solvability features to ethanol and methanol [57]. It has been shown that this method can be
faster for extracting CBD, cannabichromene (CBC), cannabigerol (CBG), cannabinol (CBN),
and THC from hempseed compared with the older and traditional methods [58]. In contrast
with the SC-CO2 method, supercritical hot water can be more expensive, impose more
energy on the system, and has safety problems due to the water supercritical condition (Tc
= 373.94 ◦C, Pc = 22.064 MPa) [10].

4.5. High-Performance Liquid Chromatography (HPLC)

This technique can be used for the separation and identification of CBD. This tech-
nique consists of a column with a diameter of 2 ÷ 4.6 mm and a length of 20 ÷ 250 mm,
with different modifications in the surface stationary phase [59]. The detector can be UV
(ultraviolet) or DAD (diode-array detection). Among LC columns, reverse-phase C18 (less



Animals 2022, 12, 2541 7 of 21

often C8) packed columns are the most common for analysis of cannabinoids. CBD was
detected in C. sativa with reverse-phase HPLC [60]. Moreover, Mandrioli et al. reported
cannabinoid detection using HPLC-UV with a conventional C18 column [61]. In another
study, HPLC-DAD was used to determine CBD content [62].

5. Mechanism of Action
Endocannabinoid System (ECS)

The endocannabinoid system is a type of endogenous signaling system adjusted by
sleep, stress levels, physical activity, and food which maintains homeostasis in the body.
Endocannabinoids include amides, ethers, and esters from long-chain polyunsaturated
fatty acids (PUFAs) [35]. ECS can be found in invertebrates [63] and vertebrates, e.g.,
amphibians (frog), zebrafish [64], poultry (chickens) [64], and mammals [65]. In dogs,
cannabinoid receptors or their ligands can be found in the central and peripheral nervous
system, embryo, skin, the gastrointestinal tract [66–69] and also in the brain, skin, ovary, and
oviduct in cats [70–72]. ECS presents in some body tissues and is efficient in alleviating pain,
memory, appetite, anti-inflammatory responses, immunosuppression, sleep regulation,
reproductive functions [5], and a reduction in oxidative stress [35]. The main parts of the
endocannabinoid system [73,74] are depicted in Table 2.

Table 2. Different parts of the endocannabinoid system.

Main units Description Functions Compounds

Endocannabinoids
Lipid compounds

metabolized in multiple
enzymatic pathways

Binds to the receptors,
recovers homeostasis after cellular
stress, interacts with the human
endocannabinoid system [75,76]

Neurotransmitters:
anandamide-N-

arachidonylethanolamine
(AEA) and

2-arachidonylglycerol (2-AG)

Cannabinoid receptors Able to stimulate receptors,
produces physiological responses

G protein-coupled receptors
(GPCRs), also known as

7-transmembrane receptors
(7-TM receptors) and their

endogenous ligands [3]

CB1 receptors

Found in the central
nervous system, e.g., brain
and spinal cord, some cells

in the immune system,
muscles, liver, kidney, lungs,

reproductive system, and
adipose tissues

Mediates the release of
neurotransmitters: acetylcholine,

noradrenaline, dopamine,
gamma-aminobutyric acid

(GABA), and glutamate
Increases reactive oxygen species

(ROS) production and
pro-inflammatory responses such

as tumor necrosis factor-alpha
synthesis (TNF-α) [77]

CB2 receptors

Active receptors in the
peripheral nervous system,
e.g., immune system, liver,

kidney, adipose tissues, and
spleen

Releases cytokines,
adjusts immune cell migration
[78–80] without psychoactive
functions [53], decreases ROS,

(TNF-α) levels,
oxidative stress, and

inflammation [77]

Enzymes Involved in synthesis and
catabolism [81]

Fatty acid amide hydrolase
(FAAH), monoacylglycerol

lipase

Due to the resemblance between prostaglandins and endocannabinoid structures, in-
teraction between metabolic pathways occurs [81]. THC is an agonist for CB1 receptors but,
in some cases, it acts as an antagonist and interacts with CB2 receptors [79,80]. Interaction
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between THC and CB1 receptors can prevent the release of neurotransmitters. CBD is a
non-psychoactive compound, so it has a low direct effect on CB1 and CB2 receptors.

There are 76 types of molecular CBD targets [35]. CBD can directly or indirectly interact
with different receptors, enzymes, and ion channels in the endocannabinoid system [82].
CBD enhances endocannabinoid expression. Therefore, it indirectly affects inflammation
and redox balance [83]. Among the critical CBD targets is nuclear receptors, e.g., peroxisome
proliferator-activated receptor gamma (PPAR-γ), which is involved in the expression of
genes that control inflammation [81]. Direct CBD activity is increased by the action of
AEA and 2-AG [84]. Among enzymes, CBD interacts with various cytochrome P450
(CYP) enzymes involved in drug metabolism [81]. CBD can stimulate calcium ions and
adjust calcium ion homeostasis in immune and inflammatory cells, which is essential for
pro-inflammatory cytokine secretion [85]. These cytokines, such as interleukin-1 (IL-1),
interleukin-6 (IL-6), and TNF-α, are necessary for balancing the immune system.

6. Analgesic and Anti-Inflammatory Effects of CBD

Numerous dose-dependent studies on the pain-controlling effects of hemp oil and
CBD were conducted on some animal species and humans. Since pain and inflammation
exist simultaneously in many conditions, various studies show that CBD has analgesic
potential, and anti-nociceptive and anti-inflammatory effects on some painful diseases and
disorders.

In veterinary medicine, CBD has been used to alleviate cancer pain, osteoarthritis,
neuropathic pain, and mood disorders in dogs and cats [86,87]. Moreover, it has been
proved that CBD has mild side effects (decreasing appetite, nausea, and sedation) in human
clinical studies [88–90].

The results of research on CBD’s anti-nociceptive and anti-inflammatory effects in
recent years are shown in Table 3. Furthermore, some definitions are described in the
following for a better understanding.

Table 3. Anti-nociceptive and anti-inflammatory effects of CBD in different species.

Species Type of Pain or Disorder CBD Amount and Duration Results Reference

Dogs (16) OA a pain and lameness CBD oil b 2 mg/kg every 12
h, 4 weeks

Significant reduction in pain,
no significant difference in

lameness degree
[91]

Dogs (37) Chronic maladaptive
pain

CBD oil c

0.25 mg/kg
once a day for 3 days, then

every 12 hrs

Significant reduction in pain,
increase in mobility and

quality of life
[92]

Dogs (20) OA pain

20 mg/day (0.5 mg/kg)
naked CBD d,

50 mg/day (1.2 mg/kg)
naked CBD,

20 mg/day liposomal CBD e

Significant reduction in pain,
increase in mobility [93]

Rats RA f pain
CBD gels g (0.6, 3.1, 6.2 or

62.3 mg/day) for 4 days after
arthritis

Significant decrease in joint
swelling, inflammation

biomarkers, pain scores, and
synovial membrane thickness

[94]

Rats Spared nerve injury Repeated CBD injections h

(0.1–1.0 mg/kg)
Declined mechanical allodynia,

anxiety-like behavior [95]
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Table 3. Cont.

Species Type of Pain or Disorder CBD Amount and Duration Results Reference

Rats Exposed to pain (paw pressure
and tail-flick test)

Intra-ventrolateral
periaqueductul grey (PAG)
microinjections of CBD (1.5,

3 and 6 nmol)

Reduction in activity of ON
and OFF neurons,

anti-nociceptive responses in
the tail-flick test

[96]

Mice Sciatic nerve injury (neuropathic
pain i)

CBD-containing gelatine j,
orally ad libitum

Significant reduction in pain
after 3 weeks of surgery [97]

Mice Type 1 diabetes 5 mg/kg CBD k, 5 times
weekly for 10 weeks

Significant reduction in
leukocyte activation, increase
in pancreatic microcirculation

[98]

Mice Spinal cord injury
Intraperitoneal injections of

CBD l 1.5 mg/kg, for 10
weeks following injury

Reduction in pro-inflammatory
cytokine, prevented thermal

sensitivity development
[99]

Human Peripheral neuropathic pain Transdermal CBD (250 mg
CBD/3 fl. Oz)

Significant reduction in severe
pain, cold and itchy sensations [100]

Human
(72 children,

60 adults)
Treatment-resistant epilepsy 5 mg/kg/day CBD m,

titrated up to 50 mg/kg/day
Reduction in seizure frequency

and severity [101]

Human Dravet syndrome n

100 mg/mL CBD o, oral
solution at 2–10 mg/kg/day,

titrated up to 25–50
mg/kg/day. Evaluating

seizures at 12-week intervals
through 96 weeks

CBD p 20 mg/kg of body
weight per day + standard

antiepileptic treatment

Decrease in motor seizures and
improved patients conditions [102,103]

a Osteoarthritis causes joint degeneration, which is found both in humans and animals. Non-steroidal anti-
inflammatory drugs (NSAIDs) and opioids are used for alleviating pain [81]. b Final desiccated CBD reconstituted
into an olive oil base. c Delivered on food. d Solubilized in coconut oil. e With a sunflower lecithin base, each
liposome encapsulated 10 to 20 mg/mL CBD. f Rheumatoid arthritis is an autoimmune and inflammatory disease
that affects synovial tissue and generates joint inflammation and hyperplasia [104]. g Dissolved in ethanol, gel
containing 1 or 10% CBD rubbed into the skin. h Prepared in a vehicle of ethanol/Tween 80/0.9% saline (3:1:16),
injected intravenously (I.V.). i Neuropathic pain is a chronic pain caused by damage to a nerve or some diseases
(e.g., type 1 diabetes and MS) that affects the somatosensory nervous system and is difficult to alleviate [81]. j

Dissolved into 95% EtOH to a concentration of 20 mg/mL, then added to obtain a final concentration of 1 mg/15
mL (g) of gelatin. k CBD ≥99% purity, intraperitoneal injection (I.P.). l Dissolved with a 1:1:18 ratio of anhydrous
ethanol, cremophor, and 0.9% saline. m Highly purified CBD in sesame oil (100 mg/mL; Epidiolex®) orally. n

Dravet syndrome is drug-resistant epilepsy that starts during the first year of life [81]. o Highly purified CBD (100
mg/mL), oral solution (Epidiolex®). p 100 mg CBD/mL.

Based on the research results depicted in Table 3, it is noticeable that CBD is efficient
in reducing pain and inflammation. There is no specific study on the effectiveness of CBD
in controlling pain in livestock production, including poultry. Broilers are susceptible
to disorders and abnormalities due to their fast growth rate [105]. In most cases, these
disorders are accompanied by pain and inflammation. Additionally, layers are prone to
bone fracture during the laying period, particularly keel fracture [106]. These problems
are significant concerns in terms of poultry welfare at the industrial scale. As it is proved
that CBD has anti-nociceptive effects, future studies on its efficiency are required in the
poultry industry.

7. Hepatotoxicity and Tolerability

In recent years, studies have been conducted to investigate the effects of different parts
of the hemp plant (e.g., seeds) and CBD on liver function in humans and animals. The
results of research investigations related to the effect of Cannabis on the liver are depicted
in Table 4.
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Table 4. The effects of using hemp on liver function in poultry.

Species Experiment Duration Hemp Type and Amount Results Reference

19-week-old Bovan
White 12 weeks HS a: 10, 20% HSO b: 4, 8, 12%

Significant decrease in the expression of
hepatic fatty acid desaturase

1 and 2 (genes for the desaturation of
polyunsaturated fatty acids)

[107]

19-week-old
Lohmann LSL-

Classic
White

12 weeks HS: 10, 20, 30%
HSO: 4.5, 9.0%

No significant effects on proteins, glucose,
uric acid, and cholesterol plasma levels

HS 10, 20% and HSO 4.5%:
The significant lowest level of the

gamma-glutamyl transferase, reduction in
liver damage

HS: Significant decrease in AST c levels,
possible protective effect of HS (10, 20%) and

HSO (4.5%) on liver damage

[108]

1-day-old male Ross
308 35 days

EF d: 6%
HS: 3, 4, 5%

HS + EF: (3% and 6%,
4% and 6%,
5% and 6%)

HS + EF (5 and 6%): Positive increase in the
vitamin E level in the liver [109]

1-day-old
Caribro-Vishal 42 days

HS: 0.2%
HS + DS: e (0.2% and 0.3)

HS: 0.3%
HS + DS: (0.3% and 0.3)

BMD f: 0.025%

Significant reduction in triglyceride, LDL g

and total cholesterol levels,
significant decrease in AST and ALT h,
improvement in serum lipid and liver

enzyme levels

[110]

a Hempseed, b hempseed oil, c aspartate transaminase, d extruded flaxseed, e dill seed, f bacitracin methylene
disalicylate, g low-density lipoprotein, and h alanine transaminase.

Since hemp is a source of unsaturated lipids, it is prone to oxidation [111]. The liver
metabolizes lipids and absorbs portomicron in chickens [112,113]. The peroxidation of
lipids causes oxidative damage and hepatic diseases in laying hens. Moreover, any injuries
to hepatic cells have considerable repercussions on the mineral metabolism (Ca and P, for in-
stance), affecting eggshell quality and skeletal structure [114]. Thus, measuring biochemical
parameters in plasma or serum can indicate whether the liver functions properly [115,116].
Table 5 shows the effect of CBD on liver performance in different species.

Table 5. CBD use effects on liver function in pets and mice.

Species Health Status CBD Amount and Duration Results Reference

Dogs OA pain and
lameness

CBD oil: 2, 8 mg/kg
every 12 h

4 weeks

A significant increase in serum ALP a

No observable side effects [91]

Dogs Idiopathic
epilepsy

CBD-infused oil: 2.5 mg/kg
twice daily
12 weeks

A significant increase
in serum ALP [117]

Dogs
and
cats

Healthy
CBD chews: 2 mg/kg orally

twice daily
12 weeks

No significant changes in serum chemistry
Safe in dogs

Adverse effects of excessive licking and head
shaking for cats

[118]

8-week-old mice Healthy

CBD extract:
(acute toxicity, 24 h)

246, 738, or 2460 mg/kg
(sub-acute toxicity, daily doses)
61.5, 184.5, or 615 mg/kg for 10

days

2460 mg/kg: A significant increase in LBW b,
plasma ALT c, AST d, and total bilirubin,

evidence of hepatotoxicity
615 mg/kg: A moderate increase in LBW, ALT,

AST, and total bilirubin

[119]

a Alkaline phosphatase, b liver-to-body weight, c alanine aminotransferase, and d aspartate transaminase.

Samara et al. showed that CBD can inactivate cytochromes P4503A (CYP3A) and
P4502C in hepatic drug metabolism [120]. Cytochrome P4503A is involved in drug
metabolism in the liver and gastrointestinal tract, and cytochrome P4502C is responsi-
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ble for xenobiotic oxidation. Long-term CBD use has been shown to stimulate the CYP3A
and CYP2B10 enzymes in mice livers [121]. CBD inhibits the absorption of carcinogenic
substances in blood and protects DNA [122]. On the other hand, Ewing et al. analyzed the
gene expression for hepatotoxicity [119]. They reported that CBD regulates more than 50
genes. These genes are responsible for oxidative stress, drug-metabolizing enzymes, and
pathways related to lipid metabolism. Based on the results of this study, CBD showed signs
of hepatotoxicity. An increase in drowsiness and a reduction in anxiety on use of higher
doses of CBD (300 mg oral) were observed in humans. On the other hand, intoxication was
not reported at lower doses (30 mg oral) [80].

Based on the results presented in the previous paragraph, it seems that higher levels of
CBD result in more side effects and the risk of liver damage. Since CBD is a dose-dependent
substance, it has shown different physiological responses. Thus, it is essential to indicate
the optimal dose in different species.

8. CBD Health Benefits

Several studies showed that CBD has beneficial effects on nervous system diseases
and mental health. Hypoxic-ischemic (HI) is a brain injury that occurs due to oxygen
deprivation in brain cells and causes neurological impairment, e.g., decreased cognitive
function and epilepsy [3]. In a study on mice conducted by Castillo et al. [123], it has been
demonstrated that CBD increases neuroprotection in mouse brain ischemia conditions.
Further, it boosts the reconstruction of the hippocampus [124]. The endocannabinoid system
has a function in emotional response and behavior [125]. Shbiro et al. [126] demonstrated
that CBD can be used as an anti-depressant in depressive mice.

In the nervous system, the brain consumes a high amount of oxygen [127]. Oxygen is
among the most crucial elements in organisms. However, oxygen can be very harmful when
it generates oxygen free radicals or generally ROS (reactive oxygen species), which result
in damage to DNA, RNA, and proteins as well as cell death. The lack of a balance between
oxidants and antioxidants causes oxidative stress. Oxygen reduction (O2) produces a
superoxide that is a precursor to many reactive oxygen species such as hydrogen peroxide
(H2O2). Due to the high lipid content in the brain, it is sensitive to oxidation [127]. It is
proven that CBD has antioxidant activity, which can be direct or indirect [35].

8.1. Direct Antioxidant Activity

CBD affects the elements in the redox system. CBD adjusts the activity and level of
oxidants and antioxidants [128,129]. In addition to catching free radicals and inhibiting
their chain reaction, CBD can prevent producing superoxide radicals and decrease ROS
activity. The antioxidant activity of CBD results from the activation of nuclear erythroid 2-
related factor or Nrf2 (a redox-sensitive transcription factor) [130]. This factor can transcript
cytoprotective genes such as antioxidant genes [131]. The antioxidant activity of CBD is
generally due to the hydroxyl group of the phenol ring [132]. Wu et al. reported that CBD
use can increase the amount of GSH (glutathione) in microglia cells of mice [133]. GSH acts
with vitamins A, C, and E [134]. CBD has 30–50% more antioxidant activity in comparison
with α-tocopherol or vitamin C [16].

Lipid peroxidation is among the most prominent processes that occur in the body
which causes polyunsaturated fatty acid (PUFA) oxidation [135]. When ROS reacts with
PUFAs, lipid hydroperoxides are made. Oxidative fragmentation produces unsaturated
aldehyde such as malondialdehyde (MDA) [136]. Sun et al. showed that CBD can decrease
lipid peroxidation in hippocampal neuronal cells of mice (HT22) when they experience
oxygen and glucose depletion under reperfusion conditions [137].

8.2. Indirect Antioxidant Activity

Some molecular compounds have a role in the redox system. CBD can indirectly
interact with these molecules and play a role in regulating redox balance. Anandamide
(AEA) can be increased due to the effect of CBD on the activity of the endocannabinoid
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system [17]. Since AEA is a fatty acid neurotransmitter, an increase in this substance affects
the interaction between cannabinoids and receptors [138]. Activation or prevention of the
activity of CB1 and CB2 receptors can depend on CBD concentration [139].

9. Hemp Use in Livestock Diet

Much research has been performed on adding hemp to animal feed. In recent years,
attention has been paid to Cannabis sativa use in farm animal diets, especially poultry, due
to its positive effects. It is important to investigate the effects of the different components
of this plant on livestock and poultry in future research.

The results of studies on hemp use in laying hens show (Table 6) that hemp oil and
hempseed are mainly responsible for increasing n-3 PUFA levels in egg yolk.

Table 6. Study results on hemp use in laying hens.

Laying Hens Experiment
Duration Hemp Type and Amount Results Reference

19-week-old
Lohmann

white
6 weeks HO a or HΩ b: 4 or 8%

Significant increase in total n-3 PUFAs c

and a significant reduction in MUFAs d

(both in egg yolks) in all groups
No effect on performance and egg yolk

n-6 PUFAs

[140]

19-week-old Bovan
white 12 weeks HO: 4, 8, 12%

HS e: 10, 20%

20% HS: Significantly increased egg
weight

Significant increase in the total egg yolk
n-3 fatty acid content

No effect on average hen-day egg
production

[107]

30-week-old Bovan
white 19 weeks HSC f: 10, 20, 30%

Significant reduction in body weight in all
treatments

No effect on performance
[141]

30-week-old Bovan
white

3-week
acclimation

phase +
16 weeks

HSC: 10, 20, 30%

Significant increase in egg
PUFAs

No detectable cannabinoid residue level
in eggs, blood, breast meat, body fat, liver,

kidneys and spleen

[142]

Lohmann Brown 12 weeks HS: 3, 6, 9%

3% HS: Significantly increased egg
production and mass

9% HS: Significantly decreased egg shell
thickness

Positive effect on tibia Ca g concentration
Significant decrease in egg yolk

cholesterol Significant increase in
breaking strength of tibia in all groups

[143]

a Hemp oil, b hemp omega, c polyunsaturated fatty acids, d monounsaturated fatty acids, e hempseed, f hempseed
cake, and g calcium.

Table 7 demonstrates hemp use effects on broilers. Bone fractures cause mortality
in intensive poultry farming. It has been shown that Cannabis sativa and its metabolites
increase tibia strength and decrease the deformation rate in broilers and laying hens.



Animals 2022, 12, 2541 13 of 21

Table 7. The impact of Cannabis use on broilers.

Broilers Experiment Duration Hemp Type and Amount Results Reference

1-day-old male
Ross 308

From days 9 to 35
(challenge with

Clostridium perfringens)
HE a: 15 g/kg (12% CBD)

Upregulation in gene expression
involved in gut barrier function

Increase in the activity of gut
bacterial enzyme

[144]

150-day-old
mixed-sex Ross 308 21 days HO or HΩ: 3 or 6%

Significant increase in total n-3
PUFAs in thighs and breasts

Significant reduction in MUFAs in
thighs

No effect on performance and
meat n-6 PUFAs

[140]

1-day-old male
Ross 308 35 days

EF b: 6%
HS: 3, 4, 5%

HS + EF: (3% and 6%,
4% and 6%,
5% and 6%)

HS + EF (4% and 6%): Significantly
increased body weight, decreased
n-6/n-3 fatty acid ratio in breast

meat
HS, HS + EF (40 and 60 g/kg), HS

+ EF (50 and 60 g/kg): Positive
effect on bone strength

[109]

1-day-old male
Ross 308 6 weeks HS: 2.5, 5, 7.5%

DOS c: 0.1%

HS 2.5%: Significant reduction in
average daily feed intake and

ADG d

HS and DOS: No significant effect
on complete blood count, antibody
production and relative weight of

bursa and spleen

[145]

1-day-old
Caribro-Vishal 42 days

HS: 0.2%,
HS + DS e: (0.2% and 0.3)

HS: 0.3%
HS + DS: (0.3% and 0.3)

BMD f:0.025%

Significant reduction in Coliform
count in caecum and jejunum

No effect on performance, jejunal
villus height and crypt depth

[110]

a Hemp extract, b extruded flaxseed, c dextran oligosaccharide, d average daily gain, e dill seed, and f bacitracin
methylene disalicylate.

There are studies regarding Cannabis inclusion in other animal species, as shown
in Table 8. Hemp products increased linoleic and linolenic acids in quail meat and eggs.
Moreover, a higher amount of conjugated fatty acid and PUFAs was observed in goat milk.
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Table 8. The effect of hemp use on different animal species.

Other Species Experiment Duration Hemp Type and Amount Results Reference

7-day-old Japanese
quails 5 weeks HS: 5%, 10%, 20%

20% HS: Significant decrease in
breast meat cooking loss
Significant reduction in

palmitoleic and oleic FAs in breast
meat

Significant increase in meat
linoleic and linolenic acid

[146]

8-week-old laying
quails 6 weeks HS: 5%, 10%, 20%

Significant linear increase in egg
linoleic and linolenic FAs

Significant decrease in egg
palmitoleic and oleic FAs

[146]

Swedish red
dairy cows

5 weeks, 1 week
(pre-experimental

period)

HSC: 14.3,
23.3, 31.8% (dry matter)

14.3% HSC: Higher milk yield
23.3 or 31.8% HSC: No benefits in

milk
performance

[147]

Steers 166 days Full-fat HS: 9 or 14%

Significant increase in CLA a level,
also trans and saturated fats in

tissues
No effect on DMI b, ADG, carcass

traits

[148]

Male Holstein cattle 14 days
IH c: 25 g mixed in 200 g of

grain (target daily dose of 5.5
mg/kg CBDA d)

Significant increase in lying
behavior

Significant decrease in cortisol
level and PGE2

e

[149]

Male Holstein
calves

Single oral dose,
4 days

IH: 35 g (target dose of 5.4
mg/kg CBDA)

No significant changes in serum
parameters [150]

Carpathian goats 31 days HSO f: 93 g/day

Higher milk fat content, increase
in conjugated fatty acid and

PUFAs
No effect on milk yield

[151]

Pregnant sows
10 days (before

farrowing), 21 days
(lactation period)

HS: 2% (10 days)
5% (21 days)

Significant improvement in sows
oxidative status during lactation

Positive effect on antioxidant
enzyme activities (TAC g, NO h)
Significant decrease in plasma

lipid peroxidation until weaning

[152]

a Conjugated linoleic acid, b dry matter intake, c industrial hemp (Cannabis sativa), d cannabidiolic acid, e

prostaglandin E2, f hempseed oil, g total antioxidant capacity, and h nitric oxide production.

Based on the research results of Kleinhenz et al. [149], the biomarkers of inflammation
and stress declined on adding hemp to male Holstein diets (with a target dose of 5.5 mg/kg
CBDA).

There is a gap in the literature on CBD use, specifically in poultry. Since CBD is an
efficient substance in the Cannabis plant, its effects in further studies should be taken into
account.

10. Conclusions

Cannabis has been utilized widely in recent years. Hemp oil, hempseed oil, and
hempseed cake improved performance and bone strength, enriched egg fatty acid profiles,
and increased milk yield in livestock production. CBD use as a non-psychoactive compound
showed promising results in alleviating and preventing pain, oxidation, inflammation, and
anxiety in different species of animals and also in humans. An appropriate method of
extraction for a high level of purity and correct dosage of this substance is important in
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terms of hepatic conditions. Even though CBD has been used in several animal studies, the
absence of research on CBD use in poultry is noticeable. Since welfare is a major concern in
the poultry industry, evaluating the effects of CBD in further research should be considered.
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