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Abstract: Natural products, with their array of structural complexity, diversity, and biological activ-
ity, have inspired generations of chemists and driven the advancement of techniques in their total
syntheses. The field of natural product synthesis continuously evolves through the development of
methodologies to improve stereoselectivity, yield, scalability, substrate scope, late-stage functionaliza-
tion, and/or enable novel reactions. One of the more interesting and unique techniques to emerge
in the last thirty years is the use of chemoenzymatic reactions in the synthesis of natural products.
This review highlights some of the recent examples and progress in the chemoenzymatic synthesis of
natural products from 2019–2022.
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1. Introduction

The biodiversity of organisms from plants to microbes to mammals on Earth has led
to a vast wealth of natural products. Throughout history from ancient civilizations to our
contemporary one, these natural products have been an invaluable source of bioactive
molecules capable of improving their quality of life. Natural products and their derivatives
found success in modern drug discovery for a wide range of disease states ranging from
diabetes and cardiovascular disease to viral infections and inflammatory diseases with
notably high success as antibiotic and anticancer agents [1]. Despite the continued success
of natural products in the clinical setting, the pharmaceutical industry divested resources
from their discovery in the 1990s due to challenges associated with the rediscovery of
known chemical entities, target deconvolution, and resources being allocated to alternative
methods of drug discovery [2,3]. More recently there has been a resurgence in natural
product discovery, structure elucidation, and progression of natural products to the clinic
as a consequence of increased resources and advances in methodologies.

The field of natural product synthesis dates back to 1828, fascinating and inspiring
generations of chemists [2,4]. Natural products are often characterized for their high struc-
tural complexity stemming from an enriched number of stereocenters, sp3 carbons, oxygen
atoms, and rigid carbon skeletons as compared to synthetically designed molecules [1]. The
combination of the rich, diverse, and structurally complex structures of natural products
and the drive, creativity, and talent within the synthetic community makes the synthesis
of natural products one of if not the most important fields for both training chemists and
developing novel synthetic methods [4]. The pursuit of these diverse targets has seen the
field of organic chemistry expand its capabilities in leaps and bounds in areas such as but
not limited to retrosynthetic analysis, stereoselective and regiospecific C-C bond forma-
tions, cascade reactions, orthogonal protecting groups, protecting group free synthesis,
organometallic catalysis, convergent synthesis, atom efficiency, and green chemistry [4]. To
this point, many modern organic techniques have been applied to natural product synthesis.
For example, organometallic mediated C-H activation bond activation chemistry (directed
and non-directed) such as in the synthesis of (−)-epicoccin G and artemisinin [5]. The
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boundaries and application of electrochemical reactions such as decarboxylative couplings
have been extended into to the synthesis of R-(Z)- nerolidol [6]. Photochemical reactions
such as cycloadditions, arene couplings, and C-N bond formations are an emerging method-
ology in the synthesis of natural products such as (−)-pavidolide B, (+)-flavisiamine F, and
(+)-iosocorynantheol [7].

Over the past twenty years, chemists have been going back to nature and its biosyn-
thetic pathways to develop new advantageous bond forming methodologies through
chemoenzymatic syntheses [8–14]. These pioneering scientists have enriched our synthetic
landscape across numerous reaction types such as chiral resolutions (many of the first appli-
cations of chemoenzymatic processes), saponifications, hemiacetal formations, oxidations
and reductions, and C–C bond forming reactions as well as classes of molecules including
glycans, peptides or derivatized amino acids, polyketides, and terpenoids. The benign
nature, stereospecificity, and potential of chemoenzymatic processes has led researchers to
invest heavily in their development.

As chemoenzymatic methods became more widely available and applicable, their ben-
efits to the synthetic communities are greater than just expanded methodologies. Enzyme-
catalyzed reactions incorporate the majority of the twelve principles of green chemistry
that seek to reduce our impact on human health and the environment [15]. Enzymes are
inherently non-toxic and natural (less hazardous chemical synthesis and use of renewable
feedstocks). Their catalytic nature affords reactions that can be run at ambient to slightly el-
evated temperatures in biphasic or completely aqueous media (catalysis, design for energy
efficiency, safer solvents and auxiliaries) and impart regio- and stereoselectivity (atom econ-
omy, waste prevention) [16]. Since chemoenzymatic methods combine high regioselectivity
and stereoselectivity with environmental and cost benefits, they are attractive method for
large scale synthesis and as such have been adopted for the synthesis of several high value
pharmaceutical agents such as sitagliptin, simvastatin, and darunavir [16,17].

The continued application and success of chemoenzymatic syntheses in these settings
has continued to fuel the diversity and pace of research into biocatalytic approaches.
This research has produced advances in the variety and number of chemoenzymatic
processes and increased their capabilities through scalability, multiple enzyme cascades,
and flow processes. The importance of the chemoenzymatic synthesis of natural products
can be seen in the explosion of recent syntheses and review articles highlighting their
accomplishments [11,18–30]. This report is organized by classification of molecule and
aims to highlight the diversity and power of this field through selected chemoenzymatic
syntheses of natural products from 2019–2022.

2. Selected Natural Product Syntheses Incorporating Chemoenzymatic Methods
2.1. Terpenoids

One of the principal scientists featured throughout this review, Hans Renata, pushes
the boundaries of the utility and elegance of chemoenzymatic synthesis across multiple
complex classes of molecules. The work of the Renata group is often impressive in its
nuanced design which is integrated within traditional synthetic sequences [20,22,23,31–33].
In a recent paper they disclosed the synthesis of chrodrimanin C (3), verruculide A, and
polysin using multiple chemoenzymatic steps (Scheme 1) [33]. A key step featured in these
syntheses is an enzymatic hydroxylation of a 6,6,5 or 6,6,6, steroid core, intermediate 1 in the
case of chrodrimanin C (3). These reactions were performed on gram scale, 67 & 83% yields,
depending on starting material, selectivity for oxidation of a single methylene despite
the presence of 6 or 7 other oxidizable methylene groups, and with enantioselectivity of
course. This scale is an impressive feature for chemoenzymatic methods, considering the
importance of this feature for transformations in total synthesis.
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Allemann and coworkers [35. Noteworthy is that the scope of starting material, enzymatic 
variance, and enzymatic combinations, as many as four enzymes total, all within a OPME 
framework to generate simple but highly varied triterpenoids. The enzymatic transfor-
mations utilized include monophosphorylation by EcTHIM, diphosphorylation by 
MjIPK, synthesis of natural and unnatural farnesyl diphosphosphates by GsFDPS, and 
cyclization and/or bicyclization using a variety of enzymes. Pyruvate kinase (PK) acts as 
a supplementary enzyme to replenish the ATP substrate pool throughout the phosphory-
lation reactions. Seven sesquiterpenoid compounds, many first reported in this study, and 
the antibacterial/antifungal (S)-germacrene D (8) are synthesized. Prenol (6) and isoprenol 
(7) were mixed in a 1:2 ratio with EcTHIM, MjIPK, PK, GsFDPS, and ScGDS to yield ger-
macrene D (Scheme 3). Advantages of their methodology include using less expensive 4- 
or 5-carbon starting materials and producing both natural and unnatural products in a 
modular fashion on a milligram scale. 

Scheme 1. Selective chemoenzymatic hydroxylation towards the synthesis of chrodrimanin C (3) [32].

Tang and co-workers’ synthesis of the bicyclic terpenoid nepetalactolone, the active
molecule in catnip and a natural insect repellent, features a one-pot multienzyme (OPME)
system that is stereoselective setting three contiguous stereocenters while utilizing geraniol
(4) as a precursor (Scheme 2). [34]. This synthesis features a ten-enzyme cascade, half
of which are necessary to perform the requisite biosynthetic steps, and half of which are
required for auxiliary needs or cofactor regeneration. The chemical steps performed by
the enzymes are allylic hydroxylation, alcohol oxidation, aldehyde reduction, cyclization,
and a hemiacetal oxidation. One of the more elegant aspects of this system is the ability to
perform oxidative and reductive steps in the same pot, with the same NAD/NADH system.
Although the experiments were run on a small scale, the yields are excellent (93%) with
potential to produce approximately 1 g nepetalactone per liter of solution at a reasonable
cost (<$120/g).
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Scheme 2. One-pot multienzyme cascade synthesis of nepetalactone (5) from geraniol (4) [34].

A novel method using an OPME cascade of enzymatic reactions to synthesize triter-
penes of highly varied structures, including cyclized variants was recently reported by
Allemann and coworkers [35]. Noteworthy is that the scope of starting material, enzy-
matic variance, and enzymatic combinations, as many as four enzymes total, all within
a OPME framework to generate simple but highly varied triterpenoids. The enzymatic
transformations utilized include monophosphorylation by EcTHIM, diphosphorylation
by MjIPK, synthesis of natural and unnatural farnesyl diphosphosphates by GsFDPS, and
cyclization and/or bicyclization using a variety of enzymes. Pyruvate kinase (PK) acts as
a supplementary enzyme to replenish the ATP substrate pool throughout the phospho-
rylation reactions. Seven sesquiterpenoid compounds, many first reported in this study,
and the antibacterial/antifungal (S)-germacrene D (8) are synthesized. Prenol (6) and
isoprenol (7) were mixed in a 1:2 ratio with EcTHIM, MjIPK, PK, GsFDPS, and ScGDS
to yield germacrene D (Scheme 3). Advantages of their methodology include using less
expensive 4- or 5-carbon starting materials and producing both natural and unnatural
products in a modular fashion on a milligram scale.
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2.2. Polyketides

The area of chemoenzymatic synthesis to produce polyketide natural product targets
is so critical that it can be said that it is the driver of advancements in the field as a
whole. Alison Narayan and David Sherman have been and will continue to build on
their pioneering work [14,18,26,28,36–40]. The importance of these two scientists to the
field is evidenced by the previous coverage in the literature, including other reviews.
Therefore, this work will not include it but allow for interested readers to explore it within
these references.

Stereoselective reductions of simple organic moieties are an easy way to introduce
stereocenters: if it can be done. To afford the desired diol products selectively, Husain et al.
have applied the use of T4HNR to reduce ketones and enols selectively in naphthol systems
(Scheme 4a) [41]. Intriguingly this process reacts very differently with 2-hydroxy and
3-hydroxyjuglone starting materials. The phenol orients the molecule within the enzyme
active site to provide the selectivity for the adjacent ketone to be reduced. While exhibiting
a high level of selectivity, the reduction of 3-hydroxyjuglone affords an 82:18 d.r. for 10a and
10b which is comparatively modest for an enzymatic transformation. Building off this initial
strategy, the Husain group recently reported the small-scale synthesis (R)-scytalone (12)
from simple accessible starting materials using the anthrole reductase ARti-2 and a NADPH
cofactor (Scheme 4b) [42]. Notable about this chemoenzymatic transformation is that
scytalone, generated by the desymmetrization of a perfectly flat tetrahydroxynaphtalene
in a stereoselective fashion, also includes another phenol, which is oxidized to a ketone.
Despite a small scale and modest yield (23%), the selectivity was >99% for the observed
stereoisomer is exceptional.
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Husain and coworkers continued studies utilizing a system of T4HNR, NADPH,
and glucose with GDH to synthesize polyketide natural products in the nodulone family
(Scheme 5) [43]. The synthesis of both nodulone C (14) and an unnatural diastereomer of
nodulone D are featured. In the case of nodulone D, two stereocenters were set with near
perfect d.r. Their ability to doubly hydrogenate the hydroxynapthoquinone selectively,
while leaving a benzylic ketone untouched, would be difficult to duplicate using tradi-
tional synthetic organic techniques as overreduction would be facile. In nodulone C they
once more selectively reduced a hydroxynaphthalene to a phenol, enacting a single enol
reduction in a naphthalene with three hydroxy groups selectively in an excellent 90% yield.
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A recent synthesis of fasamycin A (6) from the precursor naphthacemycin B1, utilizing
a highly unusual enzymatic halogenation, was recently reported by the Renata group
(Scheme 6) [33]. The report involved a convergent synthesis that culminated with a
halogenation via a chemoenzymatic system that contained a flavin-dependent halogenase,
CtcQ as a reductase, Opt13 to regenerate NADH, and NADH/NADPH. The success of
the synthesis hinges on a single halogenation of a polyphenol (15), at a specific site, with
regioselectivity to afford the product in 5% yield. There are 4 rings in precursor (15) which
could be halogenated, two of which are almost identical electronically and sterically making
the regioselectivity achieved even more impressive. The author notes that low yield has
been previously reported with halogenases and that enzyme engineering may assist with
the issue. Progress in the area of halogenases as a whole will allow this methodology to be
used by the broader synthetic community.
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2.3. Glycans

Glycans are a diverse set of natural products whose size and purpose vary greatly.
The range in size from small monosaccharides to enormous polysaccharides possessing
hundreds of glycan units correlates with their variety of biological targets and purposes
of sugars. Given their versatility, they are used in multiple fields such as food chemistry,
medicinal chemistry, and investigations of fundamental biological processes [44–53].
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The Chen group has continued their focused efforts to improve synthetic routes to
create structurally diverse libraries of gangliosides, specifically GM3 (19) [54]. Comprised
of glycan and lipid moieties, GM3 has been implicated as a risk factor in metabolic diseases
as well as placed on a prioritized cancer antigen list. An OPME strategy was employed to
install sialic acid variants on lactosyl sphingosine (LacbSph) followed by subsequent acyla-
tion of a fatty acyl chain to form multiple GM3bSph gangliosides (Scheme 7). The six sialic
acid variants (ManNAc) were attached to LacbSph forming the GM3 sphingosines in high
yields (85–95%) utilizing a OPME approach containing three enzymes, including PmNanA
(P. multocida sialic acid aldolase), NmCSS (N. meningitis CMP-sialic acid synthetase), and
PmST3 (P. multocida a2-3 sialyltransferase). Subsequent acylation with stearoyl chloride
(98–100%) or alternate fatty acyl chains (98–100%) produced ten GM3 gangliosides. Advan-
tages of the synthetic strategy include gram-scale production of LacbSph from an L-serine
derivative with minimal purification and efficient mg scale (average 25 mg) production of
diverse GM3 gangliosides with fluorine, azide, and diazirine sialic acid derivatives.
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Glycosphingolipids (GSLs) comprised of a glycan and ceramide component are a major
component of the cell membrane and are notable signaling molecules essential to numerous
biological processes and diseases. Future studies related to mechanisms of these processes,
diseases, and applications are contingent on the ready availability of pure and structurally
characterized GSLs. To meet this need, the Guo group envisioned a diversity-oriented strat-
egy involving chemoenzymatic glycan synthesis in conjunction with the chemoselective
modification of the sphingolipid chain [55]. A series of eight natural and non-natural GSLs
were synthesized including Gb3 (22), Gb4 (24), GM3, and GD3, all of which are known
cancer biomarkers. The synthesis of Gb 3 starts with the core intermediate of the strategy
being diversified enzymatically by adding Gal using an α-1,4-galactosyltransferase to form
the trisaccharide (21). The trisaccharide is the chemically modified via a Grubbs-Hoveyda-
II catalyzed cross metathesis, Boc removal, and amide formation via an acyl chloride to
cleanly yield the fully elaborated GSL Gb3 (Scheme 8). The strength of this strategy is its
readily amenable to other targets with the same core intermediate and route/steps being
utilized with an extra enzymatic step to further diversify the glycan with GalNAc to a
tetrasaccharide (23) before the chemoselective transformations to yield Gb4 (24).
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Glycopeptides are another class of glycan-based molecules that have implications
in normal cellular signaling and disease progression. Again, a major issue with conduct-
ing proper studies to understand the biological underpinnings of these molecules is the
difficulty of obtain sufficient quantities of pure homogeneous samples. The Li group de-
vised a robust streamlined chemoenzymatic approach to the synthesis of 16 well-defined
SARS-CoV-2 O-glycopeptides, 4 complex MUC1 glycopeptides, and a 31-mer glycosylated
glucagon-like peptide-1 [56]. Using the SARS-CoV-2 O-glycopeptides as an example, the
authors utilized a combination of liquid-phase peptide synthesis (LPPS) and chemoenzy-
matic glycan synthesis (Scheme 9). First the authors used LPPS to build the core 9mer
peptide on a 105 mg scale. This was an efficient process using only 1.2 equivalents of amino
acid and coupling reagents and leveraging a hydrophobic tag for quick purification by
centrifugation and removal of supernatant liquid. Once the 9mer was constructed with
the first glycan unit (GalNAc) attached to the T residue a 2-step global deprotection of
all sugar, amino acid protecting groups, and the hydrophobic tag yielded the clean core
glycosylated peptide. Enzymatic diversification of the GalNAc moiety through the use of
varying combinations and orders of glycosyltransferases including C1GalT1, ST6GalNAc1,
ST6Gal1, Pd2, 6ST, ST3Gal1, ST3Gal4, GCNT1, B4GalT1 allowed for the formation a and
b glycosidic bonds at varying positions with varying substrates to quickly form highly
complex glycans highlights the power of this technique.
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2.4. Peptides and Amino Acids

Peptide and amino acid-based natural products have been some of the most versatile
and important natural products used in the clinical setting including molecules such as
Vancomycin and Insulin [57]. As such, there is a rich library of literature involving their
syntheses and specifically their chemoenzymatic syntheses [58].

An area which has been developing recently in chemoenzymatic synthesis is the use of
enzymes to create stereocenters in small molecules which can be used as a new “chiral pool”
to work from towards natural product synthesis. Commonly this is done by dynamic kinetic
resolution (DYKAT) or by enzymatic reductions to make enantiomerically enriched alcohols.
A recent Renata publication in this area showcases this trend by performing a DYKAT,
completed by an enantioselective reductive amination to set two stereocenters: one which
was epimerized, one which was generated by the reduction [31]. This reductive amination
is actually a transamination from sacrificial glutamine. The scope of this DYKAT was shown
through 25 molecules with varying aryl substitutions, one of which was elaborated over
four steps to complete the first synthesis of jomthonic acid (Scheme 10) (30). Significantly,
a scaleup to a half gram with >20:1 d.r. was shown by the authors.
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Bruner and coworkers disclosed a recent strategy to synthesize deacetylated mi-
croviridin J (32) and explore the activity of engineered enzymes MdnB and MdnC, which
perform the tricyclization of the 13mer MdnA core peptide sequence (Scheme 11) [59].
Fusion expression constructs were engineered with the MdnA leader peptides crosslinked
to both MdnB and MdnC, using varying lengths of glycine/serine linkers (GSn, n = 5,
10 & 15). This strategy allows for cyclizing just the synthetically produced core 13mer
MdnA since the 36 AA leader sequence is already in place on MdnB and C rendering them
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constitutively active. Upon incubation of these various engineered enzymes with the core
peptide, it was found that GSn n = 10 & 15 provided the necessary length and flexibility for
efficient tricyclization to deacetylated microviridin J. This strategy is an excellent example
of engineering and expressing the necessary enzymes for complex macrocyclizations that
allowed for a much simpler synthesis of the 13mer core protein versus the endogenously
expressed 39 AA leader and core peptide.
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croviridin J (32) [59].

In planta syntheses of moroidin (33, previously unsynthesized), and celogentin C (34,
previously synthesized in 23 steps) were recently reported by the Weng group (Figure 1) [60].
Intriguingly, they did this by cloning a gene from K. Japonica, the predicted precursor gene
for Moroidin, and then expressing it in tobacco. They were able to then grow the to-
bacco with this newly inserted gene, and modified versions thereof, to produce different
extractable natural products on the ~10 mg scale. The only synthetic organic chemistry
performed during this synthesis was by the plant itself—enforced by the cloned gene.
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Figure 1. Structures of the peptide-based moroidin (33) and celogentin C (34) synthesized in
planta [60].

2.5. Alkaloids

Alkaloid natural products have a rich history as both biologically active molecules
and synthetic targets. This class of molecules has also proven to be a remarkable boon
for chemoenzymatic syntheses [61,62]. Several syntheses are highlighted here to give
exemplars of the diversity of molecule structure and enzymatic reaction. However, as there
is not enough space in this report for a thorough coverage of the breadth of the syntheses,
an alkaloid specific review can be found in by Cigan et al. [27].
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Taday et al. published a hybrid bio-organocatalytic approach to the synthesis of the
small piperidine-based natural product pelletierene (Scheme 12) (37) [63]. This work built
upon a previously reported elegant one-pot 2-biocatalytic step approach to norsedaminone
that utilized cadaverine, a transaminase, CalB, and a decarboxylative Mannich reaction to
synthesize 14 different alkaloids but was unable to synthesize pelletierene [64]. The authors
developed a system where transaminase ATA256 generated the reactive imine intermediate
(36) with acetone playing the dual role as the nitrogen acceptor in this biocatalytic step as
well as the nucleophile in the subsequent organocatalyzed Mannich reaction to yield the
desired pelletierene. This system was optimized to produce pelletierene in 60% yield with
85 mg isolated. The only weakness of the system is the natural product was isolated as the
racemate despite using D- or L-proline in the system. Based upon the lack of difference in
ee for the proline isomers, the authors conclude this was most likely due the piperidine
racemizing after the reaction [65]. The authors have established a sound system and now
are looking to expand the scope of hybrid bio-organocatalytic approaches and further
optimize their system to an in vivo model.
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Indole containing alkaloids are abundant throughout nature and often serve as biolog-
ically relevant scaffolds. As such there has been an exciting recent push into the utilization
of Pictet-Spangelrases for the synthesis of natural products. The Kroutil group published
a concise 2-step chemoenzymatic synthesis of (R)-harmicine (Scheme 13) (41) [66]. The
authors were exploring the substrate scope for non-natural substrates for strictosidinesyn-
thases (STRs), an important class of Pictect-Spangelerases that could be leveraged for
natural product synthesis. Four STRs from different organisms were cloned and expressed
in E. coli. The best result was obtained by deleting the signal peptide and adding an
N-terminal His-tag. Utilizing the STR from Rauvolfia serpentina, tryptamine (38) and methyl-
4-oxobuta-noate (39) were enzymatically condensed with concomitant cyclization to form
product (40) in 67% yield with >98% ee on 75 mg scale. Smooth reduction of the carbonyl
yielded the desired (R)-harmicine in a total yield of 62% with >98% ee. This report high-
lights the power of the enzyme via the concise high yielding synthesis as well the potential
for a broad applicability for the future of other targets.
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A 2020 report from the Andrade lab details the first synthesis of the complex bis-
indole (−)-melodinine K (45) via a convergent chemoenzymatic synthesis (Scheme 12) [67].
The authors were cognizant of both the efficiency and sustainability of this synthesis and
thoughtfully devised their scheme based on the isolation of 1.6 g complex biosynthetic
precursor (−)-tabersonine (42) from V. africana seeds (Scheme 14). Beyond the isolation
of the carbon skeleton, a critical biotransformation of (−)-tabersonine (42) was employed
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utilizing the cytochrome P450 monooxygenase tabersonine 16-hydroxylase (T16H) [68,69].
A modified yeast strain, Saccharomyces cerevisiae (WAT11 strain) was engineered, and the
reaction conditions optimized to allow the site-selective oxidation of (−)-tabersonine (42)
to (−)-16-hydroxytabersonine (43) in 64% yield on the gram scale. (−)-Tabersonine (42) is
converted to activated epoxide (44) in four steps, followed by dimerization with a modified
(−)-16-hydroxytabersonine intermediate, which underwent two more synthetic steps to
obtain the final product (−)-melodinine K. This synthesis highlights both the power and
efficiency of isolating a complex precursor and the selective and efficient site selective
chemistry of chemoenzymatic syntheses.
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2.6. Miscellaneous

As chemoenzymatic synthesis has expanded, there are many interesting natural prod-
ucts and syntheses that fall into molecule classes outside of those listed above that are
noteworthy and deserve highlighted in this report.

Prostaglandins (PGs) are lipid-based hormone-like signaling molecules that play
multiple functions in humans and several such as cloprostenol (50) and bimatoprost (51)
are marketed drugs for veterinary purposes and antiglaucoma treatment, respectively. The
Chen lab devised a divergent flow-based chemoenzymatic synthesis capable of producing
both cloprostenol and bimatoprost and three other PGs [70]. This synthesis a powerful
combination of synthesis, biocatalaysis and flow chemistry that utilizes 11–12 steps from
a common starting material to synthesize five high value PGs (Scheme 15). The strategy
is highlighted chemoenzymatically by a novel stereoselective oxidation to lactone 47 in
99% ee by a Baeyer-Villager monooxygenase (BVMO) and a diastereoselective reduction
in 87:13 to 99:1 d.r. by a ketoreductase (KRED) to alcohol 49. From here three synthetic
transformations yield the desired prostaglandins. The authors have demonstrated two
unique biotransformations that are responsible for setting stereocenters with high ee and
d.r., respectively.

The synthesis of sorbicillins requires a dearomatization to afford a sensitive, cyclo-
hexadienone diol. This challenging transformation has been implemented by Gulder
and coworkers, using a SorbC monooxygenase enzyme, in order to afford sorbicillinoids
which could then be elaborated to natural products including Saturnispol C (54), D, and
Trichosorbicillin A (Scheme 16) [71]. Interestingly enough, the only requisite reaction to
afford these three natural products was a Diels-Alder reaction, which was facile using the
electron rich cyclic diene afforded by the dearomative hydroxylation of the enzyme under
atmospheric conditions. One limitation of this report is potential scalability; reactions were
below 0.15 mmol scale, though it is not clear whether this due to cost or a true limitation.
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Scheme 16. Stereoselective chemoenzymatic oxidation towards the synthesis of saturnispol C
(54) [71].

The conversion of abundant natural compounds to other high-value natural products
is a valuable path towards synthesizing them. Hydroxytyrosol (56) is a sought-after
antioxidant with a high scale of demand and a deceptively simple chemical structure.
Recently several patents and papers have been published for the synthesis of this compound
among others, many of which are chemoenzymatic syntheses [72–74]. One such report by
Pinto et al. leverages 10–20% of the mass of dry olive leaves isolated as intermediate 55 to
form hydroxytyrosol (56), a potentially useful antioxidant compound (Scheme 17a) [75].
This is performed by sequential enzymatic hydrolysis of a hemiacetal moiety and an ester
moiety using a glucosidase and an acyl transferase acting as an esterase.

As an alternative strategy, Pinto et al. published a constant-flow chemoenzymatic
synthesis of hydroxytyrosol. Their method was to oxidize tyrosol (57) aerobically in the
presence of a tyrosinase from Agaricus bisporus, in an ascorbic acid/phosphate buffer
(Scheme 17b) [76]. Although unable to obtain complete conversions, they were able to
design a facile flow-based separation method to afford pure hydroxytyrosol. The authors
also demonstrated a flow-based chemoenzymatic acylation of tyrosol and hydroxytyrosol
using sacrificial ethyl acetate, catalyzed by an immobilized acyl transferase MsAcT. A
current limitation of this is scale: the maximum 0.25 mL/min flow rates were limited the
yields obtainable in a 24 h period. This marriage of two frontier tactics in organic synthesis,
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flow and chemoenzymatic synthesis, is impressive. It is also an elegant solution to one of
the classic issues of chemoenzymatic syntheses: low concentrations are common, which
means it is difficult to make large amounts of material. Automated flow syntheses mostly
sidestep this issue as the product is made without human involvement, and generally at a
rate exceeding that of simply scaling batches.
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3. Conclusions

Natural products continue to fascinate and inspire isolation, synthetic, and bioorganic
chemists with their rich library of molecular complexity and biological applications. Push-
ing the boundaries of synthetic chemistry and biochemistry by using chemoenzymatic
syntheses to create these molecules has become a field on to itself. As is the case in reaction
methodology-based fields of synthetic chemistry, progress is achieved in incremental steps
through the pioneering work of many scientists. Often the first efforts are accomplishments
that have limitation in yield, scale, or substrate scope, but the ingenuity and persistence of
researchers continues to advance the field. The discovery of new enzymes/reactions, im-
provement of yields and stereospecificity, and engineering of systems that utilize multiple
enzymes, flow chemistry, and other emerging technologies is a testament to the talented
scientists working in the field of chemoenzymatic synthesis of natural products. The
molecular diversity and breadth of molecule classes to which chemoenzymatic synthesis
is applied, as highlighted in this report, is truly remarkable and we look forward to the
evolution and expansion of work in this area in the coming years.
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