
Frontiers in Oncology | www.frontiersin.org

Edited by:
Mylene Truong,

University of Texas MD Anderson
Cancer Center, United States

Reviewed by:
Massimo Galia,

University of Palermo, Italy
Guolin Ma,

China-Japan Friendship Hospital,
China

*Correspondence:
Liqing Peng

pengliqing@wchscu.cn

†These authors have contributed
equally to this work and share

first authorship

Specialty section:
This article was submitted to

Thoracic Oncology,
a section of the journal
Frontiers in Oncology

Received: 05 February 2022
Accepted: 11 April 2022
Published: 13 May 2022

Citation:
He W, Xia C, Chen X, Yu J, Liu J, Pu H,
Li X, Liu S, Chen X and Peng L (2022)

Computed Tomography-Based
Radiomics for Differentiation of Thymic

Epithelial Tumors and Lymphomas
in Anterior Mediastinum.
Front. Oncol. 12:869982.

doi: 10.3389/fonc.2022.869982

ORIGINAL RESEARCH
published: 13 May 2022

doi: 10.3389/fonc.2022.869982
Computed Tomography-Based
Radiomics for Differentiation of
Thymic Epithelial Tumors and
Lymphomas in Anterior Mediastinum
Wenzhang He1†, Chunchao Xia1†, Xiaoyi Chen1, Jianqun Yu1, Jing Liu1, Huaxia Pu1,
Xue Li1, Shengmei Liu1, Xinyue Chen2 and Liqing Peng1*

1 Department of Radiology, West China Hospital, Sichuan University, Chengdu, China, 2 Computed Tomography (CT)
Collaboration, Siemens Healthineers, Chengdu, China

Objective: To investigate the differential diagnostic performance of computed
tomography (CT)-based radiomics in thymic epithelial tumors (TETs) and lymphomas in
anterior mediastinum.

Methods: There were 149 patients with TETs and 93 patients with lymphomas enrolled.
These patients were assigned to a training set (n = 171) and an external validation set (n = 71).
Dedicated radiomics prototype software was used to segment lesions on preoperative chest
enhanced CT images and extract features. The multivariable logistic regression algorithm was
used to construct three models according to clinico-radiologic features, radiomics features,
and combined features, respectively. Performance of the three models was compared by
using the area under the receiver operating characteristic curves (AUCs). Decision curve
analysis was used to evaluate clinical utility of the three models.

Results: For clinico-radiologic model, radiomics signature model, and combined model,
the AUCs were 0.860, 0.965, 0.975 and 0.843, 0.961, 0.955 in the training cohort and the
test cohort, respectively (all P<0.05). The accuracies of each model were 0.836, 0.895,
0.918 and 0.845, 0.901, 0.859 in the two cohorts, respectively (all P<0.05). Compared
with the clinico-radiologic model, better diagnostic performances were found in the
radiomics signature model and the combined model.

Conclusions: Radiomics signature model and combined model exhibit outstanding and
comparable differential diagnostic performances between TETs and lymphomas. The CT-
based radiomics analysis might serve as an effective tool for accurately differentiating TETs
from lymphomas before treatment.
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INTRODUCTION

Thymic epithelial tumors (TETs), including thymomas and
thymic carcinomas, are derived from thymic epithelial cells
and are relatively rare mediastinal tumors (1). Lymphoma is
divided into Hodgkin’s lymphoma and non-Hodgkin’s
lymphoma (2). It is a serious malignant tumor derived from
the lymphatic system, accounting for 3.2% of newly diagnosed
neoplasms and 2.9% of cancer-specific mortality in China in
2018 (3). The difference is that anterior mediastinum is not a
common primary site of lymphoma, but a common site of
TETs (4).

For TETs, even the well-differentiated thymoma subtypes are
considered to be malignant tumors with indolent growth, they
also show potential for local invasion, pleural dissemination, and
even distant metastasis. Therefore, once TETs are detected,
surgical treatment is the mainstay treatment, and radiotherapy,
chemotherapy, and other adjuvant treatments are usually
supplements depending on final pathology and clinical stage
according to relating treatment guidelines (5, 6). On the
contrary, radiotherapy and chemotherapy are the first-line
options for the treatment of lymphoma while surgical
treatment is not recommended according to treatment
guidelines for malignant lymphoma in 2021 in China (2, 7).

TETs and lymphomas in anterior mediastinum usually
manifest as soft-tissue masses or nodules with similar imaging
features (8). In clinical practice, based on typical clinical
manifestations and traditional imaging findings, such as with or
without myasthenia gravis, age of onset, lymphadenopathy, and
imaging features, partial patients could be accurately diagnosed
(9). However, the preoperative accurate diagnosis of the two types
of neoplasms is usually influenced by the overlap of clinical and
radiologic manifestations, the heterogeneity of disease
manifestations and difficulty to obtain pathological tissues due
to the complexity of the anterior mediastinum. Based on previous
computed tomography (CT)-based routine preoperative
examinations, although preoperative biopsy is recommended,
non-essential or non-therapeutic thymectomy is not
uncommon for patients with anterior mediastinal space-
occupying lesions (4, 6).

Therefore, it is of great value to distinguish TETs and
lymphomas non-invasively before management. Recently,
radiomics with machine learning algorithms to mine high-
dimensional invisible and interpretable image information into
objective and quantitative mathematical data has been an
established tool in the differential diagnosis of nodules/masses,
prediction of tumor pathological subtypes, evaluation of disease
sensitivity to treatment (10–14). According to the literature,
there were only a few radiomics-based studies on anterior
mediastinal diseases, especially TETs (11, 15). Some previous
studies have verified that radiomics could be used for the grading
of TETs and the diagnosis of partial anterior mediastinal nodules
or masses (11, 15, 16). CT is commonly used in the diagnosis of
chest diseases. Compared with traditional CT examination and
clinical data, radiomics features extracted from CT images could
provide more diagnostic information. Therefore, patients of
lymphoma with atypical clinical and radiologic manifestations
Frontiers in Oncology | www.frontiersin.org 2
may avoid unnecessary surgery and receive effective
treatment earlier.

Thus, we aimed to investigate the differential diagnostic
performance of CT-based radiomics in thymic epithelial
tumors (TETs) and lymphomas in anterior mediastinum.
MATERIALS AND METHODS

Subjects
The ethics committee of the participating center approved the
study. The need for informed patient consent was waived
because of the retrospective nature of the analysis and the use
of anonymized data.

An author collected hospitalized patients diagnosed with TETs
(including thymoma, thymic carcinoma) and lymphoma within
the time range of October 2008 to March 2021 from the
information management department of West China Hospital.
A total of 852 patients were found, of which 332 had TETs and 520
had lymphomas. The author queried the patient’s pathological
data from the Electronic Medical Records and searched for
patients’ chest enhanced computed tomography (CECT) images
in DICOM format in the Picture Archiving and Communication
System, and the time of CT examination was within 30 days before
the patient’s pathological samples were obtained. Pathological
results came from thoracentesis, lymphadenectomy, or
postoperative tissue. Then pathologically confirmed patients
with CECT images had 195 with lymphomas and 222 with TETs.

Each enrolled patient met the following exclusion criteria.
The exclusion criteria included : 1) age<16 years old, 2) with
intervention before CECT examination, 3) history of malignancy
or concomitant malignancy, 4) inadequate clinical data, 5) TETs
with completely cystic components, and 6) inadequate image
quality. Consequently, 242 patients, including 149 patients with
TETs and 93 patients with lymphomas, consisted of study
cohorts. The patient selection workflow is shown in Figure 1.
Subtype distribution of two tumors is shown in Figure 2.

Clinico-Radiologic Characteristics
For TETs patients and lymphoma patients, the characteristic of
P<0.10 difference between the two groups would be further used
for univariate logistic regression analysis. The univariate analysis
results are shown in Tables 1 and 2. Table 2 showed the clinical
characteristics, including clinical manifestations, symptoms, and
laboratory examination results. Clinical manifestations and
symptoms were collected from the first hospitalization record
in the Hospital Information System by one author. Myasthenia
gravis and autoimmune diseases were counted separately. In
addition, autoimmune diseases including myasthenia gravis,
systemic lupus erythematosus, ankylosing spondylitis, and so
on, were related to thymoma (17). The laboratory results came
from once test obtained before the treatment and within 3 days
of the CT examination.

In PACS, two radiologists (with 5 years and 10 years of
experience with chest CT, respectively) worked together to
analyze radiological characteristics, including morphological
May 2022 | Volume 12 | Article 869982
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related features and some quantifiable features, with the naked
eye in the Picture Archiving and Communication System. When
there was an inconsistency, the two radiologists would reach an
agreement through discussion. Normalized enhancement value
(NEV) was calculated as NEV = EVlesion/EVaorta, where
EVlesion and EVaorta are the CT value difference before and
after enhancement in the largest cross-section of the lesion and
in the lumen of the ascending aorta at the same cross-section.
The CT images used to extract radiomics features and to analysis
by the naked eye came from the same CT examination. When
more than once CT examination was available for radiological
analysis, we selected the last CT examination before surgery
or biopsy.

Chest Enhanced CT Scan
Before CECT images collection, a total of 80–120 mL (1.5 mL/kg)
of iodinated contrast agent was injected via the antecubital vein
at a flow rate of 4 mL/s. CECT scans were obtained at 40 sec after
injection of contrast media. All the CECT images were acquired
Frontiers in Oncology | www.frontiersin.org 3
by standard institutional procedure protocols and stored in
DICOM format. Related parameters are shown in Table 3. In
all patients, CT images were acquired in the supine position at
full inspiration.

ROI Acquisition and Radiomics
Feature Extraction
The CECT images in DICOM format from selected patients were
segmented by using “Radiomics” (Syngo. via Frontier, Vision
1.0.0, Siemens, Germany), a dedicated prototype software, and
this program employs an embedded 3D-printing technique in a
semi-automatic manner to label the preoperative soft tissue. The
overall procedures of this analysis scheme were composed of two
major steps: first, tumor segmentation was conducted manually;
and thereafter, texture features were calculated automatically.
The manual segmentation of neoplasms in the anterior
mediastinum was performed independently by a chest
radiologist. The region of interest (ROI) was depicted around
the border of each tumor (Figure 3). After segmenting a 3-
dimensional volume of interest (3D-VOI), texture features were
automatically calculated and extracted. In addition, another
chest radiologist segmented 30 cases including 15
pathologically proven TETs and 15 lymphomas randomly
selected from all samples to evaluate the inter-operator
variability. Features with intraclass correlation coefficient value
higher than 0.8 were considered stable and used for model
construction. The definition included the following criteria : 1)
calcification, hemorrhage, liquefaction, necrosis, and blood
vessels within the lesion with the largest diameter <2 mm in
the tumor were regarded as components of the lesion, and will be
included ; 2) the soft-tissue boundary avoided surrounding fat,
metal stents, blood, and other structures ; 3) to eliminate partial
volume effect, the outline boundary was ≤1 mm of the lesion, and
the first and last layers of the lesion were removed.

Before performing features calculations, “Radiomics”
automatically resampled the 3D-VOI to a pixel pitch of
1.0 mm in three anatomical directions to reduce the impact of
pixel size and thickness. In the original VOIs, different filters
would be applied, such as the Laplacian of Gaussian filtering,
wavelet filtering, nonlinear intensity transformation, and others.
Finally, 1226 radiomics features were as follows : 1) 17 shape and
FIGURE 2 | Subtype distribution of thymic epithelial tumors and lymphomas.
FIGURE 1 | The patient selection workflow. TETs, thymic epithelial tumors;
CECT, chest enhanced computed tomography.
May 2022 | Volume 12 | Article 869982

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


He et al. Radiomics for Anterior Mediastinal Neoplasms
size features, 2) 18 first-order features, 3) 65 texture features, 4)
1116 high-order features and features that have undergone
multiple mathematical transformations (wavelet, square, square
root, logarithm, and exponents decompositions of first-order
statistics and texture features), were extracted from the original
and post-processed 3D-VOI of every patient.
Feature Selection and Model Building
All patients were first splitted into training cohort and test cohort
with a ratio of 7:3 by using the stratified random sampling
technique: 171 patients (mean age, 43.2 ± 14.8 years; TETs, 105
cases; lymphoma, 66 cases) were allocated into the training
cohort; 71 patients (mean age, 42.7 ± 15.7 years; TETs, 44
cases; lymphoma, 27 cases) were allocated into the test cohort.
Training cohort was used to train the model based on the least
absolute shrinkage and selection operator regression model with
tuned parameter of lambda. Since there was a class imbalance
that might affect the model tuning, synthetic minority over-
sampling technique was applied to the training cohorts before
formal model training. The lambda was tuned across multiple
Frontiers in Oncology | www.frontiersin.org 4
values between 0.01-0.2 and the optimum value was decided
when the model gained the highest AUC by 5 repeats 10-fold
cross-validation. In addition, this performance of optimal setting
was also recorded. Next, the feature importance ranking list was
derived based on this least absolute shrinkage and selection
operator model. Appropriate number of features were selected
on this order of importance to simplify the radiomics
multivariate logistic regression model, based on acceptable
performance relative to the optimal setting.

Regarding the clinical and radiologic features, univariate
logistic regression was applied. In addition, features with
statistical significance (P<0.05) were selected. The features
enrolled in the radiomics and clinico-radiologic model were
the candidates for the combined model. Similarly, those
features with no statistical significance (P≥0.05) in the
combined model were removed to ease the redundancy of
the model.

The performance of the model according to receiver operator
curves (ROC) was evaluated in training and independent test
cohorts, respectively. Besides the diagnostic performance-related
statistics by these two cohorts regarding sensitivity, specificity,
TABLE 1 | Estimated risk of radiologic characteristics by univariate logistic regression analysis.

Variables TETs Lymphomas Estimated risk P valve

Max diameter (cm) 5.2 ± 2.4 9.7 ± 3.0 1.87(1.61-2.22) <0.001
Location

0, central 130 (87.2) 76 (81.7) 1.53(0.74- 0.200
1, peripheral 19 (12.8) 17 (18.3) 3.13)

Morphology

0, regular 48 (32.2) 12 (12.9) 3.21(1.64- 0.001
1, irregular 101 (67.8) 81 (87.1) 6.69)

Fat gap

0, present 43 (28.9) 7 (7.5) 4.98(2.26- <0.001
1, absent 106 (71.1) 86 (92.5) 12.60)

Small vessel

0, absent 93 (62.4) 8 (8.6) 17.6 (8.38- <0.001
1, present 56 (37.6) 85 (91.4) 42.00)

Pericardial effusion

0, absent 138 (92.6) 31 (33.3) 25.1 (12.30- <0.001
1, present 11 (7.4) 62 (66.7) 55.60)

Pleural effusion

0, absent 135 (90.6) 53 (57.0) 7.28 (3.74- <0.001
1, present 14 (9.4) 40 (43.0) 14.90)

Necrosis

0, absent 91 (61.1) 23 (24.7) 4.78 (2.72- <0.001
1, present 58 (38.9) 70 (75.3) 8.62)

Density uniformity

0, uniform 56 (37.6) 16 (17.2) 2.90 (1.57- <0.001
1, nonuniform 93 (62.4) 77 (82.8) 5.59)

Boundary clarity

0, clear 114 (76.5) 19 (20.4) 12.7 (6.88- <0.001
1, vague 35 (23.5) 74 (79.6) 24.40)

CT value (HU) 45.6 ± 11.4 42.2 ± 9.3 0.97 (0.94-0.99) 0.019
NEV 0.119 ± 0.079 0.088 ± 0.055 0.00 (0.00-0.05) 0.001
May 2022 | Volume 12 | Article
Max diameter, The longest diameter in the largest cross-section of the tumor; Location, Peripheral is defined as more than 2/3 of the tumor volume is located on one side of the mid-sternal
line; Morphology, Lesions with round, oval, or rectangular shape are defined as regular morphology; Fat gap, Fat gaps between the nodules/masses and the ascending aorta or main
pulmonary artery; Small vessel, Continuous blood pool enhancement on the chest enhanced CT image; Pericardial effusion (Pleural effusion), CT images show pericardial (pleural)
thickening, pericardial (pleural) effusion, or both; Boundary clarity, Existing fuzzy boundary between the tumor and the surrounding structures, which is defined as unclear boundary; NEV,
Normalized enhancement value.
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and accuracy were illustrated using a confusion matrix. Finally,
decision curve analysis was used to evaluate clinical utility of the
three models in the training cohort. The workflow of this study is
shown in Figure 3.

Statistical Analysis
All statistical analyses were performed using R software (version
1.1.453) and SPSS (version 26, SPSS Chicago, IL). Qualitative
variables were presented as frequencies. Normally distributed
variables were shown as the mean ± SD (standard deviation).
Between TETs and lymphomas (two groups), the clinico-
radiologic characteristics were compared by using the chi-
square test or Fisher’s exact test for categorical variables and
Frontiers in Oncology | www.frontiersin.org 5
independent t-test or the Mann-Whitney U test for continuous
variables. P<0.05 indicated statistical difference. Univariate
logistic regression analysis was performed for those parameters
that showed P<0.10 when compared between two groups. The
results of univariate logistic regression analysis are shown as OR
(95% CI) and P value in Tables 1 and 2. Inter-operator variability
of the radiomics features was assessed with ICC. Interclass
correlation coefficient (≦0.40, poor agreement; 0.41–0.60,
moderate agreement; 0.61–0.80, good agreement; and>0.80,
excellent agreement). The ROCs of the radiomics model in the
two cohorts were compared with the DeLong test to evaluate
whether overfitting occurred. Decision curve analysis was
performed to determine the clinical usefulness of the three
TABLE 3 | Computed tomography image acquisition parameters.

Manufacturers Image extent (pixels) Voxel space (mm) Slice thickness (mm) Voltage (kV) Tube current (mA)

SIEMENS, n=144
PHILIPS, n=65
UIH, n=12
GE, n=21

512×512 Mean ± SD
0.707 ± 0.077
Median 0.702

Range
0.539-0.973

0.7, n= 2; 1.0, n=2
2.0, n=1; 2.5, n=1

5.0, n=220; 7.0, n=5
7.5, n=1; 8.0, n=9

80, n= 2
100, n= 70
120, n=168
140, n=2

Mean ± SD
278.6 ± 100.8
Median 267

Range
79-649
May 2022 | Volume
TABLE 2 | Estimated risk of clinical characteristics by univariate logistic regression analysis.

Variables TETs Lymphomas Estimated risk P valve

Age (years) 50.2 ± 12.4 31.2 ± 10.0 0.88 (0.85-0.91) <0.001
Sex

0, male 73 ± 49.0 42 ± 45.2 1.17 (0.69-1.97) 0.600
1, female 76 ± 51.0 51 ± 54.8

Chest pain

0, absent 121 (81.2) 60 (64.5) 2.38 (1.32-4.32) 0.004
1, present 28 (18.8) 33 (35.5)

Respiratory symptom

0, absent 105 (70.5) 31 (33.3) 5.10 (2.93-9.07) <0.001
1, present 44 (29.5) 62 (66.7)

B symptom

0, absent 132 (88.6) 77 (82.8) 1.61(0.77-3.39) 0.200
1, present 17 (11.4) 16 (17.2)

Lymphadenopathy

0, absent 148 (99.3) 76 (81.7) 33.1(6.61-602.00) <0.001
1, present 1 (0.7) 17 (18.3)

Myasthenia gravis

0, absent 110 (73.8) 92 (98.9) 0.03 (0.00-0.15) <0.001
1, present 39 (26.2) 1 (1.1)

Autoimmune disease

0, absent 106 (71.1) 91 (97.8) 0.05 (0.01-0.18) <0.001
1, present 43 (28.9) 2 (2.2)

Red blood cell count
(×1012/L)

4.6 ± 0.7 4.6 ± 0.6 0.93 (0.61-1.42) 0.700

Leukocyte count
(×109/L)

6.5 ± 2.6 14.9 ± 43.7 1.00 (0.99-1.00) 0.056

Lymphocyte count
(×109/L)

1.8 ± 0.7 1.3 ± 1.1 0.39 (0.25-0.59) <0.001

Platelet count
(×109/L)

187.8 ± 70.0 290.0 ± 123.3 1.01 (1.01-1.02) <0.001

Lactate dehydrogenase
(IU/L)

163.5 ± 40.2 437.0 ± 385.2 1.02 (1.02-1.03) <0.001
12 | Article
B symptoms is defined as the patient manifests at least one of the following three symptoms: 1) unexplained fever ＞38℃, 2) night sweats , 3) weight loss more than 10% within 6 months
respiratory symptom including cough, wheezing, expectoration, chest tightness, and hemoptysis; lymphadenopathy, lymphadenopathy at physical examination.
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models by calculating the net benefits at different threshold
probabilities in the whole cohort. The net benefit is equivalent
to the proportion of net true positives in brief.
RESULTS

Basic Clinico-Radiologic Characteristics
Of the 242 patients, 149 patients were diagnosed with TETs and
93 patients with lymphomas. Compared with patients with
lymphoma, patients with TETs had a later age of onset
(P<0.001) and showed less chest pain (P=0.004), respiratory
symptoms (P<0.001), and lymphadenopathy (P<0.001).
Regarding gender distribution and B symptoms, no significant
differences were found between the two groups (P=0.600, 0.200,
respectively). In laboratory tests, compared with lymphoma
patients, TETs patients had higher lymphocyte counts
(P<0.001), lower platelet counts (P<0.001), and lower lactate
dehydrogenase (P<0.001), while red blood cell counts and white
cell counts showed no significant difference (P=0.700, P=0.056,
respectively). Details of the demographical data and clinical
characteristics of the training and test cohorts are summarized
in Table 2.

For comparison of the radiologic features in TETs and
lymphoma, there was no significant difference about location
distribution between the two groups (P=0.200). The TETs group
had a smaller tumor diameter than the lymphoma group
(P<0.001), but higher CT value and NEV (P<0.001, P=0.001,
respectively). Compared with the lymphoma group, more
obvious fat gap between the lesion and big vessels (pulmonary
trunk and ascending aorta), less pleural and pericardial effusion
existed in the TETs group (all P<0.001). Less necrosis, better
density uniformity, and clearer boundary of lesions were found
in the TETs group (all P<0.001) than the lymphoma group. More
comprehensive information is listed in Table 1.
Frontiers in Oncology | www.frontiersin.org 6
Model Building
Among 242 patients in our study, 171 patients were allocated
into the training cohort, while 71 patients were in the test cohort.
A total of 385 radiomics features were shown to be stable (good
and excellent agreement), including 17 shape and size features,
13 first-order features, 34 texture features, and 321 high-order
features and features that have undergone multiple mathematical
transformations. After SMOTE, the training cohort was up-
sampled to the number of 462 with a class ratio of 264:198 for
TETs:lymphoma. An AUC of 0.981 (95% CI: 0.971–0.991)
suggested that there was no significant affect toward the model
tuning from the imbalance between the patient groups in our
study. After the tuning process, the optima Lambda was set to be
0.01 for our dataset. The mean AUC for each lambda tuned with
our resample by 5-repeated 10-fold cross-validation is shown in
Figure 4A. In addition, the optimal AUC was reached beyond
0.9. For each tuned lambda, the coefficients of the features are
shown in Figure 4B. Moreover, the importance ranking list
based on the model is shown in Figure 4C.

In our study, the regression model with the top 5 features on
the order of importance gave us acceptance AUC relative to the
optimal setting. Moreover, these five radiomics features by 3D
texture analysis in original images included three shape-related
features, one first order related feature, and one feature about
gray level size zone matrix (GLSZM). Three shape-related
features included maximum 2D diameter slice, compactness 1,
and spherical disproportion. Minimum as a first-order feature
represented minimum eigenvalue and size zone nonuniformity
normalized was a feature calculated from GLSZM. Three clinico-
radiologic characteristics, including lymphadenopathy (+/-),
myasthenia gravis (+/-), and pericardial effusion (+/-),
constituted the clinico-radiologic model. For the final
combined model, all the features in the radiomics and clinico-
radiologic models were enrolled except lymphadenopathy (+/-)
which was removed as redundant.
FIGURE 3 | Workflow diagram of radiomics analysis. 3D-VOI, 3-dimensional volume of interest.
May 2022 | Volume 12 | Article 869982
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Model Validation and Comparison
The ROC results of three models are shown in Table 4 and
Figure 5. The performance of the radiomics model was good in
the training group with an AUC of 0.965 (95% CI: 0.941-0.990).
The classification accuracy, sensitivity, and specificity were
89.5%, 83.3%, and 93.3%, respectively. Good performance was
also observed in the test group with AUC being 0.961 (95% CI:
0.917–1.00). The accuracy, sensitivity, and specificity were
90.1%, 92.6%, and 88.6%, respectively. For the clinico-
radiologic model, all performance metrics were lower than that
of the radiomics model excluding specificity. The AUCs were
0.860 (95% CI: 0.808–0.913) and 0.843 (95% CI: 0.759–0.928) in
the training group and test group, respectively. The classification
accuracies were 83.6% and 84.5% in the 2 groups, respectively.

In the combined model, AUCs in the training group and
independent test group were 0.975 (95% CI: 0.956-0.995) and
0.955 (95% CI: 0.915-0.996), respectively; while the classification
accuracies were 89.5% and 90.1%, respectively. In addition, the
combined model showed comparative diagnostic performance to
radiomics signature model. The performance of the radiomics
Frontiers in Oncology | www.frontiersin.org 7
model and the combined model were both significantly higher
than that of the clinical model.

Furthermore, decision curve analysis demonstrated that the
combined model and radiomics signature model would offer net
benefits over the “TETs-all”, “lymphoma-all”, and the clinico-
radiologic model within a certain range of threshold (5%–90%
for combined model; 10%–87% for radiomics signature model)
in the training cohort (Figure 6). Moreover, the combined model
and the radiomics signature model showed comparable
net benefits.
DISCUSSION

Due to the differences in therapeutic approaches, accurate
diagnosis of TETs and lymphomas before treatment is of great
significance for clinical decision (6, 18). CT is a routine
examination for chest diseases including mediastinal lesions
and lung diseases. Nevertheless, imaging methods such as CT
TABLE 4 | Differentiation performance of clinico-radiologic model, radiomics model, and combined model in the training and test cohorts.

Variables Training cohort Test cohort

AUC ACC (%) SEN (%) SPE (%) AUC ACC (%) SEN (%) SPE (%)

Clinico-radiologic model 0.860 (95% CI: 0.808-0.913) 83.6 71.2 91.4 0.843 (95% CI: 0.759-0.923) 84.5 70.4 93.2
Radiomics
model

0.965 (95% CI: 0.941-0.990) 89.5 83.3 93.3 0.961(95% CI: 0.917-1.000) 90.1 92.6 88.6

Combined
model

0.975 (95% CI: 0.956-0.995) 91.8 89.4 93.3 0.955(95% CI: 0.915-0.996) 85.9 81.5 88.6
May
 2022 | Volum
e 12 | Articl
AUC, area under the summary receiver operating characteristic curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; CI, confidence interval.
A

B

C

FIGURE 4 | Feature selection using the least absolute shrinkage and selection operator regression method. (A) The tuned parameter (l) in the LASSO model was
selected via 5 repeats 10-fold cross-validation based on minimum criteria. The dotted blue curve indicates the average binominal deviance values for each model
with a given l. The l value was set as 0.01 in this study; (B) the dotted vertical line was plotted at the selected l value, resulting in 20 radiomics features; (C) sorting
the importance of radiomics features, and the top 5 features were included in our model.
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and magnetic resonance imaging are still challenging in accurate
diagnosis of mediastinal masses in clinical practice. Tomiyama
et al. (19) reported that for neoplasms in anterior mediastinum,
the diagnostic accuracies of CT and MRI for thymoma, thymic
carcinoma, and lymphoma were 83%, 13%, 55% and 84%, 13%,
43%, respectively. In the study of Ackman et al. (4), unnecessary
or non-therapeutic thymectomy accounted for 43.8% (70/160) of
the 160 thymectomy cases including lymphomas (54.3%, 38/70),
thymic bed cysts (24.3%, 17/70), and other lesions. The unclear
preoperative diagnosis in some patients has led to many
unnecessary surgical treatments. Recently, newly emerged
radiomics showed potential in accurate differentiation of
different space-occupying lesions before treatment using the
texture feature analysis. Kayi Cangir et al. (20) revealed that
radiomic signature using the k-nearest neighbor classier based on
enhanced CT had excellent efficacy for discriminating low- vs.
high-risk thymoma groups with an AUC of 0.943 in the
validation cohort. As CT is more widely used and it serves as
the standard-of-care imaging tool for pre-treatment evaluation
of anterior mediastinal diseases, it is more convenient and
effective to construct radiomics models using features extracted
from routinely obtained contrast CT images. In our study, we
developed and validated CT-based radiomics models for non-
invasive differentiation of TETs and lymphomas. Our results
showed that the AUCs of the radiomic model based on enhanced
CT in the training and test cohorts for TETs and lymphomas
differentiation were outstanding (0.965 and 0.961, respectively).
In addition, this model, with the accuracies of 89.5% and 90.1%
in training and test cohorts, respectively, is superior to traditional
CT in distinguishing the two sorts of tumors. A study by
Kirienko et al. (16) described that a radiomic model to
differentiate TETs and lymphomas based on non-enhanced
chest CT showed AUCs of 0.93 and 0.84 in the training and
test cohorts, respectively. The accuracies of their model in the
FIGURE 6 | Decision curve analysis for the three models in the whole cohort.
The net benefit vs. the threshold probability is plotted. The x-axis shows the
threshold probability. The y-axis shows the net benefit. A model is only
clinically useful if it has a higher net benefit than the default diagnosis of TETs-
all and lymphoma-all. The two curves (orange and green curves) indicate that
the combined model and the radiomics signature model are superior to the
diagnosis of TETs-all (gray line), the diagnosis of lymphoma-all (black line),
and the clinico-radiologic model (blue curve) within a threshold probability of
5%-90% (orange curve) and 10%-87% (green curve).
A B

FIGURE 5 | The comparison of ROC curves in this study. (A) in the training cohort. AUC = 0.975 for the combined model, 0.860 for the clinico-radiologic model,
and 0.965 for the radiomics model; (B) in the external validation cohort. AUC = 0.955 for the combined model, 0.843 for the clinico-radiologic model, and 0.961 for
the radiomics model.
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training cohort and test cohort were 91.3% and 76.9%,
respectively, and it was also better than conventional CT in
distinguishing TETs and lymphomas. Compared with the study
by Kirienko et al. (16), our study had better results with higher
AUCs in two cohorts and better stability between the training
cohort and the test cohort, which may be explained by that our
study had a larger sample size and the radiomics features were
extracted from contrast-enhanced CT images. It is worth noting
that a significant enhancement difference between TETs and
lymphomas was found in our study, which is consistent with the
results of some previous studies (21, 22). Significant blood supply
differences exist between the two sorts of tumors. At the fine
scale, texture features extracted from the enhanced CT images
might represent the distribution of contrast media in the
extracellular space between intra- and extravascular (23). Thus,
radiomics signature from enhanced CT may be more effective in
showing the internal heterogeneity between TETs and
lymphoma. In addition, in the study by Huet et al. (24), for the
differentiation of high-risk TETs and low-risk TETs, the
enhanced CT-based radiomics model using the random forest
machine learning classifier achieved an AUC of 0.81, which was
better than the AUC of 0.61 by non-enhanced CT-based
radiomics model. For tumors at other sites, radiomics from
enhanced CT showed excellent performances in assessment of
colorectal cancer heterogeneity and differentiation of benign and
malignant gallbladder polypoid lesions (22, 24).

Furthermore, based on the obvious enhancement difference
between TETs and lymphomas, different techniques were also
used to explore the differential value between the two types of
tumors. In previous studies, triple-phase CT spectral imaging
and contrast-enhanced ultrasound imaging had been used in
differentiating thymic neoplasms and lymphomas with the best
AUCs of 0.875 and 0.668, respectively (21, 22). In the study by
Sakai et al. (25),the accuracy for differentiating thymoma and
non-thymoma by dynamic magnetic resonance imaging was
81%. In our study, the radiomics model based on enhanced CT
with a best AUC of 0.961 and accuracy of 90.1% had a better
differentiation efficacy than the studies above. Compared with
imaging features on spectral CT, contrast-enhanced ultrasound,
and dynamic magnetic resonance imaging, radiomics signature
from contrast enhanced CT also showed superior differential
performance between TETs and lymphoma (21, 22, 25). In
addition, 18F-FDG PET-CT and whole-body MRI could assess
the patients’ general condition, which were meaningful to
anterior mediastinal primary lymphomas with multiple
systemic involvement. It is well known that PET-CT is used
for pre-treatment staging, treatment efficacy evaluation, and
post-treatment follow-up in patients with lymphoma (26, 27).
Further, Lei et al. (28) explored the performance of metabolism
parameters, including SUVmean, SUVmax, TLG, and MTV, of
18F-FDG PET-CT for distinguishing TETs from lymphomas.
The performance of the study of Lei et al. (28) with best AUC of
0.767 and best accuracy of 72.8% in SUVmax and SUVmin,
respectively, was inferior to ours. In general, lymphomas have
higher FDG uptake than TETs (28). However, the lower
metabolic activity of indolent lymphomas and the markedly
Frontiers in Oncology | www.frontiersin.org 9
different metabolic activity associated with the grade of TETs
may be accountable for the unsatisfactory results of metabolic
parameters for the differentiation of the two kinds of tumors (27,
29–31). Regrettably, there was no whole-body MRI study in this
topic. In addition, whole-body MRI with advantages in whole-
body scanning may perform better than chest MRI. Radiomics
signature may be related to some of the biological behavior of the
tumors as it is able to mine more image information invisible to
the naked eyes and objectively quantify the features. These
features may be well associated with heterogeneity of the lesion
itself (32, 33). Additionally, no extra-cost is needed for
the patients.

In terms of clinical factors, lymphadenopathy (–) and
myasthenia gravis (+) included in our model revealed a higher
risk of patients with TETs than with lymphoma, which was
consistent with previous research (16). The top three clinico-
radiologic features in the ranking list based on this model with
optimal lambda contained myasthenia gravis rather than
autoimmune disease. For malignant tumors, pericardial
effusion can be caused by pericardial involvement even in
patients without symptoms or with atypical symptoms (34).
The most common causes of pericardial effusion caused by
tumor involvement were lung cancer, breast cancer, and
hematologic tumors such as leukemia, Hodgkin’s lymphoma,
and non-Hodgkin’s lymphoma (35). However, pericardial
effusion occurred when thymic malignancies invaded the
pericardium, but this was uncommon, even if the primary
lesion was often in the anterior mediastinum (23). In our
study, lymphomas were mainly non-inert growth types as
shown in Figure 2. In addition, the larger the lymphoma was,
the more likely concomitant of local and systemic symptoms
such as chest pain, respiratory symptoms, and B symptoms,
which may be related to the lymphoma’s greater growth capacity
and aggressiveness to surrounding tissues (Table 2).

In addition, we further established a combined model based
on radiomics features and clinico-radiologic characteristics.
Compared with the radiomics signature model, the combined
model did not show a significant improvement in discriminative
efficacy, which yielded AUCs of 0.975 and 0.955, and accuracies
of 91.8% and 85.9% in the training and test cohorts, respectively.
The superior performance of the combined model in this study
may be attributed to the inclusion of radiomics signature, which
contain many quantitative features, especially parameters not
easy to be obtained through simple visual analysis or
conventional imaging tools. Both the radiomics features model
and the combined model in the current study had outstanding
and comparable performance in distinguishing TETs and
lymphomas and can provide a net benefit superior to the
diagnosis of “TETs-all”, the diagnosis of “lymphoma-all”, and
the clinico-radiologic model in the decision curve.

There were several limitations in our study. First, selection
bias maybe came from the research nature, a retrospective study
from a single center. Second, this study included patients over a
longer period; thus, the images were collected from CT scanners
of different vendors; however, a good result proved the
generalization ability of this radiomics signature model.
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Finally, the imbalance between groups may affect model tuning.
However, the synthetic minority over-sampling technique used
in the training group found that the ROC of the model was 0.981
(95% CI: 0.971–0.991) and the imbalance between groups did not
affect the model performance.
CONCLUSION

The radiomics signature model and combined model exhibit
outstanding and comparable differential diagnostic performances
between TETs and lymphomas. The CT-based radiomics analysis
might serve as an effective tool for accurate differentiating TETs
from lymphomas before treatment in clinical practice.
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