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Abstract: SET7, serving as the only histone methyltransferase that monomethylates ‘Lys-4’ of histone
H3, has been proved to function as a key regulator in diverse biological processes, such as cell
proliferation, transcriptional network regulation in embryonic stem cell, cell cycle control, protein
stability, heart morphogenesis and development. What′s more, SET7 is involved inthe pathogenesis
of alopecia aerate, breast cancer, tumor and cancer progression, atherosclerosis in human carotid
plaques, chronic renal diseases, diabetes, obesity, ovarian cancer, prostate cancer, hepatocellular
carcinoma, and pulmonary fibrosis. Therefore, there is urgent need to develop novel SET7 inhibitors.
In this paper, based on DC-S239 which has been previously reported in our group, we employed
scaffold hopping- and 2D fingerprint-based similarity searches and identified DC-S285 as the new hit
compound targeting SET7 (IC50 = 9.3 µM). Both radioactive tracing and NMR experiments validated
the interactions between DC-S285 and SET7 followed by the second-round similarity search leading to
the identification ofDC-S303 with the IC50 value of 1.1 µM. In cellular level, DC-S285 retarded tumor
cell proliferation and showed selectivity against MCF7 (IC50 = 21.4 µM), Jurkat (IC50 = 2.2 µM), THP1
(IC50 = 3.5 µM), U937 (IC50 = 3.9 µM) cell lines. Docking calculations suggested that DC-S303 share
similar binding mode with the parent compoundDC-S239. What′s more, it presented good selectivity
against other epigenetic targets, including SETD1B, SETD8, G9a, SMYD2 and EZH2. DC-S303 can
serve as a drug-like scaffold which may need further optimization for drug development, and can be
used as chemical probe to help the community to better understand the SET7 biology.

Keywords: SET7; inhibitor; similarity search; ligand-based drug design; chemical biology probe

1. Introduction

In the epigenetic landscape, histone methyltransferases (HMTs) play an essential role in various
biological processes including cell cycle progression [1], cell differentiation [2], development [3] as well
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as other biological processes [4]. Besides, HMTs are involved with the pathogenesis of cancers [5–8],
immune-mediated diseases [9], thus they have been the hot targets for cancer therapy in both academia
and industry. HMTs can be categorized into two groups based on structural features: (i) SET
domain-containing subfamily, such as SET7 (SET domain-containing lysine methyltransferase 7, also
called SETD7, SET9, KMT7), EZH2 (Enhancer of Zest Homologue 2) and SUV39H1 and (ii) non-SET
domain containing subfamily, such as DOT1-L (Disruptor of Telomeric silencing 1-Like) [10].

SET7 is the only epigenetic member that specifically monomethylates ‘Lys-4’ of histone H3 and
emerging evidences have proved SET7′s unique role in transcriptional regulations [11] (Table 1), DNA
repair [12], cell cycle control [12–14]. Due to its catalytic activity on diverse non-histone substrates,
SET7 also displays a special role in a lot of biological processes (Table 1) and is involved in cell
proliferation [15,16], transcriptional network regulation in embryonic stem cell [17,18], cell cycle
control [19], protein stability [20–23], heart morphogenesis and development [24], as well as other
biological functions. Notably, its role in regulating p53, whose mutant isoform is an important cancer
therapy target [25], remains controversial [26].

Table 1. SET7 substrates and its biological functions.

Substrates Functions References

Histone H3K4 transcriptional activation [27,28]
H2A [29]

H2BK15 [29]
H1.4 [30]

Non-histone ARTD1 stimulating poly-ADP-ribose formation after oxidative stress [31]
COL2A1 morphology-dependent COL2A1 gene transactivation [32]
DNMT1 protein stability regulation of DNMT1 (destabilization) [33,34]

E2F1 regulation of E2F1 stabilization co-activator in response to DNA damage [35,36]
ERα protein stability regulation of ERα (stabilization) and enhancing transcriptional activity [20,37]

FoxO3 protein stability regulation of FoxO3 (destabilization) [38]
FXR transcriptional activation of FXR-target genes [39]

GATA1 required for GATA1-induced breast tumour angiogenesis and growth in nude mice; poor
prognostic factors in breast cancer [40]

Gli3 activation of Sonic Hedgehog pathway in mammals [41]

HIF-1α promoting HIF-1α protein stability in hypoxia and enhancing HIF-1 mediated glycolytic
gene transcription [21]

HIF-1α/2α negatively regulation HIF-α transcriptional activity and HIF-1-mediated
glucose homeostasis [42,43]

IFITM3 negatively affected IFITM3 antiviral activity [44]
MCP-1 regulation of MCP-1 mRNA expression [45]
MYPT1 protein stability regulation of MYPT1 (stabilization) [23]

p21 [46]
p53

p65 (RelA) regulation of NF-κB activity [11,47,48]
PCAF [49]

PDX1 maintenance of Pdx1 activity and β cell function; control insulin gene expression based on
glucose concentration [50–52]

PCG-1α [53]
pRb cell cycle arrest [13,14]

RARα [54]
RB promotes cell cycle progression [55]

NFE2L2 negatively regulates the expression of NFE2L2 and its downstream genes [56]
Smad7 [57,58]
SIRT1 inducing the dissociation of SIRT1 from p53 and increasing p52 activity [59]
STAT3 negatively regulation of protein stability and transactivation activity [22]

SUV39H1 gene instability and cell proliferation inhibition [12,60]
TAF7 RNA polymerase ii-dependent transcription coactivator [61]
TAF10 RNA polymerase ii-dependent transcription coactivator [62]

TAT enhancing HIV transcription [63]
TGF-β1 transcriptional activation of fibrotic genes [64,65]

TP2 elongating to condensing spermatids [66]
YAP control YAP subcellular localization and function [67]
YY1 regulation of YY1 DNA-binding activity [68]

AKA6 unknown [29]
CENPC unknown [29]
MeCP2 unknown [29]
MINT unknown [29]

PPARBP, unknown [29]
ZDH8 unknown [29]
Cullin1 unknown [29]
IRF1/2 unknown [29]
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In addition, SET7 is reported to be a key regulator in the pathogenies of several diseases in cluding
alopecia areata [69], breast cancer [37,70], tumour and cancer progression [71–76], atherosclerosis in
human carotid plaques [77], chronic renal diseases, diabetes [45,78–84], obesity [85], ovarian cancer [86],
prostate cancer [87], hepatocellular carcinoma [71], and pulmonary fibrosis [57]. Of interest, the role of
SET7 in viral infection is being uncovered. Studies revealed that SET7 can facilitate HCV replication in
an enzymatic activity-dependent manner through attenuation of the IFN/JAK/STAT pathway [88].
SET7 binds with HIV-1 TAR RNA and monomethylates the HIV viral trans-activator Tat protein at
Lys-51 and Lys-71, to enhance HIV transcription [63,89]. Knockdown analysis also proved that SET7
only suppresses Tat transactivation of the viral promoter and has on influence on transcriptional
activity of methylation-deficient Tat Shan’s study suggested that SET7 can negatively regulate the
anti-viral activity toward vesicular stomatitis virus (VSV) and influenza A by methylation at Lys-88 of
virus (IAV) infection of Interferon-induced Transmembrane Protein 3 (IFITM3) [44]. What′s more, SET7
may also have a potential role in HPV (human papillomaviruses) viral survival [90]. Therefore, SET7
may be a promising target for viral infection and potent and selective inhibitor can serve as a useful
chemical biology tool to elucidate the viral infection mechanism. The abberant expression patterns
and dysfunction of SET7 has also been widely observed in the onset and progression of cancers.
In peripheral blood mononuclear cells of patients, the histone modification patterns were greatly
altered and the expression of SET7 was elevated [69]. Emerging evidence has also demonstrated
its role in solid tumors. Zhang et al. demonstrated that SET7 interacts with transcription factor
GATA1 and promotes downstream VEGF transcription and tumor angiogenesis [40]. Inhibition of
SET7 activity by the SET7 inhibitor cyproheptadine reduced the estrogen receptor alpha expression in
MCF7 cells that is important for cancer progression, phencopying the SET7 knockdown studies [37].
With SET7′s emerging role of therapy targets for cancers, diabetes, hepatocellular carcinoma, alopecia
areata, pulmonary fibrosis and viral infections, a potent and selective SET7 inhibitor is in great need to
serve as a chemical probe to investigate its delicate biological function and mechanism.

So far, several successful attempts have been made to develop SET7 inhibitors. (R)-PFI-2 [91],
as resolved in the crystal complex structure, is bound to the peptide binding pocket with a high affinity
(IC50 = 2.0 nM). Using a drug repositioning strategy, Cyproheptadine, a clinically approved antiallergy
drug was reported to bind with SET7 peptide binding site as revealed in structural biology studies
(IC50 = 1.0 µM) [61].

Computational tools and methods have been widely used for epigenetic inhibitor design and
discovery and many successful cases have been reported [92]. Some epigenetic inhibitors have been
identified by computational methods targeting PRMT1, DNMT1, DOTL and the protein-protein
interfaces like menin-mixed lineage leukemia 1 and EZH2-EED [92]. In our previous study, two
selective SET7 inhibitors DC-238 and DC-S239 were identified with an integrated virtual screening
method combing pharmacophore and docking as well as chemical modifications [92].

In this paper, a new SET7 inhibitor DC-S285 was identified by scaffold hopping and 2D fingerprint
-based similarity search based on the previously identified SET7 inhibitor DC-S239, which was further
validated by radioactivity assay and NMR-spectroscopy methods. In cellular level, DC-S285 also
inhibited cancer cell proliferation in leukemic cells and breast cancer cells. Therefore, a similarity search
was performed in search of more potent inhibitors as well as for its structure-activity relationship (SAR)
studies. The predicted binding mode was also investigated in accordance with its SAR. In summary, a
novel and selective compound DC-S336 (IC50 = 1.1 µM) was identified by similarity based search.

2. Results and Discussions

2.1. Scaffold Hopping- and Similarity-Based Virtual Screening

Based on our previous research, two selective SET7 inhibitors, namely DC-S238 (IC50 = 4.9 µM)
and DC-S239 (IC50 = 4.6 µM) were obtained (Figure 1A). Herein, with DC-S239 serving as the starting
point, combinatorial scaffold hopping [93] and 2D fingerprint based similarity search strategies were
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employed in order to discover more SET7 inhibitors with novel chemotypes (Figure 2). The overall
computational pipeline has been demonstrated (Figure 1C).Molecules 2018, 23, x FOR PEER REVIEW  4 of 19 
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Figure 1. The flowchart of the combinatorial scaffold hopping and 2D fingerprint based similarity
search strategies. (A) Chemical structure of DC-S239 and its predicted binding mode. DC-S239 is
shown in sticks and the SET7 protein is shown in electrostatics surface; (B) Inhibition ratio of the
compounds in first-round similarity search. DC-S285 is shown in red while the reference compound
SAH is depicted in blue; (C) Workflow chart in the study.
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Figure 2. Chemical structures of DC-S238, DC-S239 and DC-S285.

Before performing similarity searches, pre-processing of the Specs molecular database was
conducted with Pipeline Pilot, version 7.5 (Pipeline Pilot; Accelrys Software Inc., San Diego, CA,
USA). Because a lot of clinical trial failures and unnecessary attritions were due to poor oral
bioavailability [94,95], it becomes crucial to estimate druglikeness properties at the early drug design
and development stage, and therefore the Specss database was filtered by Rule of Five [96]. Recently, a
series of promiscuous, assay-duping molecules, namely ‘pan-assay interference compounds’ (PAINS),
were reported due to metal chelation, chemical aggregation, redox activity, compound fluorescence,
cysteine oxidation or promiscuous binding against the targets, suggesting that we should get rid of
those structures in early state [97–100]. Therefore, the Specs database was further processed with the
PAINS substructure filter developed in our lab using Pipeline Pilot, version 7.5. Then the remaining
182,014 molecules were subjected to moleculardocking to remove low binding affinity compounds
or non-binders usingGilde docking software [101] integrated in Maestro 9.0 (Maestro, version 9.0,
Schrödinger, LLC, New York, NY, USA, 2009) inXP mode [102] consideringits highest enrichment
factor [103] based on our previous tests [92]. Subsequently, top ranking 2000 molecules, with all the
previously tested compounds in our previous paper [92] excluded, was subjected to ChemMapper and
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2D similarity search. Then 300 compounds of each method were selected, and a total of 520 compounds
were obtained after removing the duplicates. In order to cover chemical space with more diverse
scaffolds, all the molecules were clustered into 30 groups and finally 44 compounds were selected
and purchased from Specs Company (Quezon, Philippines) for biological tests. All the selections
were based on the following criteria: (1) In order to get more confident results and more space for
future optimization, molecules with simpler structure were chosen; (2) One compound is selected at
least in each cluster to get more diverse chemical space; (3) All the molecules with potential reactive
functional groups were not our preferences; (4) Molecules with similar structure or dramatic structural
differences with DC-S239 were both considered based on our chemical intuitions.

2.2. AlphaLISA-Based Biological Tests

All the 44 candidate compounds cherry-picked from similarity search were evaluated for their
biochemical activity against SET7 in vitro based on the AlphaLISA assay. SAH was used as the
reference compound (Figure 2B). Among them, eight compounds came out at top against SET7 activity
with inhibition rate >50% at 100 µM (Figure 1B), resulting in a hit rate of 18%. Notably, compound
DC-S285 presented similar potency as the reference compound SAH at the concentration of 100 µM.
Then we measured the inhibitory activity at a range of concentrations for DC-S285. Based from
dose-response curve, DC-S285 displayed moderate inhibitory activity against SET7 with an IC50 value
of 9.3 µM while the IC50 value of the reference compound SAH was about 3.2 µM (Figure 3A,B).
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Figure 3. Activity of DC-S285 and of ligand observed 1D NMR experiments. (A,B). Inhibitory
activities of DC-S285 and its reference compound SAH based on the AlphaLISA assay; (C). Carr-Purcell
Meiboom-Gill Pulse Sequence reveals that DC-S285 binds to SET7. T1$ spectra acquired by using
DC-S285 (colored in red), 20 µM DC-S285 in the presence of 2.5 µM protein (coloured in blue).
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2.3. Validation of DC-S285′s Activity

To rule out the possibility of assay interference of DC-S285, we established the 3H-labeled
radioisotope methylation assay. The z′ factor value of the established platform is 0.84, demonstrating
its robustness for hit validation. DC-S285 and the reference compounds SAH presented the inhibitory
activity with the IC50 values of 19.5 µM and 5.4 µM, respectively, which was in accordance with the
AlphaLisa results.

In order to further confirm that compound DC-S285 binds with SET7, Carr-Purcell-Meiboom-Gill
sequence (CPMG) experiments were performed for hit validation Strong binding signals were clearly
observed in T1$ (Figure 3C) and the result indicatedthe mutually exclusive binding of DC-S285 and
SET7 catalytic domain.

2.4. Cellular Activity of DC-S285

Collectively, both the radioactive and CPMG NMR demonstrated the direct binding between
DC-S285 and SET7, wefurther evaluated its antiproliferation activities in several cancer cell lines.
As depicted in Figure 4, DC-S285 significantly retard cell proliferation includingMCF7 (breast cancer),
and Jurkat, THP1 and U937 leukemia cell lines in a dose-dependent manner at micromolar potencies
(Figure 4).Molecules 2018, 23, x FOR PEER REVIEW  6 of 19 
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2.5. Similarity-Based Analog Searching and SAR Analysis

Based on the biological test, the hit, DC-S285, was used as the promising scaffold for the further
structure-activity relationship study (SAR). A second round 2D molecular fingerprint based similarity
search was conducted using Pipeline Pilot, version 7.5 to explore the SAR and more potent inhibitors.

Some functional groups of DC-S285 were removed intentionally for similarity search, making it
possible to explore the structure−activity relationship (SAR) of compound DC-S285 and for further
chemical modifications. All the molecules were selected based on cluster analysis and selection criteria
described before. The biological activity was measured with AlphaLISA assay at 100 µM and the IC50

values of the 10 compounds with inhibition rate over 50% were determined, among which DC-S303
was the most potent SET7 inhibitor with the IC50 value of 1.1 µM (Figure 5).
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Figure 5. Enzymatic activity of DC-S303 against SET7. (A) IC50 value of DC-S303 in AlphaLisa assay;
(B) IC50 value of the reference compound SAH in AlphaLisa assay; (C) IC50 value of DC-S303 in
radioactive assay; (D) IC50 value of the reference compound SAH in radioactive assay.

The SAR was summarized in Table 2. It can be concluded that the nitro group in R1 part is essential
for activity comparing all the compounds from DC-S303 to DC-S313. If the nitro group is replaced
by a chlorine atom, the activity decreases dramatically. What′s more, the meta substituent of the nitro
group is more favorable (DC-S303 and DC-S304) while DC-S305 displays no activity against SET7.
DC-S301 presented moderate inhibitory activity with IC50 value of13 µM, indicating the possibility
that the benzene ring can be substituted by other aromatic ring with similar size. With the nitro group
substituted at the meta position and chlorine atom at the ortho position, the comparison of compounds
DC-S315, DC-S317, DC-S318, DC-S324, DC-S327 indicates that if the aromatic ring is not directly linked
with R2 part or there is no aromatic ring linked with R2 part, the activities against SET7 decrease.
DC-S314 is an exception possibly because of the flexible alkane chain meaning that it can adapt a
suitable conformation to bind with SET7. Moreover, a single aromatic ring with a proper substituent
will contribute to better activity. For example, if R3 is the benzene ring or a bromine substituted one,
the activity is much higher than other ones (DC-S328 and DC-S333). The furan ring can contribute as
an aromatic ring, but less favorable than benzene ring (DC-S329 with IC50 value = 92 µM). And it can
be concluded that the diphenyl ring is the best candidate for R3 based on compound DC-S303. When
R2 and R3 are fixed (from DC-S365 to DC-S364), nitro group at para position with a different R2 group
from previous discussions contribute to better activity like DC-S334, but not for other substitution
groups in benzene ring or aryl linkers. The rest of this table supports that the linker A is the best
suitable choice.
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Table 2. Structure-Activity Relationship (SAR) of DC-S303 and its derivatives.
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Table 2. Cont.

No. R1 R2 R3
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Table 2. Cont.

No. R1 R2 R3
Inhibition Ratio

at 100 µM/% IC50 (µM)
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Table 2. Cont.

No. R1 R2 R3
Inhibition Ratio

at 100 µM/% IC50 (µM)
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2.7. Selectivity of DC-S303 

A qualified lead compound or chemical probe should feature not only potent binding affinity, but also 
goodselectivity. Considering that besides SET7, there are some other methyltransferases that share the same 
cofactor and similar substrate pocket, we further tested the inhibition ratios of DC-S303 against other epigenetic 
targets, including SETD1B, SETD8, G9a, SMYD2 and EZH2 in vitro (Table 3). The results suggested that this 
compound displayed moderate selectivity against epigenetic targets that underscored its value for further 
optimization. 

Table 3. Selectivity of DC-S303 over other epigenetic targets. 

Compound No. Target Inhibition Ratio at 100 µM/% 

DC-S303 

SETD7 90.51 
SETD1B 27.12 
SETD8 55.23 

G9a 52.56 
SMYD2 24.55 
EZH2 47.88 

2.8. Binding Mode Prediction of DC-S303 

5
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goodselectivity. Considering that besides SET7, there are some other methyltransferases that share the same 
cofactor and similar substrate pocket, we further tested the inhibition ratios of DC-S303 against other epigenetic 
targets, including SETD1B, SETD8, G9a, SMYD2 and EZH2 in vitro (Table 3). The results suggested that this 
compound displayed moderate selectivity against epigenetic targets that underscored its value for further 
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Table 3. Selectivity of DC-S303 over other epigenetic targets. 

Compound No. Target Inhibition Ratio at 100 µM/% 

DC-S303 

SETD7 90.51 
SETD1B 27.12 
SETD8 55.23 

G9a 52.56 
SMYD2 24.55 
EZH2 47.88 

2.8. Binding Mode Prediction of DC-S303 

In order to predict the putative binding mode, a docking calculation was conducted as mentioned before. 
The proposed binding mode (Figure 6) suggests that it shares similar binding with the previous reported 
compound DC-S239 at the SAM binding region. It forms a key hydrogen bond with residue Lys294, which is 
reported to be a potential factor for selective SET7 inhibitor design. The linking benzene of the diphenyl group 
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SMYD2 24.55 
EZH2 47.88 

2.8. Binding Mode Prediction of DC-S303 

In order to predict the putative binding mode, a docking calculation was conducted as mentioned before. 
The proposed binding mode (Figure 6) suggests that it shares similar binding with the previous reported 
compound DC-S239 at the SAM binding region. It forms a key hydrogen bond with residue Lys294, which is 
reported to be a potential factor for selective SET7 inhibitor design. The linking benzene of the diphenyl group 
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targets, including SETD1B, SETD8, G9a, SMYD2 and EZH2 in vitro (Table 3). The results suggested that this 
compound displayed moderate selectivity against epigenetic targets that underscored its value for further 
optimization. 

Table 3. Selectivity of DC-S303 over other epigenetic targets. 

Compound No. Target Inhibition Ratio at 100 µM/% 

DC-S303 

SETD7 90.51 
SETD1B 27.12 
SETD8 55.23 

G9a 52.56 
SMYD2 24.55 
EZH2 47.88 

2.8. Binding Mode Prediction of DC-S303 

In order to predict the putative binding mode, a docking calculation was conducted as mentioned before. 
The proposed binding mode (Figure 6) suggests that it shares similar binding with the previous reported 
compound DC-S239 at the SAM binding region. It forms a key hydrogen bond with residue Lys294, which is 
reported to be a potential factor for selective SET7 inhibitor design. The linking benzene of the diphenyl group 
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2.8. Binding Mode Prediction of DC-S303 

In order to predict the putative binding mode, a docking calculation was conducted as mentioned before. 
The proposed binding mode (Figure 6) suggests that it shares similar binding with the previous reported 
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reported to be a potential factor for selective SET7 inhibitor design. The linking benzene of the diphenyl group 

Molecules 2018, 23, x FOR PEER REVIEW  10 of 19 

 

DC-S359 5  

DC-S360 4  

DC-S361 -1  

DC-S362 -4  

DC-S363 -15  

DC-S364 54 3.7 

DC-S365 

  
(E) 

10  

DC-S366 9  

DC-S367   -1  

2.7. Selectivity of DC-S303 

A qualified lead compound or chemical probe should feature not only potent binding affinity, but also 
goodselectivity. Considering that besides SET7, there are some other methyltransferases that share the same 
cofactor and similar substrate pocket, we further tested the inhibition ratios of DC-S303 against other epigenetic 
targets, including SETD1B, SETD8, G9a, SMYD2 and EZH2 in vitro (Table 3). The results suggested that this 
compound displayed moderate selectivity against epigenetic targets that underscored its value for further 
optimization. 

Table 3. Selectivity of DC-S303 over other epigenetic targets. 

Compound No. Target Inhibition Ratio at 100 µM/% 

DC-S303 

SETD7 90.51 
SETD1B 27.12 
SETD8 55.23 

G9a 52.56 
SMYD2 24.55 
EZH2 47.88 

2.8. Binding Mode Prediction of DC-S303 

In order to predict the putative binding mode, a docking calculation was conducted as mentioned before. 
The proposed binding mode (Figure 6) suggests that it shares similar binding with the previous reported 
compound DC-S239 at the SAM binding region. It forms a key hydrogen bond with residue Lys294, which is 
reported to be a potential factor for selective SET7 inhibitor design. The linking benzene of the diphenyl group 

(E)

Molecules 2018, 23, x FOR PEER REVIEW  10 of 19 

 

DC-S359 5  

DC-S360 4  

DC-S361 -1  

DC-S362 -4  

DC-S363 -15  

DC-S364 54 3.7 

DC-S365 

  
(E) 

10  

DC-S366 9  

DC-S367   -1  

2.7. Selectivity of DC-S303 

A qualified lead compound or chemical probe should feature not only potent binding affinity, but also 
goodselectivity. Considering that besides SET7, there are some other methyltransferases that share the same 
cofactor and similar substrate pocket, we further tested the inhibition ratios of DC-S303 against other epigenetic 
targets, including SETD1B, SETD8, G9a, SMYD2 and EZH2 in vitro (Table 3). The results suggested that this 
compound displayed moderate selectivity against epigenetic targets that underscored its value for further 
optimization. 

Table 3. Selectivity of DC-S303 over other epigenetic targets. 

Compound No. Target Inhibition Ratio at 100 µM/% 

DC-S303 

SETD7 90.51 
SETD1B 27.12 
SETD8 55.23 

G9a 52.56 
SMYD2 24.55 
EZH2 47.88 

2.8. Binding Mode Prediction of DC-S303 

In order to predict the putative binding mode, a docking calculation was conducted as mentioned before. 
The proposed binding mode (Figure 6) suggests that it shares similar binding with the previous reported 
compound DC-S239 at the SAM binding region. It forms a key hydrogen bond with residue Lys294, which is 
reported to be a potential factor for selective SET7 inhibitor design. The linking benzene of the diphenyl group 

10

DC-S366

Molecules 2018, 23, x FOR PEER REVIEW  10 of 19 

 

DC-S359 5  

DC-S360 4  

DC-S361 -1  

DC-S362 -4  

DC-S363 -15  

DC-S364 54 3.7 

DC-S365 

  
(E) 

10  

DC-S366 9  

DC-S367   -1  

2.7. Selectivity of DC-S303 

A qualified lead compound or chemical probe should feature not only potent binding affinity, but also 
goodselectivity. Considering that besides SET7, there are some other methyltransferases that share the same 
cofactor and similar substrate pocket, we further tested the inhibition ratios of DC-S303 against other epigenetic 
targets, including SETD1B, SETD8, G9a, SMYD2 and EZH2 in vitro (Table 3). The results suggested that this 
compound displayed moderate selectivity against epigenetic targets that underscored its value for further 
optimization. 

Table 3. Selectivity of DC-S303 over other epigenetic targets. 

Compound No. Target Inhibition Ratio at 100 µM/% 

DC-S303 

SETD7 90.51 
SETD1B 27.12 
SETD8 55.23 

G9a 52.56 
SMYD2 24.55 
EZH2 47.88 

2.8. Binding Mode Prediction of DC-S303 

In order to predict the putative binding mode, a docking calculation was conducted as mentioned before. 
The proposed binding mode (Figure 6) suggests that it shares similar binding with the previous reported 
compound DC-S239 at the SAM binding region. It forms a key hydrogen bond with residue Lys294, which is 
reported to be a potential factor for selective SET7 inhibitor design. The linking benzene of the diphenyl group 

9

DC-S367

Molecules 2018, 23, x FOR PEER REVIEW  10 of 19 

 

DC-S359 5  

DC-S360 4  

DC-S361 -1  

DC-S362 -4  

DC-S363 -15  

DC-S364 54 3.7 

DC-S365 

  
(E) 

10  

DC-S366 9  

DC-S367   -1  

2.7. Selectivity of DC-S303 

A qualified lead compound or chemical probe should feature not only potent binding affinity, but also 
goodselectivity. Considering that besides SET7, there are some other methyltransferases that share the same 
cofactor and similar substrate pocket, we further tested the inhibition ratios of DC-S303 against other epigenetic 
targets, including SETD1B, SETD8, G9a, SMYD2 and EZH2 in vitro (Table 3). The results suggested that this 
compound displayed moderate selectivity against epigenetic targets that underscored its value for further 
optimization. 

Table 3. Selectivity of DC-S303 over other epigenetic targets. 

Compound No. Target Inhibition Ratio at 100 µM/% 

DC-S303 

SETD7 90.51 
SETD1B 27.12 
SETD8 55.23 

G9a 52.56 
SMYD2 24.55 
EZH2 47.88 

2.8. Binding Mode Prediction of DC-S303 

In order to predict the putative binding mode, a docking calculation was conducted as mentioned before. 
The proposed binding mode (Figure 6) suggests that it shares similar binding with the previous reported 
compound DC-S239 at the SAM binding region. It forms a key hydrogen bond with residue Lys294, which is 
reported to be a potential factor for selective SET7 inhibitor design. The linking benzene of the diphenyl group 

−1

2.6. Selectivity of DC-S303

A qualified lead compound or chemical probe should feature not only potent binding affinity,
but also goodselectivity. Considering that besides SET7, there are some other methyltransferases that
share the same cofactor and similar substrate pocket, we further tested the inhibition ratios of DC-S303
against other epigenetic targets, including SETD1B, SETD8, G9a, SMYD2 and EZH2 in vitro (Table 3).
The results suggested that this compound displayed moderate selectivity against epigenetic targets
that underscored its value for further optimization.
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Table 3. Selectivity of DC-S303 over other epigenetic targets.

Compound No. Target Inhibition Ratio at 100 µM/%

DC-S303

SETD7 90.51
SETD1B 27.12
SETD8 55.23

G9a 52.56
SMYD2 24.55
EZH2 47.88

2.7. Binding Mode Prediction of DC-S303

In order to predict the putative binding mode, a docking calculation was conducted as mentioned
before. The proposed binding mode (Figure 6) suggests that it shares similar binding with the previous
reported compound DC-S239 at the SAM binding region. It forms a key hydrogen bond with residue
Lys294, which is reported to be a potential factor for selective SET7 inhibitor design. The linking
benzene of the diphenyl group forms π-π stacking interactions with Trp352, stabilizing its binding into
the SAM pocket. The hydrogen bond between DC-S303 and SET7 contributes to the orientation by
pulling the middle of this compound.
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3. Materials and Methods

3.1. Virtual Screening: Ligand Database Preparation

The Specs commercial database, containing approximately 200,000 molecules, was filtered using
Pipeline Pilot, version 7.5 (Pipeline Pilot; Accelrys Software Inc., San Diego, CA, USA) based on
Lipinski′s Rule of Five [96] in order to get promising molecules with good drug-likeproperties. What′s
more, the ‘pan-assay interference compounds’ (PAINS) were also removed using the substructure
filter protocol developed in our lab with Pipeline Pilot, version 7.5 [97–100]. As for those molecules
for docking calculations, they were subjected to LigPrep to generate all stereoisomers and different
protonation states with Epik [104].

3.2. Virtual Screening: ProteinPreparation

The protein structure was processed as previously described [92]. Twenty-nine X-ray crystal
structures of SET7 are available in the PDB database, and the SET domain of these structures were
aligned for comparison and root mean square deviation (RMSD) calculation, which is conserved in
the SET domain-containing family. We obtained a maximum root mean-square derivation (RMSD)
value of 0.37, suggesting that the three-dimensional structure of the SET domain in SET7 is conserved.
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Considering the structure resolution and integrity, the crystal structure of SET7 complex with SAM (PDB
ID: 1N6A) was chosen for docking. The protein was prepared with Protein Preparation Wizard Workflow,
as provided in Maestro, with a pH value of 7.0 ± 2.0. Other parameters were set as the default.

3.3. Virtual Screening: 2D Molecular FingerprintBased Similarity Search

2D molecular fingerprint based similarity search was conducted with similarity search protocol
implemented in Pipeline Pilot, version 7.5. Top-ranked 300 molecules were selected for further
investigation. As for the SAR part of DC-S285, the similarity search is also performed as described in
our previous published paper.

3.4. Virtual Screening: Scaffold Hopping Based Similarity Search

To get compounds with similar 3D conformations, scaffold hopping was performed with
ChemMapper web server (http://lilab.ecust.edu.cn/chemmapper/) [93] against Specs molecule
library. Other parameters were set as default.

3.5. SET7 Inhibition Assays

AlphaLISA assays were applied to determine the inhibitory activity targeting SET7. The purified
SET7 protein was incubated in modified Tris buffer in 384-well plates (Perkin Elmer, Cat. No. 6007299,
Waltham, MA, USA) at room temperature for 15 min. The compounds were transferred to the assay
plate using Echo in 100% DMSO, and substrate solution was added to each well to start the reaction.
Acceptor and donor beads were added and incubated for 60 min at room temperature, shielded from
light. The endpoint was evaluated with EndSpire in Alpha mode. The experimental data was fitted in
GraphPad Prism 5 to obtain inhibition values using the equation as follows:

Inhibition % =
Max− Siginal

Max−Min
× 100% (1)

As for 3Hradioactive methylation assay, SAH was used as the reference compound and the
compounds were tested in 10 concentrations in duplicate in modified Tris buffer (1× assay buffer).
The following materials were purchased: SET7 (Enzo, Cat. No. ALX-201-178, New York, NY, USA),
[3H]-SAM (PerkinElmer Inc., Lot. No. 1790854), SAH (Sigma, Cat. No. A9384-25MG, St. Louis,
MO, USA) and 384-well Flashplate (Perkin Elmer, Cat. No. SMP410A001PK,). The compounds were
transferred to the assay plate by Echo 550 with 3-fold dilution in 100% DMSO where the final DMSO
concentration is 1%. Then the enzyme solution was transferred to the assay plate and 1× assay buffer
was transferred for low control. After 15 min incubation at room temperature, peptide and [3H]-SAM
mix solution was transferred to each well to start the reaction. The cold SAM in 1× buffer was added to
each well to stop the reaction after 60 min incubation at room temperature. 25 µL of the whole reaction
system per well was transferred to Flashplate which was washed with dH2O and 0.1% Tween-20 for
three times after 60 min incubation. The data was read on Microbeta. All the inhibition assays are
performed in duplicate.

3.6. Enzymatic Selectivity Assays

For SETD1B, G9a and SMYD2, the activities against those targets were tested in modified
Tris buffer (1× assay buffer). All the solid compounds were dissolved to 20 mM in 100% DMSO.
The materials used were SETD1B (Active Motif, Cat. No. M1083, Carlsbad, CA, USA), G9a (BPS, Cat.
No. 51001, San Diego, CA, USA), SMYD2 (Active Motif, Cat. No. 31323, c), G9a (BPS, Cat. No. 51001,)
and 384-well plate (Perkin Elmer, Cat. No. 6007299). Both the enzyme solution and the substrate
solution were prepared in 1× assay buffer enzyme solution or 1× assay buffer for low control was
transferred to the assay plate. Then substrate mix solution was added to each well to start the solution
for 15 min incubation at room temperature. For SETD1B, G9a, the incubation time was adjusted to

http://lilab.ecust.edu.cn/chemmapper/
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60 min and for SMYD2, the incubation time was set to 240 min. For detection, acceptor and donor
beads were added and incubated for 60 min at room temperature, shielded from light. The endpoint
was evaluated with EnSpire in Alpha mode.

The radioactive methylation inhibition assay of SETD8 was performed in modified Tris buffer.
H3K27me peptide and [3H]-SAM (PerkinElmer, Cat No. NET1551MC) were added in 1x buffer as the
substrate solution. The enzyme solution was incubated at room temperature for 15 min before substrate
solution was added to each well to start the reaction. Cold SAM (Sigma, Cat. No. 7007-100MG) was
added in 1x buffer to prepare the stop mix, and was added to stop the reaction; finally 10 µL of
the reaction system was transferred to flashplate (PerkinElmer Inc., Cat. No. SMP410A001PK) and
incubated at room temperature for a minimum of 2 h. The plate was washed three times with dH2O and
0.1% Tween-20, and the radioactivity signal was detected by liquid scintillation counting (MicroBeta,
PerkinElmer). SAH was used as the reference compound.

The radioactive methylation inhibition assay of EZH2 was performed in modified Tris buffer.
H3K27me peptide and [3H]-SAM (Perkin Elmer Inc. Waltham, MA, USA, Lot. No. 1731619) were
added in 1x buffer as the substrate solution. The enz the yme solution was incubated at room
temperature for 15 min before substrate solution was added to each well to start the reaction. Cold
SAM (Sigma, Cat. NO. 7007) was added in 1× buffer to prepare stop mix (final concentration 0.5 mM),
and was added to stop the reaction; finally 25 µL of the reaction system was transferred to a FlashPlate
(Perkin Elmer, Cat. No. SMP410A001PK) and incubated at room temperature for a minimum of
1 h. The plate was washed three times with dH2O and 0.1% Tween-20, and the radioactivity was
determined by liquid scintillation counting (MicroBeta). GSK-126 was used as the reference compound.

3.7. NMR Experiment

Ligand observed T1$ NMR experiment were applied to investigate ligand-protein interactions.
All NMR spectra were acquired at 25 ◦C on a 600 MHz Bruker Avance III spectrometer equipped with a
cryogenically cooled probe (Bruker Biospin, Ettlingen, Germany). Samples containing 20 µM DC-S285,
and 20 µM DC-S285 in the presence of 2.5 µM SET7 were dissolved in Tris-HCl buffer (50 mM Tris-HCl,
100 mM NaCl, pH 7.4, 5% DMSO, 95% D2O) and then used in NMR data acquisition. T1$ spectra were
recorded by using the pulse sequence of solvent-suppressed 1D 1H CPMG (cpmgPr1d). The 90◦ pulse
length was adjusted to about 11.80 µs. A total of four dummy scans and 64 free induction decays (FIDs)
were collected into 64 K acquisition points, covering a spectral width of 12 kHz (20 ppm) and giving
an acquisition time (ACQ) of 2.73 s. STD data was acquired using 4 dummy scans and a relaxation
delay of 3 s, followed by a 40 dB pulsed irradiation at frequency of −1.0 ppm or 33 ppm alternatively.
The total acquisition time for STD spectrum was 23 min with 128 FIDs.

3.8. Cell Culture and Cell Viability Assay

MCF7, HL60, MV4-11, K562, Kasumi-1, U937, THP1, and Jurkat cell lines were purchased from
American Type Culture Collection (Manassas, VA, USA). Fetal bovine serum was purchased from
Life Technologies. MCF7 cells were cultured in DMEM medium supplemented with 10% fetal bovine
serum at 37 ◦C in an incubator with 5% CO2 atmosphere. HL60 and MV4-11 cells were cultured in
1640 medium supplemented with 10% fetal bovine serum. K562, Kasumi-1 and HL60 were cultured
in 96 plate at 10,000/well for 2 h. DC-S285 was dissolved in DMSO (Sigma) and then stored at 4 ◦C.
The cells were incubated with DC-S285 at different concentrations ranging from 0 to 100 µM for
approximately 72 h. The activities of DC-S239 against MCF7, HL60, MV4-11, K562, Kasumi-1, U937,
THP1, and Jurkat were measured by the alamarBlue assays and MTT assays.

4. Conclusions

As a key member of the histone methyltransferase family, SET7 has been reported to play diverse
biological roles, including cell proliferation, transcriptional network regulation in embryonic stem
cell, cell cycle control, protein stability, heart morphogenesis and development. The dysfunction of
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SET7 is involved in the pathogenesis of several diseases including alopecia areata, breast cancer, tumor
and cancer progression, atherosclerosis in human carotid plaques, chronic renal diseases, diabetes,
obesity, ovarian cancer, prostate cancer, hepatocellular carcinoma, and pulmonary fibrosis. Despite its
controversial role in multiple diseases, the aberrant expression patterns has been observed in the onset
and progression of cancers. In peripheral blood mononuclear cells of patients, the histone modification
patterns were altered and the expression of SET7 was elevated [69]. Emerging evidence has also
demonstrated its role in solid tumors. Zhang et al. demonstrated that SET7 interacts with transcription
factor GATA1 and promotes downstream VEGF transcription and tumor angiogenesis [40]. Inhibition
of SET7 activity by the SET7 inhibitor cyproheptadine reduced the estrogen receptor alpha expression
in MCF7 cells that is important for cancer progression, phencopying the SET7 knockdown studies [37].

Therefore, there is urgent need to develop novel SET7 inhibitors for further detailed chemical
biology investigations as well as drug design for cancer therapy.

Several attempts have been made to develop SET7 inhibitors. Both (R)-PFI-2 and cyproheptadine
were reported to bind with the peptide binding site while other inhibitors lack potencyor selectivity.
Recently, we have reported the first cofactor-competitive SET7 inhibitor, DC-S239, with the help of
structure-based drug design methods and chemical modifications. However, the chemotypes of current
SET7 inhibitors are limited and no SET7 inhibitors have progressed into clinical trials. Thus, potent,
selective SET7 inhibitors with novel scaffolds still need to be developed.

In this paper, the previous identified DC-S239 was used as the starting point for scaffold hopping
and 2D fingerprint based similarity search leading to the identification of DC-S285, Both radioactive
methylation assays and CPMG assays validate the binding between DC-S285 and SET7. In addition,
in cellular studies, DC-S285 could significantly inhibit cancer cell proliferation in a dose-dependent
manner with micromolar potencies.

Then in the second round similarity search based on DC-S285, the more potent compound
DC-S303 was identified with an IC50 value of 1.1 µM. In vitro selectivity profiling demonstrated its
moderate selectivity against other methyltransferases. Combined with molecular docking result, we
carried out the SAR study that shed light on future medicinal chemistry optimizations. This promising
compound will facilitate the SET7 related biology studies and provide a good scaffold for future drug
design and development.
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