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Abstract

Background: Microarrays depend on appropriate probe design to deliver the promise of accurate genome-wide
measurement. Probe design, ideally, produces a unique probe-target match with homogeneous duplex stability
over the complete set of probes. Much of microarray pre-processing is concerned with adjusting for non-ideal
probes that do not report target concentration accurately. Cross-hybridizing probes (non-unique), probe
composition and structure, as well as platform effects such as instrument limitations, have been shown to affect
the interpretation of signal. Data cleansing pipelines seldom filter specifically for these constraints, relying instead
on general statistical tests to remove the most variable probes from the samples in a study. This adjusts probes
contributing to ProbeSet (gene) values in a study-specific manner. We refer to the complete set of factors as
biologically applied filter levels (BaFL) and have assembled an analysis pipeline for managing them consistently. The
pipeline and associated experiments reported here examine the outcome of comprehensively excluding probes
affected by known factors on inter-experiment target behavior consistency.

Results: We present here a 'white box' probe filtering and intensity transformation protocol that incorporates
currently understood factors affecting probe and target interactions; the method has been tested on data from
the Affymetrix human GeneChip HG-U95Av2, using two independent datasets from studies of a complex lung
adenocarcinoma phenotype. The protocol incorporates probe-specific effects from SNPs, cross-hybridization and
low heteroduplex affinity, as well as effects from scanner sensitivity, sample batches, and includes simple statistical
tests for identifying unresolved biological factors leading to sample variability. Subsequent to filtering for these
factors, the consistency and reliability of the remaining measurements is shown to be markedly improved.

Conclusions: The data cleansing protocol yields reproducible estimates of a given probe or ProbeSet's (gene's)
relative expression that translates across datasets, allowing for credible cross-experiment comparisons. We
provide supporting evidence for the validity of removing several large classes of probes, and for our approaches
for removing outlying samples. The resulting expression profiles demonstrate consistency across the two
independent datasets. Finally, we demonstrate that, given an appropriate sampling pool, the method enhances the
t-test's statistical power to discriminate significantly different means over sample classes.
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Background

Microarray technologies are high through-put platforms
that measure some molecular fraction of a sample [1-5].
Gene expression microarrays assay the concentration of
cellular transcripts at the time samples were harvested [1].
Depending on the probe design, the technologies allow
one to quantify some fraction of the active genes' tran-
script levels over the conditions of interest. Accurate
assessment of the transcriptional activity depends on how
correctly one interprets the source of a signal [6-10]. For
example, several investigators have pointed out the cross-
hybridization problem: many of the probes in any given
design do not uniquely bind to a single part of the
genome, making interpretation of any measurement aris-
ing from such a probe problematic [11,12]. Work by our
group and others pointed out that probes binding where
SNPs are known to occur in expression arrays can result in
an altered extent of binding, depending on the alleles
present, sometimes with large consequences for the inter-
pretation of the amount of a transcript [ 13-16]. Our group
and others have shown that internally stable structures in
either the probe or the target that limit the accessibility of
each to the other can materially affect the extent of signal
[17-19]. The fluorescent response from the scanner or
imager is not consistent over the entire response range of
the microarray itself, so limits must be imposed on the
signal range from which the values are analyzed (outside
the linear range of the scanner, bins must be used instead
of fluorescent unit values) [20-22]. It has long been
known that the variation due to sample handling may be
far greater than the variation due to the primary experi-
mental variable [23], but in the absence of internal con-
trols and general calibration standards we must resort to
experiment-specific adjustments [24]. The total fluores-
cence per array has been previously suggested as one test
of batch consistency [25], which can be represented either
as the average signal per probe or signal per ProbeSet,
although in neither case cited do the investigators incor-
porate the scanner limitation when performing the calcu-
lation. This metric reflects the labelling efficiency per
molecule, but is not sensitive to sample degradation or
large differences in the number of genes expressed, so we
extended the metric to include the total number of
responsive probes in the linear range [21,22]. As indicated
by the references given for each factor, individual investi-
gators have shown that each of these effects can have a sig-
nificant impact on the outcome of an analysis, yet, to the
best of our knowledge, no one has put all of them together
into a simple-to-use pipeline and then tested the final
effect on analysis and comparison of experiments. The
impact of the factors varies according to sample character-
istics that are independent of the experimental factor (i.e.
probe properties and biological properties that are not
correlated to the factor of interest and not subject to esti-
mation by the experimental controls) and this type of bio-
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logical/biophysical variation has created distinct
dilemmas for the Microarray field: 1) across experiments,
particularly across platforms, analyses lead to inconsistent
outcomes and 2) significantly correlated gene lists are not
reproducible in classification accuracy across datasets, or
even within a datasets but across classification algorithms
[9,10,26-30]. We here demonstrate that two commonly
applied data normalization algorithms used in lieu of
data cleansing, RMA [6] and dCHIP [31], that take a
generic approach, using all probes as equally relevant
reporters, interpret signal intensities of probes differently
from one another, and give different results for each data-
set. Changes in individual probe signal estimates trans-
lates into changes in ProbeSet values, and those changes
alter where the ProbeSets cluster and the significance of
expression changes [19]. However, using the complete set
of cleansing filters described above, the response patterns
of component probes and the aggregated value used for
the ProbeSets become much more consistent, and subse-
quent analyses are far more robust. Hereafter the pipeline
which we present is referred to as BaFL, or Biologically
applied Filter Levels.

Black box Strategies

A number of primarily statistical approaches have been
applied (e.g. dCHIP, RMA, gcRMA) [6,31-33] to remove
measurement variation (from sample, handling and
instrumentation sources), from microarray data, that is
unrelated to the experimental factor. These algorithms
function as black-box techniques in that all sources of var-
iation are merged. The probes that cross-hybridize will
differ for every individual and thus the effect will be some-
what different in each experiment; a similar effect will be
observed with probes sensitive to the presence of SNPs
[11-13,21]. By not handling each type of factor separately
it is not possible for an investigator to understand the
extent to which each factor influences an experiment's
results. These methods tend to augment a models sensitiv-
ity to different sources of variance in the data, as seen by
the variable output of sample classification and the signif-
icant gene lists; the outcome has been that the processed
data leads to good model performance within but not
between experiments, using the same or different classifi-
cation methods [10]. The implication is that these
approaches over-train for the factors that apply in one
experiment and that those factors are not consistent in
their impact on the next experiment. This would be
expected if some of the result is due to variables with sys-
tematic effects on a subset of particular probes, such as the
occurrence of different SNP-responsive probes that will
give distinct patterns in different study populations [13-
16]. In order to demonstrate that the data inconsistencies
are sample/population or platform dependent, an investi-
gator needs to be able to delve into the aggregated signal
and identify discordant probes and the likely causes of
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their behaviour, and then perform follow-up assays as
needed, such as genotyping samples. A black box method
does not allow the investigator to understand which par-
ticular type of secondary assay must be performed. Our
approach is to identify and remove all problematic probes
in a progressive manner, categorizing them as they are
removed. Post- BaFL filtering yields a final set of data with
very consistent responses between experiments; in addi-
tion the investigator obtains categorizations of the
excluded probes, so each can be examined and probes can
then be reincorporated at the discretion of the investiga-
tor. The impact of some of the factors is study dependent
(e.g. SNP representation in different populations will
vary), but, since our group's interest is to identify diagnos-
tic signatures that are general rather than specific to sub-
groups, our requirements in the following analyses of spe-
cific experiments are designed to find gene patterns that
are robust to individual sampling and technical variation,
allowing high accuracy in sample classification, whether
binary or multistate [34-40].

An advantage of the multi-probe per transcript platforms
is that multiple measurements are available per gene-sam-
ple, increasing confidence in the measurement [41]. Our
pipeline allows the analyst to select the number of probes
that must be present to define a robust ProbeSet; the pipe-
line default is 4. This can be set to any value deemed rea-
sonable by the investigator: for example, on single-probe
arrays, such as the Agilent 4 x 44 k arrays or Affymetrix
SNP6.0 arrays, 'one' will be the only reasonable setting.
An optional constraint for multi-probe arrays is that this
must be exactly the same 4 probes per array in a sample
class or across the experiment.

Variation arises in the sample handling steps; this is lab
dependent [7,10,26,41] and is not subject to the absolute
cut-offs described above. In the BaFL pipeline, statistical
tests are used to compare a given chip's performance to
those in the experiment as a whole, based upon the
remaining probes and ProbeSets. The tests for overall sim-
ilarity include: the mean signal per probe, the total
number of probes, the mean signal per ProbeSet, and the
total number of ProbeSets for each array in a study. The
scanner manufacturer's specification for the linear detec-
tion range can be used to set lower and higher bounds for
interpretable signal [22,42]; while they may be too strin-
gent, in the absence of calibration standards and consist-
ent controls we concur with the opinion of others that this
is a reasonable approach [24]. These are parameters that
may be set by the investigator, based on knowledge of the
particular system used. This comparison is used to deter-
mine included and excluded samples for the subsequent
analyses and comparisons.

The collection of methods has been instantiated in a soft-
ware pipeline, with a database backend, that includes the
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following steps: upper and lower limits on intensities that
reflect scanner limitations, elimination of probes with
cross-hybridization potential in the target genome along
with those whose target sequence no longer appears in the
reference genome (some are lost as the genome is
refined), elimination of probes sensitive to regions of
transcripts with known SNP variations, and elimination
of probes with low binding accessibility scores. This only
removes known sources of variation and therefore there
may still be probes affected by phenomena such as alter-
native splicing, degradation mechanisms, etc. [26]. The
pipeline is available as source code, and can be configured
for other parameter settings, methods, and filter sets (for
other types of arrays). The BaFL pipeline, in conjunction
with the ProbeFATE database system, allows investigators
to identify potential regions of interest, for further analy-
sis.

Results

The following results document the effects of each stage in
the BaFl cleansing process. First, we indicate the number
of probes removed per filtering step and show some evi-
dence that the intensity values from the most thermody-
namically stable probes may provide an internally
consistent way to assign a lower (background) detection
limit. Second, we provide evidence for the validity of each
step that removes probes and samples, using batch
responses. Third, we provide evidence that the cleansing
methodology produces consistent expression profiles
across the two independent datasets and from this we
obtain models of sample class correlations that yield clear
latent structure that is closely replicated between
ProbeSets in the two sample classes for both of the data-
sets. Finally, we show that, given an adequate sampling
size, the power of the basic t-test is significantly enhanced
when values obtained from the BaFL pipeline are used,
compared to two other methods.

Probe Filtering Output

The probe sequence-specific filters remove probes match-
ing unidentifiable targets, probes having cross-hybridiza-
tion sources, probes no longer matching targets, probes
having limited duplex accessibility or stability, and those
probes for which the presence of SNPs is known to be pos-
sible. These filters are consistent across all arrays; the
number of probes excluded by each filter is presented in
Table 1. The order in which these filters are applied does
not affect the final outcome, but some probes can be
removed for more than one reason, so the class into which
they fall will depend on the order in which the steps are
run. The position of the probe on an array is an unambig-
uous identifier at the probe level: this (%, y) information
for the remaining probes after all of the filtering steps, is
used to retrieve intensity data for aggregation, testing and
modeling, and is provided as Additional file 1[19].
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Table I: Effects of Probe Filters

Platform Type

Filter GeneFocus HG_U9%5av2 133A 133plus2
Unidentifiable Target 2.19% (0.06%) 2.79% (1.40%) 2.17% (0.02%) 10.80% (0.0%)
SNP 5.92% (12.11%) 1.78% (3.61%) 4.14% (8.47%) 1.94% (4.36%)
Cross-hybridization 60.06% (18.39%) 60.30% (19.47%) 60.30% (18.86%) 62.15% (15.13%)
Biophysical 5.71% (3.60%) 5.16% (3.84%) 5.58% (3.46%) 13.37% (2.81%)

Percent Probes Lost as Total and (Perfect Match).

Number of probes determined to be unusable for each filtering step across several generations of the Affymetrix human gene expression array. The
total number of probes in each array is the denominator, values in parentheses refer to the prefect match probes only. Each set was run
independently so one does not see the subset of probes that fall into multiple categories, and the totals see to add up to more than the number of
probes present. For example, eliminating probes that lack sequence information causes the Biophysical Filter to remove2.47% (2.44% PM) of the
probes from the U95Av2 list, rather than 5.17%. Note the Unidentifiable target total for U95Av2 is now 0.06%, some probes have had their status
revised since this analysis was first done.
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Background Estimation. Using the intensity (y-axis) of the set of low target-affinity probes (AG < -3.6 kcal/mol) over the
complete set of samples in each experiment (x-axis), the median value approximates the scanner's lower limit specification: the
value is 189 fu. for the Bhattacharjee experiment arrays and 204 f.u. for the Stearman experiment arrays. The Stearman dataset
has one obvious outlier (the final sample) which was detected and subsequently removed through our sample cleansing rou-
tines.

Page 4 of 17

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:449

We expect that, after selecting for the minimum number
of probes per gene based on the platform type, the linear
range scanner limits are the parameters most likely to be
changed by other investigators, depending on the type of
platform and individual instrument behaviour. We have
evidence that the lower detection limit can be estimated
using the probes excluded with the free energy biophysical
filter: these are probes that putatively cannot effectively
bind target either because of probe internal structure or
duplex instability. Figure 1 shows the mean (A) and
median intensities (B) of this group of probes across the
original set of samples: for these experiments the median
is very close to the scanner cut-off that we originally chose
to use; recent work on ovarian cancer data from the same
platform has confirmed this feature for the low affinity
probes (data not shown). Upper limits are more difficult
to estimate and in the absence of calibration standards we
relied on the instrument specifications.

Filter Effects
Since some of the filters lead to a considerable loss of the
usable measurement pool, an obvious question is their
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importance. Previously published work has shown the
effect that SNPs can have on estimates of expression levels
[13-16]. The largest subset of data is lost from the cross-
hybridization filter. It is unknown how many of these
events occur in any individual genome and how much
variation can be expected across a sample population. To
investigate this factor, a query was run to recover probes
that are predicted to cross-hybridize (based on the con-
sensus human genome build 36.3, identified by the
ENSEMBL database) [43]. These probes were then sub-
jected to all of the other filters, in order to isolate the
impact of this factor. Examples of the results are presented
in Figure 2 (Al and A2), showing how variable the effect
can be. Both the type of pattern and the level of impact
differ across individual samples in unpredictable ways: it
is not possible to predict particular effects de novo, indicat-
ing that the filter is important and should be retained (Fig-
ure 2: B1 and B2).

Array-Batch Results
Arrays that are outliers due to sample processing problems
were identified by comparing individual arrays to the
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Response patterns for cross-hybridizing probes. The x-axis is the index of a probe within a ProbeSet; the y-axis is the
mean intensity of a probe across the samples in a class. Al and A2 show only cross-hybridizing probes for the two classes in
each experiment. For a different gene, Bl and B2 show a complete set of probes, with filled circles indicating the cross-hybrid-
izing probes. Cross-hybridizing probes are much less consistent in direction and extent of change between disease classes and
across sample sets than the filtered probes (see Figure 5 for comparison).
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batch-mean values within each experiment. Technical
problems are assumed to manifest themselves by signifi-
cant changes in the distribution of measurement values;
the tests are described below. Figure 3A1 presents the aver-
age probe intensities per probe remaining in the cleansed
array file (after removing values that fall outside the linear
range) for the much larger Bhattacharjee experiment. Fig-
ure 3A2 shows the number of such probes remaining per
array, with mean and standard deviation lines provided
for comparison. The arrays were grouped in the plots
according to their batch membership and are so labelled
(X' denotes batch 10; there is no batch 2 nor 9). Batch 3
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(circled) as a whole is skewed to the lower end in both
tests, so the entire set of arrays was removed from subse-
quent analyses. Figures 3B1 and 3B2 show the effect of
removing Batch 3 from the analysis. Similar cleansing
results for the Stearman experiment samples are provided
as Additional file 2[19]. Since the probe sequence based
filters remove exactly the same probes in all cases, the dif-
ference as to which specific probes are removed in differ-
ent arrays is thus a result of the linear range filter. Batch 3
samples may have had some degradation since the arrays
demonstrate both lower average probe intensity and fewer
overall probes. It is reassuring to note that the Normal
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BaFL Sample Batch Analysis. Graphical depiction of array/batch characteristics for samples in the Bhattacharjee experi-
ment, with array-wide mean fluorescence and mean number of contributing probes, after exclusion of probes that lie outside
the scanner detection linear range. The top pair (Al and A2) shows the complete data set while Bl and B2 show the effect of
removing batch 3 and outliers. The y-axis is the mean intensity per probe (Al and Bl) or the number of probes in the linear
response range (A2 and B2) and the x-axis is number of samples; batches have been clustered together and are indicated by the
numeral on the graph (there are no batches 2 or 9). The mean value across the samples is shown (solid line) and the Istand 2nd
standard deviations from the mean are shown (dotted lines). The numeral shown indicates to which batch the sample belongs
(10 is X), the color indicates disease class (blue = Adenocarcinoma, red = Normal, purple = Small Cell Carcinoma, green = Pul-
monary, and orange = Squamous). The red circle emphasizes the divergent behaviour of batch 3 in both tests. The same analy-

sis for the Stearman data is given as Additional file 2[19].
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samples (numerals in red) were processed across several
batches and do not show markedly different overall
responses than the disease samples in the same batches.

The affy package [25] results, when graphed, also indi-
cate that there is a significant difference in Batch 3 proper-
ties; therefore this outcome is not an artefact of our probe
cleansing methodology. As input to the packages graphics,
the mean probe intensity across the arrays in a given batch
was created as a mock CEL file (such files can also be use-
ful for direct input into R packages; the one we created is
available on the Supplementary Materials Web site for this
article, see the Cleansing Results section [19]). We com-
pared the unfiltered data, with and without the outlying
samples, and the filtered data, with and without the out-
lying samples. Boxplots and kernel density plots for the
outcomes at various data processing stages are shown in
Figure 4. Batch 3 is clearly an outlier in both the boxplot
and density representations in the unfiltered data (A1 and
B1). The middle column of graphs (A2 and B2) show the
effect of removing Batch 3 and outliers in other batches,
but without BaFL filtering of the probe data (note that this
is the data set used as input to the RMA and dCHIP algo-
rithms [6,31] ). The data distributions still demonstrate a
substantial skew. The right-most column of graphs (A3
and B3) show the effects of combined data and sample
cleansing with BaFL probe filtering. Note that the linear
range cut-off enforces the truncation of the distributions,
which is most visible in the boxplots. The most nearly
normal distribution is observed in panel B3 of Figure 4.
Removal of Batch 3 accounted for 38 samples in the Bhat-
tacharjee experiment. Similar output for the Stearman
experiment is provided as Additional file 3[19].

To note a final batch anomaly, after probe filtering a local-
ized region of persistently low-intensity spots (below the
cut-off threshold) was observed within a small circle of
the arrays in Batch 10, affecting an area of ~ 5,600 probes
(2nr?; radius = 30). Array image representations were con-
structed by constructing mock .CEL files using the R affy
package (provided on the Supplementary Materials Web
site for the article, under Cleansing Results, as BaFL
Cleansed Batch Summaries [19]). Since we constrained
the final dataset to consist of probes common to all sam-
ples, these probes were excluded from our final set. A pos-
sible consequence is elimination of the related ProbeSet if
the number of probes thereby dropped below 4. The fil-
ters did not remove these probes from the other batches,
so, had we not removed them, the consequence would
have been a batch-specific decrease in the apparent
expression of these probes, or their related ProbeSets.
Batch 10 contained no Normal samples and only one
non-Adenocarcinoma sample, which could have led to
the false positive discovery of these ProbeSets as signifi-
cant in lung cancer Adenocarcinoma.

http://www.biomedcentral.com/1471-2105/10/449

Consistency of Probe Response

Our goal is to find strong diagnostic signatures that are
not sensitive to individual sample differences within a
class. Thus, the last filtering step that we apply is to iden-
tify the intersection of common probes over the samples:
the x and y locations were used to identify matched
probes across all of the remaining samples. Next, sets con-
taining at least 4 probes were collected, and from these the
ProbeSet mean intensities were calculated, as the simple
mean of the values of the probes remaining in the set, for
each sample. Graphical displays of the average probe
intensity over the samples in the class, as well as the aver-
age ProbeSet intensity over the samples in the class, show
that there is remarkable consistency of the probe response
profiles between experiments, some examples of which
are shown in Figure 5. ProbeSet responses across samples
in a class were further categorized based on the outcomes
of Welch's t-tests [44], which were performed in log, space
with an alpha of 0.05. Each set was assigned to one of two
categories: Significantly differentially expressed (DE) or
not DE. Figure 5 shows a representative ProbeSet example
of each type, for both experiments.

Latent Structure Analysis

Laplacian dimensionality reduction produces an intuitive
summarization of the results over the complete group of
ProbeSets. Figure 6A shows the sample correlation across
the BaFL values for the 940 ProbeSets that RMA and
dCHIP both predict as significantly differentially
expressed (by Welch's t-test). The white circles indicate
those ProbeSets for which BaFl does not predict signifi-
cant differential expression (at an alpha of 0.05). Figure
6B shows the 325 ProbeSets (a subset of the 940 in Figure
6A) that BaFL predicted to be DE across both experiments.
The structures that are produced rotate around the x axis
at 0, depending on how they correlate to the gene to
which they were normalized. The spatial homogeneity of
these figures demonstrates that the latent structure exists
across the datasets and that this structure is not just an
artefact of the BaFL selection method. The ProbeSet lists
and intensity values per sample are provided in the Sup-
plementary Materials Web site for the article, LatentStruc-
ture section, latent_data folder [19]. Graphical summaries
of results based on the input from RMA and dCHIP-pro-
duced values, and with additional information about con-
cordance in the direction of change, are available as
Additional file 4[19].

Power Analysis

Microarray technology has the well-known difficulty that
N >> P, that is, far more genes are assayed (N) than sam-
ples (P) are available. Thus a large fraction of the microar-
ray literature is dedicated to the description and
validation of algorithms that normalize the data and min-
imize the family wise error rates of a given test, in these
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Figure 4

Batch Summary of Cleansing Process. Batch characteristics resulting from the affy package analysis. Boxplots (top row)
and densities (bottom row) of the Bhattacharjee data: summary of batch intensities. The color of batch results is consistent in
all graphs, as indicated in the key in the B panels. The y-axes are the log, of the intensities of the probes in a batch. Panels Al
and B depict the completely unfiltered data set, including all probes and Batch 3: note the obvious offset in Batch 3 and the
strong skew to the resulting distributions. Panels A2 and B2 show the effects of removing Batch 3 and additional outlying sam-
ples, but include all probes: the skew remains significant but no batches are outliers. Panels A3 and B3 show the output after
both sample cleansing and BaFL probe filtering: the distribution is more normal but the tails have been truncated. Note that the
total density scale in panel B3 is reduced relative to Bl and B2 because fewer probes are included and less variance is
observed. Similar output for the Stearman experiment is provided as Additional file 3[19].
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Measurement Profile Consistency. Measurement profile consistency for a probeset across experiments. One example is
given for each of the two types of ProbeSet probe response classification categories: Significantly differentially expressed (DE)
or not. Panel Al is for a non DE ProbeSet in the Bhattacharjee experimental results and A2 is for the same ProbeSet in the
Stearman experiment. Bl and B2 are for a DE ProbeSet in each experiment. Mean intensity for the probe in the sample class
(fluorescent units) is on the y-axis and probe index within the given ProbeSet is given on the x-axis. Intensities are not on the
same scale for the two experiments since the labelling was done independently; it is the patterns and relative intensities that

are conserved.

assays the number of genes incorrectly classified as DE. In
essence, the interplay between an effect size, effect varia-
tion, sample size and type I and type II errors are com-
pared. Figure 7A summarizes the results of the series of t-
tests performed with the 4200 BaFL-passed genes, for the
Bhattacharjee experiment adenocarcinoma samples, for
all three of the methods, while Figure 7B similarly sum-
marizes the results for the Bhattacharjee experiment nor-
mal samples. In panel A it is obvious that the BaFL
interpretation of values produces a significant increase in
the adenocarcinoma data's power and in Panel B it can be
seen that it produces a respectable relative increase in
power. The analysis results shown include only values
produced by each method for the 4200 ProbeSets which
survived the BaFL cleansing process, but using the omitted
8,425 ProbeSets also passed by RMA and dCHIP with
their respective values does not improve the results for
RMA or dCHIP (results not shown).

We did not observe the same increase in the t-test power
for the samples from the Stearman experiment (data not
shown), as is to be expected given the small sample size.
Therefore, we performed a simulation to estimate the
appropriate sampling size needed to achieve a power = 0.8
(for a = 0.5). The results are presented in Figure 7C. We
observed that, when the effect size is small and discrimi-
nation is challenging, the rate at which the necessary sam-
ple size increases is substantially slower for the BaFL data.
We note that the final 700 tests were excluded in Figure
7C, since for all methodologies the appropriate sample
size increases exponentially: for these observed differ-
ences to be considered significant between the classes the
dataset would have to unrealistically large for all three
methods [45].

Discussion
The BaFL pipeline as presented here enhances the ability
of an analyst to obtain reliable gene expression difference
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Figure 6

Cross-dataset Latent ProbeSet Structure. Cross-dataset Latent ProbeSet Structure using BaFL produced values. Two-
dimensional projection calculated with spectral method of Higgs et al., as derived from the LaFon method. Sample correlation
values using differential expression (DE) gene responses were used as input. Each symbol represents a ProbeSet, both color
and direction of arrow indicate change: up (gray)- or down (black)-regulation, or not significantly different (white). Panel A: the
940 ProbeSets that are DE in both experiments. These ProbeSets pass BaFL pipeline criteria and are categorized as DE accord-
ing to both RMA and dCHIP output (but not always in the same direction). Dark Grey upward-pointing arrows indicate up-reg-
ulated genes in the adenocarcinoma samples relative to normal samples. Black downward-pointing arrows indicate down
regulation in adenocarcinoma samples relative to normal samples. Open white circles in Panel A indicate ProbeSets that BaFL
does not interpret as significantly differentially expressed, while the other methods do. Bottom graph: the subset from panel A
of the 325 ProbeSets predicted to be significantly DE by BaFl. The tables from which the graphs are made are provided in the

Supplementary Materials Web site for the article, Latent Structure [19].

information from the Affymetrix™ U95Av2 expression
microarray platform, using specific, well-defined filters to
remove probes that might produce confounded
responses. We describe it as a white-box approach because
not only is each class of filter defined, but the output is
saved as tables, such that the investigator can determine
why a probe was filtered out and can resurrect it at will.
Very minor changes to the pipeline allow its use with
other Affymetrix expression arrays; altering the require-
ment for multiple probes allows it to be used with any
expression array, once the filters have been generated.
Some of the filters are relevant to non-expression arrays,
such as the cross-hybridization and probe structure filters,
so the pipeline is relevant to platforms such as the Affyme-
trix SNP6.0 array if the SNP filtering module is removed.
The ability to evaluate probe performance can facilitate
the investigator's identification of transcript or genomic

regions of interest, which may prove to be correlated to
the phenotype of a disease state. Finally, the BaFL
approach allows the investigator to identify entire
ProbeSets for which one tissue state demonstrates negligi-
ble transcript concentrations in contrast to the second tis-
sue state.

Modified CDFs for Computational Efficiency

Since the probe characteristics are universal to an array
design, one can easily construct a modified CDF that
excludes particular subsets of probes. The advantage to
performing this early in the analysis pipeline is that it
decreases the total number of probes one must manipu-
late, decreasing the computational requirements for an
analysis. We expect that different investigators will have
preferred CDFs: for example, the cross-hybridization filter
acts as a PM only filter and if a mismatch adjustment is
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T-test Power Analysis. The power (sorted on the y axis)
for the three probe cleansing methodologies based on t-tests
of 4200 ProbeSet values per array (on the x-axis), using the
same set of arrays in all cases. Panel A shows the power
achieved by the Bhattacharjee adenocarcinoma sample strati-
fication (plotted for RMA, dCHIP, and BaFl), panel B graphs
the same analysis results achieved for the normal samples.
Panel C presents the calculated sample size required (on the
y-axis) in order to achieve a power = 0.8 (at o. = 0.05) pre-
suming the ProbeSet variation is adequately reflecting the
true variation from the Stearman measurements. Although all
4200 ProbeSets were used in the simulation, the x-axis is
truncated to show the beginning of the rise coming off the
baseline.

wanted then the investigator will perform a preliminary
analysis and incorporate this information into a modified
CDF. An application called ArrayInitiative, to gen-
erate such CDFs, is associated with the DataFATE system
(Overall and Weller, ms in preparation).

Sample Cleansing

Sample comparisons are usually performed prior to any
data assessment, which can lead to erroneous conclusions
about which are the true outliers. We have presented a
protocol that proceeds via measurement characteristics to
perform batch analyses for technical problems, and fol-
lows up with probeset characteristics thereafter to manage
biological outliers. The selection of stringency is up to the
needs of the investigator: when we relaxed the sample fil-
tering process for the Bhattacharjee adenocarcinoma ver-
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sus normal samples (from 1 to 2 standard deviations of
mean intensity), an additional 28 samples and approxi-
mately 400 probesets are included in the dataset (data not
shown).

Data Cleansing

Extensive cleansing of probe level microarray data is a pre-
requisite to any meaningful data manipulation. Probe
level cleansing, as we have described here, minimizes
extraneous non-experimental factor variances, such as
genotypic contributions and cross-hybridization. Most
importantly a successful method returns consistent cross
experimental results, including strong correlations in
expression profiles and class effect sizes [46].

As shown in Figure 5, data processed through the BaFL
pipeline demonstrates that the desired properties of pro-
file consistency and proportional effect size were main-
tained across independent experiments, indicating that
there is a correlation between gene response and disease
state. Two dimensional projections produced by LaFon's
method [47], shown in Figure 6, using the genes predicted
to be DE by RMA and dCHIP, but using values based on
BaFL cleansing, showed stronger class correlations than
projections of the data using the RMA and dCHIP trans-
formed values, and these correlations were in agreement
across both experiments.

Biological Outcome

For a data mining project using BaFL pipeline data, we
selected ProbeSets present in the adenocarcinoma state
(minimum of 4 cleansed probes) and absent in the nor-
mal state. That is, we searched for ProbeSets that are on
versus off in two conditions, rather than for significant
expression differences in ProbeSets present across all sam-
ples. Although there are only a handful of such ProbeSets,
osteopontin (SPP1) was identified with that analysis (data
not shown): it is implicated in both lung cancer develop-
ment and patient survival [48-52]. It is also straightfor-
ward to test at the individual probe level for expression
inconsistencies between neighboring probes, to predict
the presence of alternate splice forms (data mining results
to be published separately). The datasets produced by the
BaFL pipeline at the various stages are available ot the
Supplementary Materials Web site for the article, in the
Cleansing Results and Final Datasets folders [19].

Power

In a complex phenotype involving destabilization of proc-
esses that drive further changes, determining the biologi-
cally significant genes is open to considerable debate.
Traditional analysis methods and the majority of the clas-
sification/clustering algorithms partition samples into
Euclidean space based upon the similarity of mean expres-
sion values within groups, while maximizing the group
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differences. Regardless of the algorithm employed, reduc-
ing the noise and excluding uninformative genes
improves the separation of classes, hence the need for
down selection [44,53-57]. We compared the impact that
the three probe cleansing implementations had on the
power of the t-test to discriminate between sample classes.
We demonstrate that, given an appropriate sample size,
the BaFL results give a significant increase in the power of
the test statistic to correctly classify samples, relative to the
other two methods, Figure 7A and 7B. Since the same n
and o exist for all three methodologies, the increase in
power either is due to a decrease in the standard deviation
of the mean of the individual observations or because the
difference between the two class means shifted as a result
of using the BaFL method [44]. If one refers to Figure 4
panel A3, it can be seen that the standard deviations are
diminished for the final BaFL data, relative to panel A2. At
the same time, it is likely that elimination of confounding
variables facilitates a more accurate estimation of the class
means [17,18], enhancing the ability to distinguish shifts
that do occur, as observed in Figure 5, panels A1 and A2,
in which the difference in means for probes between the
sample classes is statistically significant in the BaFL cases.

Platform Enabled Analysis Flexibility

Although not the primary focus of this report, the Data-
FATE analysis platform (Carr and Weller, ms under revi-
sion) that we have used provides great flexibility in
designing pipeline architecture, and the ProbeFATE
instance makes simple the task of sub-selecting particular
types of probes for detailed analysis. For example, in order
to produce Figure 2 panels A1 and A2 simple SQL was
used to select probes affected only by cross-hybridization,
in order to highlight the difference in their response pat-
tern compared to the highly cleansed probes.

Conclusions

We have presented a comprehensive protocol for prepar-
ing microarray data for gene expression level analysis,
using a suite of probe sequence and measurement based
filters, and have shown that by so doing more reliable tar-
get measurements result, whose trends are consistent
across independent experiments. While individual com-
ponents of our protocol have been published elsewhere,
to our knowledge the methods have not been integrated
together and the overall effect assessed. Understanding
contributions to a response allows researchers to have
more confidence when making cross experiment data
comparisons, and will facilitate our understanding of
gene behaviour within a sample. We do expect that this
type of analysis will only be improved with the addition
of more sophisticated noise reduction methods applied to
data prepared in this manner. Finally, probe based analy-
sis is greatly simplified if carried out with a database-ena-
bled analysis system such as ProbeFATE, which uses the
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probe and its related measurement as the atomic unit of
observation and has been optimized for manipulations
and aggregations that build specific subsets and supersets
based on user-coupled criteria.

Methods

Hardware and Software

A system comprised of a relational database and associ-
ated analysis tools, called ProbeFATE, was used for data
storage, organization and simple transformations, the
contents of which then became the basis for querying for
data used in specific analyses performed with Python and
R scripts. ProbeFATE was first used as part of the doctoral
thesis of Dr. Deshmukh, and is a specialized implementa-
tion of the DataFATE management system developed by
Drs. Carr and Weller, which is described in detail else-
where (Carr and Weller, ms in review). This instance of
the ProbeFATE system was developed for PostgresSQL
8.0.3 [58] and installed on an AMD Athlon™ 64 bit dual
core processor running SUSE LINUX ™ 10.0 as the operat-
ing system. Python 2.4.1 [59] scripts were developed with
the psycopg2 2.0.2 [60] module to automate the cleansing
process and modify the existing system. Through this
module data was extracted and manipulated, and was
piped for analysis in the R 2.3.1 language environment
[61] via the python rpy 1.0 module [62]. Additional soft-
ware included Oligoarrayaux 2.3 [63] for the calculation
of probe thermodynamic values and the python
MySQLdb 1.2.0 [64] module to enable querying of the
public domain Ensembl MySql database [43].

Datasets

Two independent experiments provided the datasets used
in testing the effects of the filtering algorithms. Both were
studies of adenocarcinoma patients in which the assays
were performed using the Affymetrix HG-U95Av2 Gene-
Chip™, so consistency of probe placement along the tran-
scripts in the samples is assured. Using this platform,
samples are assayed by 409,600 PerfectMatch and Mis-
match (PM and MM) probes across 12,625 defined genes
[65]. The largest, or 'Bhattacharjee’, dataset http://
www.genome.wi.mit.edu/MPR/lung contains measure-
ments taken from arrays of snap-frozen lung biopsy sam-
ples. The tissues, as described by Bhattacharjee et al. [66],
consisted of 17 normal and 237 diseased samples, includ-
ing 51 adenocarcinoma sample replicates, with disease
category assigned after histopathological examination.
The diseased samples are sub-classified into 5 states: 190
adenocarcinomas, 21 squamous cell lung carcinomas, 20
pulmonary carcinomas, and 6 small-cell lung carcinomas
(SCLC) [66]. From this study we used 125 of the 190 ade-
nocarcinoma array results and 13 of the 17 normal results;
the selection criteria are described below. There exists
some sample replication in this final dataset, as roughly 1/
3 of the final Bhattacharjee dataset arises from either nor-
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mal and disease tissue coming from the same individual
or two disease samples coming from the same individual.
However, these replicates were generated by macro-dissec-
tion of the tissue, and some of the disease replicates
appear (from annotation) to derive from distinct tumor
sections. Since this was not a genotype study we did not
average or drop any of these replicates, and indeed in our
hands the means of probes and ProbeSets from such bio-
logical replicates show as much variation between them-
selves as with data from different patients. The second,
'Stearman’, dataset (http://www.ncbi.nlm.nih.gov/geo/;
accession number GSE2514) consists of 39 tissue sam-
ples, fully replicated, from 5 male and 5 female patients
(four samples were taken from each patient: 2 normal
looking that are adjacent to the tumor and 2 actual aden-
ocarcinoma tumor samples); one of the normal samples
is missing, presumably it was removed for having unac-
ceptably high tumor content. These sample biopsies were
harvested using microdissection techniques and then
snap-frozen [67].

BaFL Pipeline Components

Probe Filtering

The BaFL pipeline can be divided into two filtering catego-
ries, the first, 'probe sequence’, category uses only the
nucleotide sequence of probe and genome for determin-
ing filters, and the second category uses an aspect of the
measurement (signal) as a filter. The probe sequence fil-
ters eliminate probes having attributes that confound the
interpretation of the signal intensity including: cross-
hybridization, loss of target sequence, SNP presence, and
structural accessibility, further described below. These fil-
ters affect all samples similarly.

I. Unidentifiable Target. The CDF base table for the
HG-U95Av2 arrays (Affymetrix NetAffx; http://
www.affymetrix.com/analysis/downloads/data/) was
queried for all 409,600 probes for which the probe
sequence annotation was known. At the time of this
study, there remained 11,432 probes, representing
174 genes, of unknown provenance (personal com-
munication, Affymetrix Technical Support to H. Desh-
mukh), which we eliminated from further
consideration[17].

I1. Cross-Hybridization and Loss of Target Sequence.
Probe cross hybridization is the major confounding
factor affecting the interpretation of probe responses
[11,12]. We have chosen to follow the Ensembl defini-
tions of cross hybridizations, where 23/25 nucleotides
must be in alignment, and we have queried ENSEMBL
Biomart: http://www.ensembl.org/biomart/martview/
3ee2b94e6eb250f709{fdf9474635fdf to acquire the
list used to perform this filtering step. This process
identifies probes that align to a single human genome
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region, and eliminates those which align to more than
one region of the human genome and also those that
don't align at all. We note that this comparison is
available only for perfect match (PM) probes and
therefore if mismatch (MM) probes are included in the
analysis an equivalent list must be acquired and
applied, or the level of filtering is not the same in the
two categories of probes, and any PM/MM compari-
sons will have a discrepancy in the reliability of the
two measurements. Most investigators no longer make
use of MM values in analysis methods, nor did we do
so here - from this point forward only PM probes were
considered.

III. Structural Accessibility. Probe sequences were
input to the OligoArrayAux software and the free ener-
gies for the most stable intramolecular species were
calculated and retrieved [63,68-70]. Parameter values
selected were: temperature range 41 - 43°C, 1.0 M
Na+*, and 0.0 M Mg?+. The average free energy for
homoduplex, as well as heteroduplex, across the range
of expected structures was included as probe sequence
annotation data in ProbeFATE. This information can
be used to filter for probes with selected levels of sta-
bility. We chose a cut-off value of AG < -3.6 kcal/mol
as predicting the presence of an internally stable probe
structure that competes significantly with target bind-
ing. In some cases numerical instability (unstable
duplex, in effect leading to division by 0 for the free
energy calculation) was observed in the output, and
such probes were also eliminated.

IV. Presence of SNPs. Probes identified by Affy-
MAPSDetector as having a corresponding transcript
with one or more identified SNPs in the probe-target
complementary region (from dbSNP) were excluded
[13]. Although the presence of the SNP within a sam-
ple may be of particular interest to a researcher, with-
out the individual allele call for each sample these
SNPs become a confounding source of variance. For
example, the probe may bind strongly to the mis-
match instead of, or as well as, the perfect match, and
thus the PM value will not reflect the transcript con-
centration.

V. Measurement Reliability. The individual CEL base
tables (i.e. the raw data) may be queried to determine
which of the probe signal intensity values fall within a
defined range, where the range indicates the limits of
the scanner's ability to provide signal that can be accu-
rately interpreted: above background and below satu-
ration. Values above the saturation level cannot be
extrapolated to a true value [21,22,71]. Although the
true range is instrument-specific, in the absence of
internal calibration controls that let us evaluate this
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limit we used the range of 200-20,000 fluorescent
units suggested by [21]. An investigator may assign
other limits, suggested by experience or available con-
trols, as appropriate. This query can be performed on
the reduced probe set, subsequent to the above 4 steps,
or it can be performed on the entire dataset and only
those probes passing both sets of requirements can be
stored for additional analysis.

VI. Statistical Rigor. In these experiments our criterion
was that, in a given sample, a particular ProbeSet must
have a minimum of four probes remaining, after the
steps described above, before a transcript-level value
would be calculated (in these experiments the tran-
script value was the simple mean of the set of remain-
ing probes). Probes in smaller sets were removed. A
plethora of procedural choices exists from this point
forward. An investigator may choose to simply enforce
the minimal acceptable number of probes per
ProbeSet and ignore whether the same set is present in
each sample, or enforce the complete identity of
probes in all samples, depending on the research ques-
tion. In the results reported here, we enforced commo-
nality of probes, aiming to examine the same subset of
alternative transcripts as much as possible. Clearly, the
greater the restrictions on number and commonality
the smaller the final dataset will be.

In steps I-IV, the probe sequence filters are inherent probe
characteristics rather than measurement characteristics
and apply equally to all arrays in an experiment done on
a particular platform: only the CDF (to link probe identi-
fiers and the x, y location of the probe to information in
the annotation files) and probe sequence files are required
in order to flag problematic probes. Thus the order of the
first four steps is irrelevant and can be set to optimize the
computational efficiency. Using our data the cross hybrid-
ization filter (IT) reduces the dataset most drastically, so if
it is applied first the succeeding steps will be accom-
plished more quickly. Once steps (I)-(IV) have been com-
pleted the results are applicable to any future experiments
using the same chip design and sequence files. The last
two steps described above, (V) and (VI), are experiment/
scanner dependent, and it is here that an investigator's
design and equipment will affect what appears in the final
gene list. Scanner response limits can be re-set in the code,
to reflect the behaviour of individual instruments.

Batch and Sample Filtering

Technical steps (handling) will cause the amount of tar-
get, the labelling of that target and the effective length of
the target to vary independently of the biological factors.
Similarly, biological factors, such as secondary infections
in cancer patients that lead to dramatic gene expression
differences compared to uninfected cancer patients, may
obscure the effect of the factor of interest. Technical differ-
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ences tend to be seen in 'batch' effects, i.e. in groups of
samples processed in parallel, while biological effects
must be screened by comparing an array to the set of all
arrays in its class (which may include multiple batches)
[3,25,42,72]. The Bhattacharjee data set was explicitly
batch annotated [66], while for the Stearman dataset the
scan date was used as a proxy for batch annotation: there
were 4 dates but in 2-day pairs one month apart, so our
assumption is that this reflects only two technical batches.
In the following discussion, both individual probe and
aggregated ProbeSet values were used to compare individ-
ual array to batch and sample class trends, as follows:

I. Probes-per-Sample

a. Compare the number of probes on an array con-
tributing to the overall intensity to the group
mean, using only those probes that survived the
first 6 steps of the pipeline. Arrays for which this
mean exceeded + 2 standard deviations of the
group (or class) mean were excluded from further
analysis.

b. Compare the mean signal per probe on an array,
to the group mean. Arrays for which this value
exceeded + 2 standard deviations of the group
mean were excluded from further analysis.

I1. ProbeSets-per-Sample

a. Compare the number of ProbeSets on an array
contributing to the overall sample intensity to the
group mean, using only those probes that survived
the first 6 steps of the pipeline, and for which at
least 4 probes were present in the ProbeSet. Arrays
for which this mean exceeded -1.5 standard devia-
tions of the dataset mean were excluded from fur-
ther analysis. The lower tail includes those samples
that would most significantly limit the probesets
remaining in the final dataset. This is the rationale
behind the stringency of this filter and why only
the lower tail was examined.

b. Compare the mean signal per ProbeSet on an
array to the group mean. Arrays for which this
value exceeded + 2 standard deviations of the
group (or class) mean were excluded from further
analysis.

The above two levels of filter were performed in parallel,
not sequentially, so there is no order of operations
dependence: failing either test was sufficient to eliminate
the sample from the pool. The filter in Ila is less rigorous
than the others, in order to retain more samples for the
final comparison, accepting that later pruning might be
required.
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In an independent QC test of the arrays, we performed a
parallel analysis of the datasets with the R-Bioconductor
affy package [25] using mock .CEL files, where probes
had been aggregated by batch. The results of this widely
accepted algorithm were compared with ours for both
batch and sample analysis effects: that is, with and with-
out the 'white box' probe cleansing approach. At each
stage of the above-described probe filtering process graph-
ics of the output were generated in order to monitor
batch-specific behaviour.

Latent Structure Analysis

In this set of analyses we used algorithms coded in R to
calculate the Pearson correlation matrix of the ProbeSet
expression values, using the BaFL values for the 940
ProbeSets that RMA and dCHIP both predict to be signif-
icantly differentially expressed in both experiments (cate-
gorized by Welch's t-test), based upon the samples, and
then projected the first Laplacian dimension of each data-
set against the other. Single value decomposition was per-
formed on the correlation matrixes, and row
normalization of the orthonormal (U) matrix to the first
ProbeSet provides the Laplacian dimensions [47]. A sec-
ond round of analysis was performed, using a subset of
325 of those ProbeSets that BaFL predicted to be DE across
both experiments.

Power Analysis

We explored the power of each univariate t-test as
afforded by the way in which the three cleansing method-
ologies transform signal intensities, using the R function
power.t.test[46,61]. The input to the function were
the lists of 4,200 ProbeSets, passed by the BaFL pipeline
criteria, but with values produced by each of the three
algorithms, in order to produce equivalent comparisons
of BaFL to the RMA and dCHIP methods. Given the
unbalanced nature of the larger dataset, a power calcula-
tion was performed for each disease state, based upon an
equally paired sample size, with the underlying assump-
tion that the observed variances and differences in means
are 'real' [44,46,61,73,74]. For the third part, because the
small number of samples in the Stearman experiment lim-
its the power of any statistical analysis, we performed a
simulation to explore the appropriate sample size needed
to achieve a power of 0.8 (for a = 0.5), with results shown
in Figure 7C.

Availability of Code and additional Supplementary
Material

This code and data and associated information are freely
available to everyone and can be obtained directly from
the author's Web site http://webpages.uncc.edu/
~kthom110/BaFL/ or by a request to the authors.
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Additional file 1
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the probes remaining on the U95Av2, after all of the probe sequence filters
have been applied. This facilitates consistent treatment of data files.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-449-51.CSV]

Additional file 2

Graphical depiction of the post-BaFL cleansing of the Stearman data.
Samples are grouped by a scan date proxy for batch preparation and
colored according to tissue classification (red = 'adenocarcinoma' and
blue="non-cancerous')

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-449-S2.PDF]

Additional file 3

Distribution summaries for the Stearman data, by scan date. From left to
right the raw data, sample and batch cleansed, and BaFL processing. Top
row has box plot summaries and bottom row has kernel density plots.
Click here for file
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2105-10-449-S3.PDF]
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Additional file 4

The latent structure that exists between the two datasets for each of the 3
probe cleansing methodologies. The 940 Probesets that were retained by
the BaFL cleansing methodology and concordantly assessed as differen-

tially expressed for the RMA and dCHIP interpretations.
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