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JMJD6 is a member of the Jumonji (JMJC) domain family of histone demethylases that
contributes to catalyzing the demethylation of H3R2me2 and/or H4R3me2 and regulating
the expression of specific genes. JMJD6-mediated demethylation modifications are
involved in the regulation of transcription, chromatin structure, epigenetics, and genome
integrity. The abnormal expression of JMJD6 is associated with the occurrence and
development of a variety of tumors, including breast carcinoma, lung carcinoma, colon
carcinoma, glioma, prostate carcinoma, melanoma, liver carcinoma, etc. Besides, JMJD6
regulates the innate immune response and affects many biological functions, as well as
may play key roles in the regulation of immune response in tumors. Given the importance
of epigenetic function in tumors, targeting JMJD6 gene by modulating the role of immune
components in tumorigenesis and its development will contribute to the development of a
promising strategy for cancer therapy. In this article, we introduce the structure and
biological activities of JMJD6, followed by summarizing its roles in tumorigenesis and
tumor development. Importantly, we highlight the potential functions of JMJD6 in the
regulation of tumor immune response, as well as the development of JMJD6 targeted
small-molecule inhibitors for cancer therapy.

Keywords: histone demethylation, JMJD6 inhibitor, epigenetic modification, immune response,
tumor immunotherapy
INTRODUCTION

Posttranscriptional modifications of the N-terminal tail of histones, such as methylation,
acetylation, phosphorylation and ubiquitination, play crucial roles in epigenetic regulation (1).
Histone methylation is a key epigenetic factor that regulates transcription, chromatin status, and
genome integrity, and participates in epigenetic regulation related disease processes. Methylation of
histone arginine sites affects a variety of biological processes in the regulation of gene transcription,
including cell signal transduction, DNA damage repair, cell development and cancer (2). Histone
org March 2022 | Volume 13 | Article 8598931
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H3 and H4 are the two most modified histone proteins, and
demethylation of histone H3 arginine 2 (H3R2me2) and histone
H4 arginine 3 (H4R3me2) are key epigenetic events that
frequently occur, including the regulation of chromatin
dynamics, gene transcription, RNA shearing, etc (3). Generally,
asymmetric H3R2me2 is associated with transcriptional
inhibition, while its symmetric di-methylation or mono-
methylation contributes to transcriptional activation (4);
asymmetric H4R3me2 promotes transcriptional activation (5).
Conversely, symmetric dimethylation triggers its transcriptional
inhibition. Based on this, transcriptional activation and
transcriptional inhibition may be related to the number and
location of methyl groups on promoters and enhancers, as well as
that of arginine guanidine groups. JMJD6, also known as
KIAA0585, PTDSR, PTDSR1, is a member of the JMJC
domain family of histone demethylases. It not only catalyzes
the demethylation of H3R2me2 and/or H4R3me2 and regulates
the expression of related genes (6), but also impacts a variety of
non-histone modified factors such as HSP70, TNF receptor-
associated factor 6, eIF3B, eIF3c, and G3BP1 (7, 8). Additionally,
JMJD6 is also a histone targeting lysine hydroxylase, which
contributes to lysine hydroxylation on distinct protein
substrates for dynamic regulation of gene transcription (9).
Multiple studies have shown that JMJD6 is conducive to the
occurrence and development of a variety of tumors, including
breast carcinoma, lung carcinoma, colon carcinoma, glioma,
prostate carcinoma, melanoma, liver carcinoma, etc.
Interestingly, it regulates some immune signaling pathways,
such as Toll-like receptor related signal transduction, through
its arginine demethylation. The relationship between the
abnormal expression of this epigenetic gene in tumors and its
immune regulation drives us to further explore the role of JMJD6
in tumorigenesis and tumor immunity. Herein, we review and
update the latest role of JMJD6 in tumor development and
regulation of innate immune response, providing a new
understanding of the JMJC protein family as a potential target
for tumor immunotherapy.
STRUCTURE AND BIOLOGICAL
FUNCTION OF JMJD6

JMJD6 is a 47-55kDa molecular weight member of the JMJC
domain family. It is made up of 403 amino acids, and its genes
are located on the 17qter chromosome (10). JMJD6 can be
homologously dimerized by two a-helices at the N-terminus
and C-terminus (amino acid residues at Glu61, Lys68, and Glu322,
Glu334 of human JMJD6, respectively). It also forms trimers,
tetramers, and pentamers based on the JMJC catalytic domain.
Human JMJD6 contains one conserved JMJC domain, five
nuclear-localization sites (NLS), one DNA binding domain
(AT-hook like motif), one predicted SUMOylation site, and
one polyserine domain (Figure 1A). JMJC domain (Pro141-
Arg305) is the catalytic region of JMJD6 and forms double
stranded -b helix (DSBH) fold of Fe (II)- and 2-OG-dependent
dioxygenases (12). Five nuclear localization regions (Lys6-Arg10,
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Lys91-Arg95, Pro141-Lys145, Lys167-Pro171, and Arg373-Arg378)
may facilitate the entry of functional proteins import into the
nucleus (13). AT-Hook domain, located at Arg303 to Ser309

amino acid residues, mediates the binding of JMJD6 to DNA
and/or RNA (14, 15). Although it has been found that there are
positively charged regions in the grooves between the b-hairpin
and helix-turn-helix of JMJD6 molecule (16) (Figure 1C),
suggesting that JMJD6 can bind to nucleic acid. Whether this
domain is directly involved in the binding of JMJD6 to RNA still
needs further investigation. Potential SUMOylation site (Leu316-
Arg378) may link to the protein stability and protein-protein
interactions (17). The polyserine domain consists of amino acid
residues at Ser346 to Ser351 and regulates nuclear or nucleolar
shuttling of JMJD6 (18). The presence of the polyserine domain
may promote JMJD6 interaction with serine/arginine-rich (SR)-
like proteins with serine or arginine domains, i.e., some splicing
factors (18). As shown in Figure 1B, the visual crystal structure
of JMJD6 shows 15 a-helices and 13 b-hairpins, with the N-
terminal bound by b13 and a9 sites and C-terminal bound by
a13. In addition to b3 and b4, eleven of these structures exhibit
eight antiparallel b chains, constituting the DSBH or cupin fold.
The molecule Fe (II) binds to His187, Asp189 and His273 amino
acid residues in the JMJC domain and determines the activity of
the JMJD6 enzyme. Alpha-ketoglutarate (a-KG) binds to Fe (II)
and Thr184, Lys204, and Asn277 residues in the central region.

The biological activity of JMJD6 is mainly driven by the JMJC
central region (19, 20), which selectively catalyzes the
demethylation of H3R2me2 and H4R3me2. The mechanism of
demethylation is as follows: 1) In the presence of Fe (II) and 2-
hydroxyglutaric acid, JMJD6 drives the mono-methylation and
subsequent hydroxylation of arginine methyl groups on H3R2
and H4R3; 2) Subsequently, formaldehyde is produced through
the formylation reaction, which facilitates the separation of
methyl groups (Figure 1D). Demethylation is an important
core epigenetic change that is involved in the regulation of
transcription, chromatin structure, epigenetic and genomic
integrity by specifically identifying chromatin active regions
(21–23). A large number of studies have shown that JMJD6 is
a key regulatory molecule in histone modification (such as
diffusion of ubiquitination), transcriptional elongation and
RNA splicing (14, 24) and that it is required for angiogenesis,
cell differentiation and proliferation (25, 26). Based on the study
of Hu et al., the proliferation of NIH3T3 fibroblast cells with
JMJD6 knockdown was markedly reduced (27). However, loss of
JMJD6 promotes rapid recovery of cell cycle checkpoints and
improvement of cell survival rate after irradiation in distinct
human cancer cell lines (28). We suggest that this seemingly
contradictory biological effect may be related to cell types and
status, irritation and duration.
JMJD6 IS ABNORMALLY EXPRESSED
IN TUMOR

The expression data of the JMJD6 gene in distinct human tumor
samples were extracted from the Cancer Genome Atlas (TCGA)
March 2022 | Volume 13 | Article 859893
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database. Then R software (Version 3.6.4) was used to calculate the
difference in expression between human tumor tissues and the
adjacent normal tissues. Significantly upregulated levels of JMJD6
gene were observed in 17 types of tumor samples, including
glioblastoma multiforme (GBM), uterine corpus endometrial
carcinoma (UCEC), breast invasive carcinoma (BRCA), lung
adenocarcinoma (LUAD), esophageal carcinoma (ESCA),
stomach and esophageal carcinoma (STES), kidney renal
papillary cell carcinoma (KIRP), pan-kidney cohort (kidney
chromophobe + kidney renal clear cell carcinoma + kidney
renal papillary cell carcinoma) (KIPAN), colon adenocarcinoma
Frontiers in Immunology | www.frontiersin.org 3
(COAD), colon adenocarcinoma/rectum adenocarcinoma
esophageal carcinoma (COADREAD), stomach adenocarcinoma
(STAD), head and neck squamous cell carcinoma (HNSC), kidney
renal clear cell carcinoma (KIRC), lung squamous cell carcinoma
(LUSC), liver hepatocellular carcinoma (LIHC), rectum
adenocarcinoma (READ), cholangiocarcinoma (CHOL)
(Figure 2A). Further, Kaplan-Meier survival analysis was used
to determine the correlation between JMJD6 expression levels
and overall survival (OS) and disease-free survival (DFS). The
bioinformatics tool Gene Expression Profiling Interactive Analysis
(GEPIA) confirmed that patients with ACC, LGG, and LIHC
 

A

B

D

C

FIGURE 1 | Domain structure of JMJD6 protein. (A) JMJD6 protein mainly consists of one JMJC domain, five nuclear localization sites, one AT-Hook domain, one
presumed SUMOylation site, and one polyserine domain. (B) The stereo view of JMJD6 (PDB code: 6MEV) structure with a-KG and Fe (II) showing a-helix, b-hairpin,
N-terminal domain and C-terminal domain. (C) The surface potentials of JMJD6 protein. The positively charged surface is grayish white, the negatively charged
surface appears blue, and the surface of the neutral charge is green. The above two 3D views are drawn with the SWISS-MODEL software (11). (D) Schematic
diagram showing the mechanisms for the demethylase activity of JMJD6.
March 2022 | Volume 13 | Article 859893
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FIGURE 2 | Bioinformatics analysis of JMJD6 in tumors. (A) JMJD6 expression in distinct tumor samples (T) and paired normal samples (N) based on TCGA. Log2
(TPM + 1) transformation was performed for each expression value and tumor types with sample numbers less than three were eliminated for differential analysis.
*p < 0.05, **p < 0.01. (B) The correlation between JMJD6 expression level and OS; (C) The correlation between JMJD6 expression level and DFS. Correlation
analysis was performed based on the GEPIA (http://gepia.cancer-pku.cn/) database.
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showing increased JMJD6 mRNA levels had worse OS and DFS
(Figures 2B, C). High levels of JMJD6 significantly reduced DFS
in patients with KIRP, LUSC, and uveal melanoma (UVM), as well
as OS in patients with KIRC and mesothelioma (MESO)
(Figures 2B, C), suggesting the carcinogenic effect of JMJD6 in
these tumors. However, JMJD6 expression was markedly
diminished in several tumor types, i.e., thyroid cancer (THCA)
and renal chromophobia (KICH), and its low expression resulted
in poor DFS in THCA (Figures 2A, C).

JMJD6 has a wide range of biological effects but its exact
mechanism and clinical significance have not been fully
determined. Recent studies revealed that JMJD6 is closely
connected with cancer development and prognosis (29)
(Figure 3). It is speculated that JMJD6 may be a novel biomarker
and potential target for tumor prediction and treatment.

JMJD6 in Breast Cancer
Breast cancer is a malignant tumor with the highest incidence in
the world, which seriously affects women’s health. JMJD6 is one
of the highly expressed genes in breast cancer and yet its role in
breast cancer is two-sided. Poulard C et al. found that JMJD6
exhibited antitumor activity in MCF-7 breast cancer cell lines,
while its high expression reduced DFS in patients with invasive
breast cancer (30). JMJD6 is a downstream binding gene of
LncRNA ZFPM2-AS1 and is involved in ZFPM2-AS1-mediated
development of breast cancer by interacting with ZFPM2-AS1
(31). It was found that JMJD6 could bind to the p19ARF
promoter and inhibited its mRNA and protein through
H4R3me2a demethylation, thereby downregulating p53 levels
and blocking c-Myc-induced apoptosis of breast cancer cells
Frontiers in Immunology | www.frontiersin.org 5
(32). Interestingly, JMJD6 co-overexpression with c-Myc
synergistically triggered malignant phenotype, EMT and even
metastasis in breast cancer as well as resulted in poor prognosis
of ER+ breast cancer patients (32), suggesting it may be an
important target of Myc-driven tumorigenesis and malignant
progression of breast cancer. Zeste homologous enhancer 2
(EZH2) may be another chaperone co-regulating gene involved
in JMJD6-mediated breast cancer progression. As a histone
methyltransferase, EZH2 redirected HOX transcript antisense
RNA (HOTAIR) to metastasis suppressor genes (i.e., PCHD5
and PCHD10) by directly binding to HOTAIR; JMJD6 positively
regulated PCHD5 and PCHD10 and specifically targets HOTAIR
(33). In breast cancer, JMJD6 and EZH2 were found to adjust the
same cell cycle regulation genes and therapeutic targets through
different mechanisms, resulting in poor prognosis, while
inhibition of one of the two molecule does not prevent the
malignant progression of cancer (33), which may be caused by
the absence of regulatory regions of multiple cell cycle genes
similar to those of JMJD6 in EZH2.

Estrogen is one of the key carcinogenic factors in hormone-
sensitive cancers such as breast carcinoma. Data from some
studies suggested that the role of JMJD6 in breast cancer depends
upon ER status. In ER+/LN- breast cancer patients with
endocrine monotherapy, it was found that the worse the
clinical stage and differentiation of tumor and the prognosis of
patients, the higher is the amount of JMJD6 protein; loss or
knockdown of JMJD6 inhibited the progression of breast cancer
via regulating the TGF-b pathway (34). On the one hand, JMJD6
regulated the recruitment of the MED12/CARM1 and thereby
induced activation of ERa-dependent enhancer and coding gene.
In this regard, JMJD6 is essential for estrogen/ERa-evoked cell
growth and tumorigenesis of breast cancer (35). On the other
hand, JMJD6 may be directly recruited to the HOTAIR promoter
and then mediated HOTAIR independently of ER state (36). In
addition, the mechanism of JMJD6 may differ in distinct
subtypes of breast cancer. For example, JMJD6 not only had
intrinsic tyrosine kinase activity but also phosphorylated Y39 of
histone H2A.X (H2A.XY39ph) in triple negative breast cancer
(TNBC) cells, then autophagy regulated by JMJD6- H2A.XY39ph

axis promoted cell growth (37).

JMJD6 in Lung Cancer
JMJD6 is one of the most frequently altered genes in lung cancer,
and plays a role in promoting lung cancer. In lung
adenocarcinoma, the level of JMJD6 was remarkably increased,
high JMJD6 expression was associated with size, grade, pTN
status, pleural invasion, and poor prognosis (38). p300/CBP-
associated factor-mediated the acetylation of HOXB9 can target
JMJD6, leading to decreased cell migration and tumor growth
(39). Recently, multiple studies have shown that JMJD6 was
regulated by miRNAs (Mir-770, Mir-519D-3p, Mir-106a-5p) in
lung cancer. For instance, JMJD6 was directly bound by Mir-770
targeting of its 3’-untranslated region (UTR), and acted as an
oncogene in non-small cell lung cancer (NSCLC) cells, whereas
overexpression of Mir-770 blocked tumor growth of NSCLC
in vitro and in vivo via inhibiting JMJD6 and theWNT/b-catenin
pathway (40). LINC00839 promoted the malignant development
FIGURE 3 | Multiple mechanisms of JMJD6 regulation in different tumors.
March 2022 | Volume 13 | Article 859893
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of lung cancer, because JMJD6 was directly targeted and
inhibited by Mir-519D-3p, which was competitively sponged
by LINC00839 (41). Similarly, another research showed that
there was negative regulation between JMJD6 and Mir-106a-5p
in cisplatin-resistant lung cancer cells, inhibition of JMJD6
reduced the proliferation, invasion and migration capacity, and
thus alleviated the resistance of cisplatin (42).

JMJD6 in Colon Cancer
Colon carcinoma is a common gastrointestinal malignancy, and
its incidence has ranked the third among all gastrointestinal
tumors. Although JMJD6 is highly expressed in colon tumors, its
role in colon carcinoma is complex. For one thing, JMJD6
intercepted the transcriptional activity of p53 and increased its
association with a p53 negative regulator MDMX by inhibiting
p53 acetylation and promoting its hydroxylation (43), which
may confer the pro-colon cancer activity of JMJD6. For another,
JMJD6 facilitated the function of H2A.XY39ph, which is a variant
of histone H2A phosphorylated on serine39 (44). It can be
degraded by an apoptosis inhibitor protein Livin and therefore
controlled tumor initiation, whereas JMJD6 overexpression
recovered the function of H2A.XY39ph and inhibited the
advanced progression of colon cancer (44). The seemingly
contradictory characteristics of JMJD6 may be owing to types
of tumor tissue or cell lines and H2A serine phosphorylation site,
yet further investigations are still needed.

JMJD6 in Glioma
Glioma is the most common malignant primary brain tumor in
adults. JMJD6 is up-regulated in about 80% of glioma tissues.
The deletion of this gene leads to the proliferation, invasion and
migration of glioma stem cells, and its molecular mechanism
may be related to the down-regulation of Wnt pathway and up-
regulation of p53 pathway (45). JMJD6 is also a key mediator that
participates in the Myc pathway. A recent study showed that
JMJD6 interacted with n-Myc and BRD4 to form protein
complexes that induce the expression of E2F2 and Myc, which
increased glioma carcinogenic risk. Inhibition of JMJD6
depressed the expression of E2F2, n-Myc and c-Myc,
restrained cell proliferation in vitro and tumor growth in vivo
and accelerated cell apoptosis (10). Moreover, enhancer-
mediated transcriptional pause-release is also one of the
reasons for JMJD6-induced tumorigenesis of glioma (46).
These findings suggest that JMJD6 is a cancer-promoting gene
and a novel promising target for anti-glioma therapy.

JMJD6 in Prostate Cancer
As we know, endocrine resistance is a persistent problem in
advanced prostate cancer that may be mediated by androgen
receptor (AR)-V7. A phase II clinical trial showed that DNA-
repair defects are more common in AR-V7-positive prostate
cancer, which enables AR-V7-positive tumors more sensitive to
immune checkpoint blockade (47, 48). Interestingly, JMJD6 was
an essential regulator of AR-V7, and increased JMJD6 was
correlated with higher levels of AR-V7, castration resistance
and shorter survival, JMJD6 knockdown suppressed the growth
of prostate cancer cells, AR-V7 levels, and the introduction of
Frontiers in Immunology | www.frontiersin.org 6
U2AF65 to AR pre-mRNA (49). Similarly, another study also
verified that the JMJD6/U2AF65/AR-V7 axis may confer
castration-resistant prostate cancer development (50). Thus,
these results suggest that JMJD6 can be used as a therapeutic
target for endocrine-resistant prostate cancer. Furthermore, the
prognostic potential of JMJD6, especially in predicting
recurrence, was confirmed by Cangiano M (51).

JMJD6 in Melanoma
Liu X et al. reported that JMJD6 was significantly upregulated in
melanoma, and the high expression of JMJD6 was related to poor
prognosis and advanced clinicopathological stage of melanoma
(52). JMJD6 functions as an oncogene that contributes to tumor
progression by regulation of MAPK, Ras, and ERK signaling
pathways. For instance, JMJD6 enhances MAPK signaling
pathway by controlling PAK1 splicing and promotes melanoma
cell proliferation, invasion and angiogenesis (52). Ras-induced
mir-146a and mir-193a can target JMJD6 (53). Besides, Ras-
ERK1/2 signaling stimulates the malignant progression of uveal
melanoma via the regulation of JMJD6-mediated H2A.XY39ph (54).

JMJD6 in Liver Cancer
JMJD6 may be involved in carcinogenesis and poor prognosis of
liver cancer. A study showed that JMJD6 demethylated the
hepatocyte nuclear factor 4 alpha (Hnf4a) promoter and
inhibited its expression in the absence of PRMT1 (55), whereas
Hnf4a is identified as a tumor suppressor and therapeutic target
in liver cancer (56). JMJD6 also expedites the proliferation and
controls the cell cycle of hepatocellular carcinoma cells by
directly targeting CDK4 and modulating histone modifications
on the CDK4 promoter (57).

JMJD6 in Other Tumors
JMJD6 is highly expressed in oral squamous cell carcinoma
(OSCC), head and neck squamous cell carcinoma (HNSCC),
esophageal squamous cell carcinoma (ESCC), osteosarcoma,
acute myeloid leukemia (AML), and renal cell carcinoma
(RCC). JMJD6-IL4 axis may prompt changes in clinical
phenotypes of OSCC cancer stem cells, JMJD6 accelerates self-
renewal activity, migration/invasion, and drug resistance (58).
High levels of JMJD6 urges the malignant progression of HNSCC
by regulating epithelial mesenchymal transformation (59).
Additionally, the identification of JMJD6 as a mutated target in
ESCC will ultimately provide a potential predisposition variant
and therapeutic opportunity (60). As a regulator of the DNA
damage epigenome, JMJD6 can be recruited to DNA double
strand breaks (DSBs) during microradiation via downregulating
H4K16ac, and ultimately modulates the DNA damage response
in radiation-induced osteosarcoma cells (28). JMJD6 promotes
the proliferation of AML RN2 cell line and decreases the
sensitivity of RN2 cells to various stresses (61). Besides, the b-
catenin-TCF7L2-JMJD6-c-Myc axis plays an important role in
BET protein inhibitors (BETi) resistance in AML cells. Knockout
of JMJD6 reverses BETi-persister/resistance (BETi-P/R), while
its overexpression causes BETi-P/R (62). In addition, ovarian
cancer patients with high expression of JMJD6 have a poor
prognosis (63). In RCC, JMJD6 transcription activation may
March 2022 | Volume 13 | Article 859893
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contribute to tumor development, via inducing p300-mediated
H3K27ac (29).
JMJD6 REGULATES THE INNATE
IMMUNE RESPONSE

Increasing evidence suggests that epigenetic events and
epigenetic genes are activated or suppressed in a variety of
immune cells or immune responses, leading to the occurrence
of different types of diseases (64, 65). Data from The Human
Protein Atlas indicated that JMJD6 is highly expressed in
endogenous immune cells. Earlier studies have shown that the
activity of JMJD6 is related to intron retention and its release
(66). JMJD6 can affect the level of medullary thymic epithelial
cell (mTEC) mature proteins by inducing intron regulation of
the Aire gene. The latter can express a variety of tissue-specific
antigens and is regulated by Aire to establish self-immunity in
the thymus (67). Deletion of JMJD6 results in reduced multi-
organ autoimmunity in mice, decreased Aire protein expression,
and increased disease progression.

Arginine methylation is a common post-translational
modification that regulates a variety of functions, including cell
cycle regulation of RNA processing and DNA replication.
Meanwhile, arginine methylation affects gene transcription and
splicing, and signal transduction, including some immune
regulatory pathways (68). Tumor necrosis factor receptor
associated factor 6 (TRAF6) is an E3 ubiquitin ligase. Under
normal conditions, TRAF6 inhibits its ubiquitin ligase activity by
methylation (69). Arginine demethylase JMJD6 can promote the
demethylation of TRAF6, activation of NF-KB and production of
LPS (70), suggesting the epigenetic gene JMJD6 is involved in the
regulation of the endogenous immune pathway. Since TRAF6 is
important for the transduction of endogenous immune signaling
pathways downstream of most Toll-like receptors (TLRs). TLRs
are expressed in a variety of cell types, including tumor cells, and
can promote inflammation and immune responses. For this
reason, exposure of TLR ligands regulated by arginine
methylation of TRAF6-dependent TLRs pathway leads to the
demethylation of TRAF6 by JMJD6.

JMJD6 catalyzes lysine hydroxylation and arginine
demethylation of various substrates, such as splicing regulatory
protein, transcription factors, and histones, in the Fe (II) and 2-
OG-dependent manner (15, 71, 72). It regulates many biological
functions including embryonic development, hematopoiesis, and
nervous system but its role in the balance of immune response in
tumors is still unclear. The tumor immune cycle reflects the anti-
tumor immune response, including the release, presentation,
initiation and activation of tumor cell antigens, infiltration of
immune cells into tumor cells, recognition of tumor T cells, and
killing of tumor cells by cytotoxic T lymphocytes (CTL) (73). The
purpose of CTL is to kill tumor cells and boost the completion of
tumor immune cycle. However, when antigen modification is on
the surface of tumor cells, changes in recruiting inhibitory
immune molecules and tumor microenvironment (TME),
tumor cells can escape from CTL killing and induce immune
Frontiers in Immunology | www.frontiersin.org 7
escape. Recently, in a co-cultured experiment, JMJD6 deficiency
enhanced the sensitivity of a variety of tumor cells to T cell killing
(74), implying JMJD6 might be a CTL-evasion gene in tumor
immunity. Further, the authors explored the role of JMJD6
interference in T cell killing of tumor cells. A Genome-wide
CRISPR-CTL screening based on the Mouse Toronto KnockOut
(mTKO) CRISPR Library revealed that antigen presentation
mediated T cell toxicity was minimal in JMJD6-deficient tumor
cells, making JMJD6-deficient tumor cells more suitable for
CTL treatment. Pathway enrichment analysis showed that the
Interferon Type 1 pathway was significantly enriched in JMJD6-
deficient tumor cells. By analyzing tumor immune-related
cytokines, they suggested that the combination of IFN and
TNF-a cytokines may be the mediators of cell death in JMJD6-
deficient tumor cells. Overall, JMJD6 may protect tumor cells
against IFN and TNF-a cytokines-mediated cell death. To further
understand the immunomodulatory role of JMJD6 in cancer, we
downloaded the TCGA Pan-Cancer dataset (TCGA Pan-Cancer
(PANCAN, N (TCGA sample number) =10535, G (ENSG ID
number) =60499)) from the UCSC database (https://xenabrowser.
net/)), and extracted the expression data of JMJD6 and 150
immunoregulatory genes, 60 immune checkpoint-related genes
as well as 22 tumor-associated immune cells in pan-cancers.
Bioinformatics analyses aimed at describing the immune role of
JMJD6 are pivotal in determining different types of cancers that
might benefit from the anti-JMJD6 immunotherapy. As we all
know, TME is a very complex environmental system related to
tumor cell survival, including immune cells, fibroblasts, vascular
endothelial cells, extracellular matrix and various signaling
molecules. It promotes the expression of some oncogenes and
inhibits immune cells from performing their immune functions.
Bioinformatics analysis results uncovered that JMJD6 was
negatively associated with a series of immunoregulatory genes
(i.e., CCXL2, CCL22, CCL25, CCL14, CCL16, CXCL9-12, etc) in
LUSC, HNSC, UCS, MESO, THYM, DLBC, UCEC, LIHC, and
SARC (Figure 4A), and was negatively correlated with most
tumor-infiltrating immune cells (i.e., plasma cells, CD8+ T cells,
resting memory CD4+ T cells, gamma delta T cells, activated NK
cells, monocytes, M1 macrophages, and dendritic cells) in pan-
cancer (Figure 4B). The infiltration of those immune cell subtypes
can activate the anti-tumor immune response by inducing
humoral or cellular immunity, and reshapes the immune system
and inhibiting the TME. However, JMJD6 was found to be
positively correlated with regulatory T cells (Tregs) that inhibit
anti-tumor immunity and M2 macrophages that promote tumor
growth (Figure 4B). In conclusion, the expression pattern of
JMJD6 may be inflamed TME-specific. In other words, JMJD6
may maintain the balance of tumor microenvironment and tumor
cell growth by selectively regulating various immune cells and
immunomodulatory genes that have pro-cancer or anti-cancer
effects. Furthermore, the expression of JMJD6 is mutually
exclusive of the tumor immune checkpoints, such as VEGFA,
ARG1, EDNRB, IL13, IL12A, CD274 and KIR2DL3 in the
majority of cancers, like THYM and HNSC, etc (Figure 4C).
We believe that JMJD6 has great potential as a novel target for
cancer immunotherapy. However, how JMJD6 regulates
March 2022 | Volume 13 | Article 859893
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epigenetic events and immune responses to affect the progression
of malignant tumors still needs further research.

As an epigenetic factor, the role of JMJD6 in tumors has been
proved to be related to the regulation of some crucial target
Frontiers in Immunology | www.frontiersin.org 8
molecules, including p53, Wnt, MAPK, Ras, ERK, TGF-b,
CARM1, c-Myc, CDK4, ZFPM2-AS1, AR-V7, estrogen signal,
etc. These targets modulate immune responses in TME on
different levels. For example, p53 is closely related to the
 

A

B

C

FIGURE 4 | Bioinformatics analysis of the immunomodulatory role of JMJD6 in pan-cancer. (A) Correlation between JMJD6 and 150 immunomodulators
(chemokines, receptors, MHCs, immunoinhibitors, and immunostimulators). (B) Correlation between JMJD6 and 22 tumor-related immune cells calculated with the
CIBERSORT algorithm. (C) Correlation between JMJD6 and 60 genes associated with immune checkpoints. *P < 0.05.
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function and immune response of the body’s immune system
(75). On the one hand, abnormal expression of p53 functions as a
transcription factor that directly activates the expression of
relevant genes in immune cells, thus regulating the
proliferation of tumor cells; On the other hand, it can be used
as tumor-associated antigen to stimulate an immune response.
Studies have shown that abnormal expression of the Wnt
signaling may also disrupt tumor immunodetection and
promote tumor immune evasion (76). MAPK signal
transduction inhibits the activity of immune cells in the TME
by upregulating the release of cytokines such as IL-6 and IL-10
(77). Ras drives immune checkpoint molecules on the surface of
tumor cells to bind to homologous receptors on immune cells
such as CD4+ T cells, CD8+ T cells and NK cells, thereby
reducing the killing ability of cancer cells; it also leads to
increased levels of PD-L1 and B7-H3 and promotes immune
escape of tumor cells (78). ERK activation triggers the invasion of
specific myeloid cell subsets and the formation of TME (79).
Advanced tumor cells can secrete a large amount of TGF-b, and
high levels of TGF-b enable immature T cells to transform into
Tregs, thus obstructing antigen presentation and leading to
immune escape of advanced tumor cells (80). In the tumor
microenvironment, the inactivation of CARM1 can activate the
DNA damage response of tumor cells, improve the TME, and
promote the aggregation of innate immune cells (81). In
addition, inhibition of its activity also enhances the activity of
killer T cells and stimulates T-cell-mediated anti-tumor
immunity (81). C-Myc induces tumor cells to evade immune
detection and cytotoxic T cell responses by decreasing antigen
presentation of HLA-DM and CD4+ T cells and down-
regulating the expression of adhesion molecules (LFA-1, CD54,
CD58) and costimulatory molecules (i.e., CD40) (82). CDK4 is
an important protein regulating cell cycle and affects immune
escape and tolerance of tumor cells (83). ZFPM2-AS1 may
regulate the tumor immune microenvironment by influencing
cytokine/cytokine receptor signaling pathways and IL-2/signal
transduction factors and transcriptional activator 5 (84). A phase
II clinical trial shows that DNA-repair defects are more common
in AR-V7-positive prostate cancer, which may make AR-V7-
positive tumors more sensitive to immune checkpoint blockade
(47, 48). Estrogen/ERa signaling promotes the accumulation of
myeloid suppressor cells (MDSCs), the latter of which are
immune cells associated with tumor resistance (85). Based on
the above discussion, it is speculated that JMJD6 may be involved
in carcinogenesis through the tumor immune response mediated
by these key target molecules.
JMJD6 INHIBITORS

JMJD6 is a dioxygenase dependent on 2-OG and Fe (II). Its
central JMJC domain has specific catalytic sites that target 2-OG/
Fe (II) and regulate transcription and splicing by catalyzing the
demethylation of histone/non-histone arginine or lysine
hydroxylation (19, 20). Therefore, JMJD6 inhibitors targeting
the catalytic sites may be effective strategies to interfere with its
carcinogenesis. Owing to the crucial roles of JMJD6 in different
Frontiers in Immunology | www.frontiersin.org 9
cancers, inhibitors of JMJD6may have potential antitumor effects.
To date, only a few JMJD6 inhibitors have been identified, and no
JMJD6 inhibitor has been applied clinically. This is probably due
to the low toxicity and low selectivity of most JMJD6 inhibitors.
Thus, selective structural modification and polymer chemistry
technology can be used to enhance anti-tumor efficacy and
improve the drug selectivity of tumor cells. Meanwhile, the
classification of different tumor patients and the selection of
appropriate JMJD6 inhibitors for individualized treatment will
also be the trend of anti-tumor therapy. Based on the
immunomodulatory effect of JMJD6, combination therapy, such
as JMJD6 inhibitors combined with immunomodulators, can also
maximize the treatment efficiency of cancer patients and reduce
drug resistance. Currently, we summarize the development of
JMJD6 inhibitors (Figure 5 and Table 1).

SKLB325, showing an IC50 value of 0.78 mM against JMJD6,
was firstly reported by Zheng et al. (63). It was found that
SKLB325 significantly inhibited the proliferation of SKOV3 cells,
markedly decreased the weight of tumors, and prolonged the
survival time of tumor-bearing mice (63). In addition, SKLB325
not only inhibited JMJD6-mediated carcinogenesis of RCC but
also makes RCC sensitive to sunitinib (29). Subsequently, Ran T
et al. calculated and evaluated the drug sensitivity of JMJD6
through the structure of the JMJC domain, and developed a
silicon protocol for virtual screening, to screen small molecule
inhibitors of JMJD6. Finally, based on experiments such as
inhibition of JMJD6 demethylation activity and suppression of
JMJD6 proliferation in WL12 tumor cells, with an IC50 value of
0.22 mM, was identified to be a specific small molecule inhibitor
of JMJD6 (20). Recently, Wang TQ et al. used a series of studies,
including molecular docking, deep structural optimization, and
FIGURE 5 | Chemical structures of representative JMJD6 inhibitors.
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correlation analysis between structure and activity, to discover
novel JMJD6 inhibitors, then found a new compound 7p (IC50:
0.681 mM), which has good selectivity (>100 fold) (19). However,
the role of compound 7p in tumor inhibition was not explored.

Except for SKLB325, WL12, and compound 7p, the other four
HIF prolyl hydroxylase inhibitors (Vadadustat, AKB-6899,
GSK1278863/daprodustat, and panobinostat) may be potential
JMJD6 inhibitors (86) for cancer therapy. For example,
Vadadustat and GSK1278863/daprodustat reconstructed tumor
vessels and improved TME to inhibit tumor growth (87).
Additionally, the antitumor effect of AKB-6899 was also
reported, AKB-6899 reduced tumor growth of melanoma and
suppressed angiogenesis via increasing sVEGFR-1 production of
tumor-associated or GM-CSF treated macrophages (88).

Furthermore, it also was reported that 2,4 PDCA, 2,4 BPDCA,
Daminozide, the structurally related succinyl hydroxamic acid
derivative 3, IOX1, and 8-hydroxyquinoline derivative 2, maybe
potential inhibitors of JMJD6 (10). Among them, anti-tumor
effects of IOX1 in colorectal cancer (89) and chemo-
immunotherapy (90) have been found.

Co-inhibition of THZ1 (the CDK7/super-enhancer inhibitor)
and panobinostat (the histone deacetylase inhibitor) could
synergistically suppress JMJD6, resulting in increased cell
apoptosis in vitro and tumor inhibition in mice with
neuroblastoma. These findings suggest that THZ1 and
panobinostat are nonspecific inhibitors of JMJD6 (32).
CONCLUSION AND PROSPECT

In summary, JMJD6 is involved in transcriptional chromatin
structural epigenetic and genomic integrity regulation through
selective demethylation. A large number of studies have shown
that JMJD6 expression is increased in many tumors and
contributes to the development and progression of tumors. In
this article, we have discussed the biological role of JMJD6 and its
important role in tumorigenesis, as well as immune response
(Figure 6), and found JMJD6 is likely to become an attractive
target for novel tumor immunotherapy and prevention.
However, how JMJD6 regulates immune inflammatory factors
Frontiers in Immunology | www.frontiersin.org 10
through epigenetic modification to affect tumor development,
and whether JMJD6-mediated arginine demethylation and lysine
hydroxylation affect tumor immunotherapy are unclear.
Therefore, studying the key roles and mechanisms of JMJD6 in
tumor treatment will provide a sufficient experimental and
theoretical basis for future clinical applications. In addition,
more and more 3D crystal structures or domains associated
with JMJD6 will be revealed in the future, which may be more
conducive to the rational structure and highly selective drug
design of JMJD6 inhibitors.
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