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Myeloid neoplasms (MN) with germline predisposition (MNGP) are

likely to be more common than currently appreciated. Many of the genes

involved in MNGP are also recurrently mutated in sporadic MN. There-

fore, routine analysis of gene panels by next-generation sequencing pro-

vides an effective approach to detect germline variants with clinical

significance in patients with hematological malignancies. Gene panel

sequencing was performed in 88 consecutive and five nonconsecutive

patients with MN diagnosis. Disease-causing germline mutations in

CEBPa, ASXL1, TP53, MPL, GATA2, DDX41, and ETV6 genes were

identified in nine patients. Six out of the nine patients with germline vari-

ants had a strong family history. These patients presented great hetero-

geneity in the age of diagnosis and phenotypic characteristics. In our

study, there were families in which all the affected members presented

the same subtype of disease, whereas members of other families pre-

sented various disease phenotypes. This intrafamiliar heterogeneity sug-

gests that the acquisition of particular somatic variants may drive the

evolution of the disease. This approach enabled high-throughput detec-

tion of MNGP in patients with MN diagnosis, which is of great rele-

vance for both the patients themselves and the asymptomatic mutation

carriers within the family. It is crucial to make a proper diagnosis of

these patients to provide them with the most suitable treatment, follow-

up, and genetic counseling.
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1. Introduction

Chronic myeloproliferative neoplasms, myelodysplastic

syndromes (MDS), and acute myeloid leukemia

(AML) are genetically heterogeneous groups of clonal

hematopoietic disorders characterized by morphologi-

cal changes and ineffective hematopoiesis [1,2] together

referred to as myeloid neoplasms (MN). While MN

are mainly sporadic and primarily diseases of the

elderly, germline mutations contributing to MN are

not well defined. However, in recent years the increas-

ing application of next-generation sequencing (NGS)

has resulted in the recognition of multiple loci

(GATA2, RUNX1, CEBPa, DDX41, ETV6,

ANKRD26, SRP72, or SAMD9) [3–7] that the updated

2016 World Health Organization classification of

hematopoietic tumors included as a new category

named MN with germline predisposition (MNGP) [8].

It seems that they usually appear in 1–2% of elderly

patients, and around 4–13% in children, young, and

middle-age adults [9]. Furthermore, the growing inter-

est of the scientific community regarding genetic pre-

disposition of cancer will probably result in the

recognition of a higher incidence in the future.

The detection of individuals with these inherited dis-

orders allows several opportunities for improvement in

clinical care. Thus, it is important for clinicians to be

familiar with the diagnosis, evaluation, and manage-

ment of affected patients. A detailed family medical

history, collected in all suspicious cases through the

realization of a complete pedigree, should be manda-

tory. Once a germline mutation is confirmed in non-

hematopoietic tissue, family members should be

referred to genetic counseling.

Moreover, the recognition of such patients is crucial

for the identification of asymptomatic carrier family

members [10–12] in the donor selection process for

allogeneic hematopoietic stem cell transplantation

(allo-HSCT).

For these reasons, the inclusion of new genes

involved in MNGP in NGS myeloid gene panels

would improve the diagnosis and identification of

these disorders [2,13]. In addition, many of these genes

are also recurrently mutated in sporadic MDS/AML.

Thus, our main objective was to analyze whether

employing an NGS gene panel-based approach in MN

diagnosed patients enables the identification of clini-

cally relevant germline variants. In addition, for those

patients in whom germline mutations were identified, a

careful revision of the oncohematological family his-

tory was performed to characterize the disease and the

underlying molecular events.

2. Patients and methods

2.1. Patient selection

A myeloid gene panel was analyzed by NGS in 88

adults with a diagnosis of MN in the hematology

department of Hospital General Universitario Grego-

rio Mara~n�on from May 2017 to February 2019

(Cohort 1; Fig. 1 and Table 1. Patients diagnosed with

AML and primary myelofibrosis (PMF) were all

included. MDS, polycythemia vera (PV), essential

thrombocythemia (ET), and MDS/myeloproliferative

neoplasms (MPN) patients were only included if they

were candidates to receive standard therapy or eligible

to participate in a clinical trial. Patients diagnosed

with bone marrow (BM) failure syndromes have not

been included in the present study.

Furthermore, five patients with a high suspicion of

having MNGP diagnosed from 2010 to 2016 were also

included (Cohort 2; Fig. 1 and Table 1. Patients were

considered highly suspicious when they had (a) more

than one first-degree relative affected from hematologi-

cal malignancies or other solid tumors, (b) organ-sys-

tem manifestations fitting known MNGP, and/or (c)

personal history of multiple oncohematological

tumors.

The study was conducted in accordance with the

Declaration of Helsinki, and ethical approval was

obtained by the Ethical Committee of University

Hospital Gregorio Mara~n�on. Personal and family his-

tories, demographics, and patient characteristics were

obtained from the electronic health records.

2.2. Analysis of molecular alterations through

NGS

Genomic DNA was purified from BM aspirates or

peripheral blood (PB) samples at diagnosis following

the manufacturer’s instructions (Maxwell� 16 Blood

DNA Purification Kit; Promega, Madison, WI, USA).

NGS-based targeted gene capture panel

(MyeloidNeoplasm-GeneSGKit; Sistemas Gen�omicos,

Valencia, Spain. Table S1) is routinely performed in

our hospital to characterize MN patients [14]. Consis-

tent with the current knowledge, the panel included 15

genes known to be involved in MNGP (ANKRD26,

ASXL1, CBL, CEBPa, CSF3R, DDX41, ETV6,

GATA2, IKZF1, JAK2, MPL, NF1, PTPN11,

RUNX1, and TP53) [8,15–20]. Target enrichment

experiments were performed according to standard

manufacturer’s protocol for library preparation.
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Probes were designed to detect point mutations, in-

dels < 30 base pairs, copy number variations, chromo-

somal rearrangements, and numerical alterations.

Libraries were denatured and sequenced on an Illu-

mina MiSeq platform with reagents v2 for paired-end

sequencing (2*101 bp).

FASTQ files were aligned to the human genome ref-

erence sequence (GRCh38/hg38) using Burrows-

Wheeler Aligner [21] and ‘in-house’ scripts. Variant

calling was conducted using a combination of two dif-

ferent algorithms: VarScan [22] and GATK [23]. Iden-

tified variants were annotated using Ensembl

database, population databases (the Exome Aggrega-

tion Consortium and 1000 Genomes), and specific

variant databases (ClinVar, Catalogue of Somatic

Mutations in Cancer (COSMIC), Online Mendelian

Inheritance in Man, and Human Gene Mutation

Database). Variants were evaluated with Polyphen 2.0,

SIFT, and Mutation Taster softwares to predict their

functional effects.

2.3. Variant analysis

After annotation, all frameshift and nonsynonymous

variants located in coding or splicing regions of canoni-

cal isoforms, affecting all genes included in the panel

and with minor allele frequency < 1%, were considered

in subsequent analyses. Additionally, GATA2 synony-

mous variants were carefully analyzed, as recently

reported [24,25]. The pathogenicity of variants was des-

ignated according to the recommendation of the Ameri-

can College of Medical Genetics and Genomics and the

Association for Molecular Pathology Fig. S1 [26].

Pathogenic or likely pathogenic variants were sus-

pected to be of germline origin if they showed an alle-

lic frequency [variant allele frequency (VAF)] > 0.4 for

Fig. 1. Workflow for the analysis of variants in the 93 patients studied (88 with MN diagnosis and five with suspected MNGP). BWA,

Burrows-Wheeler Aligner; FB, fibroblasts; R-PB, remission PB; R-BM, remission bone marrow.
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single nucleotide variations and > 0.3 for small inser-

tions or deletions (indels). In such cases, variants may

be either of heterozygous germline or of acquired ori-

gin. As the panel employed is capable to detect copy

number alterations reliably, all cases were also care-

fully analyzed in order not to miss any potential germ-

line variant with lower VAF than expected.

2.4. Confirmation of germline origin

As a first approach, PB/BM samples at complete remis-

sion (CR) or CD3+ T cells were employed to evaluate

the origin of the mutation. Immunomagnetic separation

method was carried out for the purification of T lym-

phocytes (TL) using anti-CD3 MicroBeads (Miltenyi

Biotec 130-050-101, Bergisch Gladbach, Germany). Cell

selection was performed on the auto-MACS PRO

Separator (Miltenyi Biotech) using two paramagnetic

columns, and positive selection was then retained.

With the purpose of definitely confirming germline

origin, a skin biopsy sample was requested to carry

out skin fibroblast culture if possible. Skin fibroblast

culture was conducted at 37 °C, in humidity condi-

tions, 5% CO2, and in Roswell Park Memorial Insti-

tute (RPMI) cell culture media (Gibco, Thermo Fisher

Scientific, Waltham, MA, USA) supplemented with

glutamine, FBS, and 1% of penicillin and strepto-

mycin during 4–6 weeks. After this time, cells were

trypsinized and DNA was extracted using QiAmp

DNA Mini Kit (Qiagen, Hilden, Germany) according

to manufacturer’s instructions.

The confirmation was performed by optimizing

specific PCR assays for each variant followed by San-

ger sequencing with Big Dye Terminator v3.1 Chem-

istry (Applied Biosystems, Thermo Fisher Scientific,

Waltham, MA, USA) on ABI 3130xl or ABI 3730xl

Genetic Analyzer (Applied Biosystems). Visualization

and localization of variants were assessed by using

CHROMAS Software (Technelysium, South Brisbane,

Australia) and the Basic Local Alignment Search Tool

(BLAST) (Bethesda, MD, USA).

Once a germline variant was confirmed in the

patient, a segregation study was offered to his rela-

tives. In cases in which a rapid answer was needed

from the laboratory (i.e., patient candidate to HSCT),

the variant was analyzed in a nontumoral sample at

the same time as potential family donors were being

evaluated. In the rest of cases, we first screened the

mutation in remission samples or TL and, if positive,

a skin biopsy was requested when it was feasible.

3. Results

3.1. Variant analysis

Regarding cohort 1, a total of 329 variants were

detected, of which 62% (205/329) were classified as

pathogenic or likely pathogenic (P/LP), 33% (108/

329) were classified as variants of uncertain signifi-

cance (VUS), and 5% (16/329) were classified as

benign or likely benign (B/LB). Taking into account

only the 15 genes of potential germline relevance, 133

variants were detected. Among them, 45% (60/133)

were classified as P/LP, 46% (61/133) were classified

as VUS, and 9% (12/133) were classified as B/LB.

Thus, 32 patients carried pathogenic or likely patho-

genic variants with a VAF > 0.4 in these 15 genes.

We could study the possible germline origin of 27

variants in 26 patients Table S2, and the remaining

six patients could not be analyzed because nontu-

moral sample was not available. After confirmatory

tests, five patients were confirmed of harboring germ-

line variants.

Table 1. Clinical characteristics of the 93 patients (88 in cohort 1

and five in cohort 2) included in the study (Hb, hemoglobin).

Cohort 1

(n = 88)

Cohort 2

(n = 5)

Sex, n (%)

Female 28 (32) 3 (60)

Male 60 (68) 2 (40)

Age (years), median [range] 61 [14–82] 32 [15–45]

MN subtypes, n (%)

AML 30 (34) 2 (40)

MDS 32 (36) 2 (40)

MPN 22 (25) 1 (20)

MDS/MPN 4 (5) 0 (0)

Laboratory, median [range]

Leukocytes (9 109/L) 5.6 [0.9–326.9] 3.3 [0.9–5.6]

Neutrophils (9 109/L) 2.8 [0.1–109.3] 1.1 [0.2–3.1]

Platelets (9 109/L) 112 [11–1049] 117 [11–200]

Hb (g�dL�1) 10.5 [5.9–17.6] 9 [7.2–11.4]

BM blasts (%) 10.5 [0–96] 0 [0–53]

PB blasts (%) 1 [0–98] 10 [0–36]

LDH (U�L�1) 181 [74–428] 201.5 [123–280]

Karyotype, n (%)

Normal 34 (39) 0 (0)

Altered 25 (28) 1 (20)

Complex 9 (10) 1 (20)

No karyotype 20 (23) 3 (60)

Molecular alterations, patients (%)

DNMT3A 10 (11) 0 (0)

RUNX1 9 (10) 1 (20)

NPM1 8 (9) 0 (0)

FLT3 5 (6) 0 (0)

IDH1 2 (2.3) 0 (0)

IDH2 2 (2.3) 0 (0)
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Thus, in cohort 1 a total 5.7% (5/88) of patients

presented MNGP. The affected genes were MPL

(p.Phe105Leu), GATA2 (p.Arg396Gln), DDX41

(p.Asp30_Asp32del; p.Ile592Phe), and ETV6

(p.Arg49Cys) Tables 2 and 3. Interestingly, in all cases

suspected with germline variants in MPL, DDX41, and

ETV6 genes, these were finally confirmed as of germ-

line origin Tables 2 and 3.

Regarding cohort 2, a total of 11 variants were

detected, of which 64% (7/11) were classified as P/LP

and 36% (4/11) were classified as VUS. Four variants

were detected in the genes of interest with a

VAF > 0.4 and were subsequently confirmed to be

germline. In cohort 2, 80% (4/5) of patients were iden-

tified as carriers of disease-causing germline variants in

CEBPa (p.His24AlafsTer84), TP53 (p.Arg282Trp),

ASXL1 (p.Gly704Arg), and GATA2 (p.Arg396Trp)

genes Tables 2 and 3.

In summary, nine patients presented MNGP

Tables 2 and 3. Three patients had AML, two MDS/

Mono-MAC syndromes, two MPN, and two presented

MDS. Mono-MAC syndrome represents a unique clin-

ical entity characterized by monocytopenia, lym-

phedema, an increased risk of opportunistic infections,

and hematological malignancies [27].

These patients presented great heterogeneity in the

age at diagnosis (median age 47 years, range 2–73).
The pedigrees of eight families are depicted in

Fig. 2A–H. Family I is not shown since the patient

denied any relevant family background, but did not

give additional information about relatives to complete

her pedigree.

Considering the family history of hematopoietic neo-

plasms or solid tumors, we would like to highlight that

six out of nine patients confirmed to harbor a germline

variant presented a strong family history (three

patients from cohort 1 and three patients from cohort

2). Only one patient with DDX41 germline mutation

and the two cases of Mono-Mac syndrome (GATA2

variants) had no relevant family history (Families F,

G, I; Tables 2 and 3.

Moreover, it should be remarked that family history

of all 93 patients included in the study was carefully

evaluated and 10 patients did present a highly sugges-

tive family history. Among them, with the panel

employed, we have been able to detect a germline

alteration in 60% of the patients (6/10). The remaining

four did not show any germline variant in none of the

genes studied despite of strong family background

(three patients from cohort 1 and one from cohort 2).

Molecular alterations detected in CEBPa, TP53,

and GATA2 have already been identified as high-risk

germline alleles with MN predisposition [27–32],mean-

while, ASXL1 variant p.Gly704Arg has only been

found in patients diagnosed from sporadic MN and

missense MPL variant p.Phe105Leu has been previ-

ously described in a case of chronic myelomonocytic

leukemia and in a case of S�ezary syndrome [33,34].

Table 2. Relevant clinical characteristics of individuals affected from MNGP in the studied families. Dash indicates not chemotherapy

received. Aza, azacitidine; Ch, chemotherapy; F, female; Fam, family; Ind, individual; lena, lenalidomide; M, male; MMS, Mono-Mac

syndrome; NA, not available; NT, not treated; pred, prednisone.

Fam Ind Cohort Sex

Age

(years) Gene Diagnosis

BM blasts

(%) Karyotype Ch Status HSCT

Follow-

up

(months)

A III.1 2 F 32 CEBPa AML 53 47,XX,+21 [18/20];

46,XX [2/20]

IA 3X7 CR No 132

A II.1 F 53 CEBPa AML NA 46,XX [10] IA 3X7 CR auto-

HSCT

147

B IV.3 2 F 2 ASXL1 PMF NA 46,XX [20] Lena +

pred

CR No 220

B III.6 M 54 ASXL1 PMF NA NA Lena Progression No 88

C III.6 1 F 53 ETV6 MDS 6 46,XX [20] NT Progression No 100

C II.6 F 86 ETV6 MDS 2 46,XX [20] NT Exitus No 45

D II.1 1 M 41 TP53 AML 89 Complex IA 3X7 Exitus No 14

E II.2 1 M 53 MPL MPN 1 46,XY [20] NT Alive No 18

F II.1 2 M 35 GATA2 MDS/

MMS

0 Complex NT Complete

chimerism

allo-

HSCT

20

G II.3 2 M 32 GATA2 MDS/

MMS

0 47,XY,+8 [5]; 46,XY

[11]

NT Exitus allo-

HSCT

144

H III.1 1 M 70 DDX41 MDS 1 NA Aza Alive No 27

I PN-

09

1 F 58 DDX41 AML 21 Complex Clinical

trial

Progression No 9
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Other missense variants (p.Pro106Leu and p.Arg102-

Pro) have been described as germline mutations affect-

ing the MPL/JAK2 signaling axis in hereditary

thrombocytosis [35,36]. This new variant affects the

extracellular domain of the gene, particularly a region

involved in ligand binding [37]. The three in silico pre-

dictors classify this new variant as probably pathologi-

cal. Therefore, we speculate that the nearby

p.Phe105Leu mutation might have a similar disruptive

capacity. Two patients harbored novel heterozygous

germline variants in the DDX41 gene (p.Asp30_Asp32-

del and p.Arg339Cys), one of the most frequently

mutated MN predisposition gene [38]. Additionally,

we have detected a germline variant in the ETV6 gene

(p.Arg49Cys) in both the index case and the mother of

family J. The aforementioned alteration was found in

COSMIC database as a pathogenic variant reported in

a case of endometrioid carcinoma. Moreover, the

prevalence of the alteration in the general population

is 0.0017.

Intrafamiliar heterogeneity could suggest that the

acquisition of certain somatic variants may drive the

evolution of the disease. The patient A.III.1 presented

a somatic variant in GATA2 gene (p.Gly320Asp). Sec-

ondly, the subject B.III.6 acquired second-hit ASXL1

mutation (p.Gln976Ter). Lastly, the index case H.III.1

acquired a second-hit DDX41 somatic mutation

(p.Ile592Phe).

4. Discussion

Cancer predisposition has long been recognized to

contribute to the development of many solid tumors.

Recently, with the incorporation of NGS, new genes

have been discovered correlating with MNGP and sev-

eral family studies have been carried out to date [39].

Table 3. Germline variants identified in the current study. ALL, acute lymphoblastic leukemia.

Family Individual Cohort Relationship

Nontumoral

sample

analyzed Gene Variant Protein Effect

VAF at

diagnosis

Family

history

A III.1 2 Proband CR BM CEBPa c.68dupC p.His24AlafsTer84 Frameshift 0.51 AML, solid

tumors

A III.2 Sister PB CEBPa c.68dupC p.His24AlafsTer84 Frameshift

A II.1 Mother CR BM CEBPa c.68dupC p.His24AlafsTer84 Frameshift

B IV.2 2 Proband CR PB ASXL1 c.2110G>A p.Gly704Arg Missense 0.53 AML, PMF

B III.6 Paternal

Uncle

Diagnostic

BM

ASXL1 c.2110G>A p.Gly704Arg Missense 0.49

C III.6 1 Proband PB TL ETV6 c.145C>T p.Arg49Cys Missense 0.49 MDS, solid

tumors

C II.6 Mother Diagnostic

BM

ETV6 c.145C>T p.Arg49Cys Missense

C V.2 Niece

Unaffected

carrier

PB ETV6 c.145C>T p.Arg49Cys Missense

D II.1 1 Proband Skin biopsy TP53 c.844C>T p.Arg282Trp Missense 0.89 AML, ALL,

solid

tumors

D II.4 Brother

Unaffected

carrier

PB TP53 c.844C>T p.Arg282Trp Missense

D II.5 Brother

Unaffected

carrier

PB TP53 c.844C>T p.Arg282Trp Missense

E II.2 1 Proband PB TL MPL c.313T>C p.Phe105Leu Missense 0.5 MPN,

thrombosis

F II.1 2 Proband Skin biopsy GATA2 c.1187G>A p.Arg396Gln Missense 0.57 No

G II.3 2 Proband Skin biopsy GATA2 c.1186C>T p.Arg396Trp Missense 0.49 No

H III.1 1 Proband PB TL DDX41 c.1015C>T p.Arg339Cys Missense 0.52 Severe

aplasia,

MDS, ALL

I PN-09 1 Proband Skin biopsy DDX41 c.88_96delG-

ACGAGGAC

p.Asp30_

Asp32del

In frame 0.49 No
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Although the field of predisposition to hematological

malignancies is evolving promptly, the penetrance, the

phenotype, or the inheritance pattern of this subgroup

of syndromes is still unknown. Etiology of MNGP is

heterogeneous, and our data reinforce this idea. In

fact, there are families with a homogeneous clinical

phenotype, in which all affected members present the

same subtype of disease,whereas other families have a

mixed phenotype, with affected members suffering

from different neoplasms.

In this regard, the information obtained from family

history seemed to indicate that MN in these families

may be inherited in an autosomal dominant pattern

with variable expression. Furthermore, the comparison

of second-generation and first-generation patients

showed a younger age of diagnosis in CEBPa and

ASXL1 pedigrees. These families may be possible

attached to a phenomenon of anticipation.

When a genomic test is performed in patients with

MN, it is crucial to confirm the germline origin of the

variants found. According to our experience, cultured

skin fibroblasts are the preferred source remaining as

the gold standard sample for confirmation. Even

though, other nontumor samples such as PB at CR,

buccal swab, saliva, or isolated T cells can be used

when a skin biopsy is not available or when a rapid

clinical decision is needed (e.g., when there is a relative

suitable as donor for allo-HSCT) [40]. However, these

samples must be interpreted carefully as they may be

contaminated with tumor tissue. In remission samples,

it has already been described the presence of clonal

hematopoiesis of indeterminate potential which is

defined as the presence of recurrent somatic mutations

in hematopoietic stem cells acquired throughout the

life of the patients [41]. In saliva, the presence of a sig-

nificant percentage of hematopoietic cells is

Fig. 2. Pedigrees of patients with a confirmed MNGP. (A) AML (germline CEBPa p.His24Alafs). (B) MPN (germline ASXL1 p.Gly704Arg). (C)

AML (germline ETV6 p.Arg49Cys). (D) AML (germline TP53 p.Arg282Trp). (E) MPN (germline MPL p.Phe105Leu). (F) MDS/Mono-Mac

syndrome (germline GATA2 p.Arg396Gln). (G) MDS/Mono-Mac syndrome (germline GATA2 p.Arg396Trp). (H) MDS (germline DDX41

p.Arg339Cys). Arrowhead indicates index proband. Pedigree for Family I is not shown because no detailed family information was collected.

nt, not tested.
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conceivable, and, on the other side, the variant could

have been acquired in a primary stem cell and be

shared between myeloid and lymphoid lineages, so it

could lead to a false positive if T cells are studied for

validation [42].

On the other hand, those families in which there are

several relatives affected from MN and the variant is

found in more than one of them, cultured skin fibrob-

lasts are not mandatory to confirm the germline origin.

Moreover, in those cases in whom the variant is

detected in a remission sample or in TL there would

be enough evidence to report the high suspicion of the

case and provide genetic counseling to the family.

The implementation of a gene panel analysis by

NGS for somatic mutations is increasingly used in the

diagnosis, prognosis, and treatment selection for

patients with MN [43,44]. In this sense, the fact that

known genes related to predisposition to MN are also

recurrently mutated genes in de novo neoplasms makes

plausible the identification of suspicious germline vari-

ants in the routine analysis of tumor samples [13].

In cohort 1, 32 out of 88 patients (36.4%) were sus-

pected of carrying a germline variant since they

showed pathogenic or likely pathogenic variants in

any of the 15 genes with potential germline relevance.

Among these suspicious patients, 21 patients were

studied and discarded, six patients could not be ana-

lyzed and five patients presented germline variants.

Thus, we identified an incidence of 19.3% (5/26) in

suspicious patients and a final incidence of confirmed

MNGP of 6% (5/82). Our results are consistent with

previous studies where it is estimated that around a

5% of all cancers present a hereditary component

[13,45,46].

This percentage is increased when patients with

highly suggestive family background (n = 10) are taken

into account. In this situation, our panel was able to

detect the causative mutation in 60% of the patients

(n = 6).

Furthermore, the panel employed was capable to

reveal a germline variant in three cases from cohort 1

where family history was not known or suspected. Due

to the fact that some relevant genes are missing from

the panel, the number of patients identified may even

be underestimated. That is why our gene panel will be

updated with a new enhanced version which will

include, inter alia, SAMD9, SAMD9L, or SRP72

genes. The inclusion of genes associated with heredi-

tary myeloid malignancies into routine myeloid panels

will reduce costs and optimize patient care. However,

in this scenario, it is imperative to standardize which

variants should be reported and pretest counseling.

Additionally, genetic analysis may become even more

challenging since some polymorphisms are yet known

to be associated with an increased risk of developing

cancer [47,48]. Nevertheless, it still needs to be estab-

lished the role of common genetic variants in cancer

predisposition syndromes.

Those individuals with a highly suggestive family

history but no variant found are interesting candidates

to enlarge the genetic study with other available

approaches such as a panel of cancer predisposition

genes, whole-exome sequencing (WES) or whole-gen-

ome sequencing (WGS), in order to identify the causal

alteration. In the case of WES/WGS, at least two

affected members of the family must be analyzed to

discover which are the genes involved.

Thus, family history is so relevant that we consider

it crucial to incorporate specific personal medical data

of all patients diagnosed with MN in order to collect

relevant family history for clinical suspicion. However,

variable expression and incomplete penetrance of these

disorders add imperative challenges [49]. That is why it

is important to carefully analyze the suspicious vari-

ants detected through NGS in order to provide the

best clinical care, guide stem cell transplant decision,

and identify other relatives in the family who may be

at risk.

The identification of variants which confer a predis-

position to the development of hematological malig-

nancies is challenging because as more pedigrees are

described, surely one variant will be associated with a

unique family [1,50].

We herein report a missense ASXL1 mutation

(p.Gly704Arg) which, to our knowledge, has not been

previously described as a germline variant. It has only

been previously found in patients diagnosed with spo-

radic MN [29,51]. To date, few patients with MNGP

have been reported to present germline ASXL1 muta-

tions [16,52], however, the strong AML family history

found within this family together with the fact that the

variant was detected in a remission sample from the

proband (B.IV.3), as well as in a diagnosis sample

from her paternal uncle (B.III.6), supports the idea of

its pathogenicity and germline origin Fig. 2. It must be

highlighted that these data do not replace the need for

further experimental validation, albeit it is reasonable

to consider this variant as a predisposing risk allele in

our family. We also report on a new missense germline

variant in the MPL gene (p.Phe105Leu). It affects the

extracellular domain of the gene, particularly a region

involved in ligand binding [37] and a disruptive capac-

ity was predicted. Further functional studies are

required to determine the pathogenic potential of those

non described variants and the significance of them in

inherited related MN.
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Both germline variants in the DDX41 gene are

located throughout the sequence of the gene, suggest-

ing that different mutations can impact on different

protein domains or motifs with pathologic conse-

quences [38]. Despite small sample size, one out of 2

(50%) patients with germline DDX41 mutations in

the present study harbored somatic point mutations

in the other allele, as previously reported [53]. Finally,

the precise function of the novel ETV6 mutation is

unknown, although it is located in exon 2 and, in the

protein level, near the SAM-PNT domain which medi-

ates protein–protein interaction with Ets factors [54].

This p.Arg49Cys ETV6 variant has been previously

described by Moriyama et al. [55] in a cohort of child-

hood acute lymphoblastic leukemia, revealing the com-

plexity of hereditary cancer as specific mutations can

confer different risks to different types of cancer [56].

When allo-HSCT is considered in a patient harbor-

ing a germline variant, donor selection among relatives

must be carefully conducted. Potential-related donors

should be evaluated for the mutation detected in the

index case in order to avoid selecting an asymptomatic

carrier as donor (42). In those cases in which the

donor presents the alteration, alternative donors

should be considered. In our cohort, patients D.II.1,

F.II.1, and G.II.3 underwent allo-HSCT. For all of

them, a screening of the mutation was performed in

the candidate family members and donors were

selected among those who did not carry the alteration.

In the case of family D, despite the fact that the

patient died before receiving the transplant, the alter-

ation was detected in several siblings Table 3, Fig. 2.

All of them are still at risk for suffering from hemato-

logical and solid tumors, since the alteration detected

in TP53 gene (p.Arg282Trp) is diagnostic for the Li–
Fraumeni syndrome [28,32].

Within this scenario, genetic counseling should be

offered to family members. Healthy family members

diagnosed with a hematological predisposition syn-

drome should be referred to cancer surveillance pro-

grams. The optimal clinical surveillance for

asymptomatic individuals with germline alterations is

unclear. Germline alterations are no fully penetrant,

and many carriers will not develop any malignancy. In

accordance with other authors, analysis of complete

PB counts every 6 months is highly recommended. If

there is any change in the blood counts, the test must

be repeated 1–2 weeks later, and if it persists, it will be

necessary to perform a BM aspirate [57]. However, if

the syndrome is associated with the onset of other

tumors, this screening will be insufficient. Therefore, it

is necessary to implement a surveillance specific pro-

gram for each of the hematological hereditary

syndromes and their follow-up should be performed

by a multidisciplinary team in specialized centers.

Research in this area is necessary to characterize in

detail each of these syndromes, as well as the establish-

ment of national and international registries. In the

same way, it is crucial for clinicians to be familiar with

these syndromes and they should keep in mind hemato-

logical malignancy predisposition syndromes on the dif-

ferential diagnosis for every patient in order to identify

properly families with predisposing conditions [10], [58].

5. Conclusions

In conclusion, we demonstrated that it is useful to

include genes related to MNGP in gene panels

designed principally for routine analysis of somatic

mutations. They provide an effective approach to: (a)

detect clinical significant variants of potential germline

origin, and therefore (b) avoid using a related stem cell

donor carrying the same mutation, and (c) offer

genetic counseling to the families affected.

In the future, the number of patients diagnosed with

germline alteration will certainly increase as the full

spectrum of genes involved in hematological malignan-

cies syndromes is elucidated. This issue would be

solved since WES, or even WGS, techniques will

become a more cost-effective and timely approach in

routine clinical care.
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