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When perception is underdetermined by current sensory
inputs, memories for related experiences in the past
might fill in missing detail. To evaluate this possibility, we
measured the likelihood of relying on long-term memory
versus sensory evidence when judging the appearance of
an object near the threshold of awareness. Specifically,
we associated colors with shapes in long-term memory
and then presented the shapes again later in unrelated
colors and had observers judge the appearance of the
new colors. We found that responses were well
characterized as a bimodal mixture of original and
current-color representations (vs. an integrated
unimodal representation). That is, although irrelevant to
judgments of the current color, observers occasionally
anchored their responses on the original colors in
memory. Moreover, the likelihood of such memory
substitutions increased when sensory input was
degraded. In fact, they occurred even in the absence of
sensory input when observers falsely reported having
seen something. Thus, although perceptual judgments
intuitively seem to reflect the current state of the
environment, they can also unknowingly be dictated by
past experiences.

Introduction

What we see is intuitively thought to be determined
by the light reaching our eyes, but it is also influenced
by memories for what we have seen before. Indeed, past
experience provides a rich source of knowledge and

expectations about what is likely to appear in a given
context and how it will look. The supplemental role of
memory in perception might be especially needed under
impoverished viewing conditions (e.g., dim lighting;
von Helmholtz, 1867). For instance, in a dark movie
theater, it may be easier to recognize the face of a close
friend than that of an acquaintance, even though it may
not be difficult to identify either under normal
illumination.

There are multiple ways in which past experience can
influence present perceptual performance. Benefits may
derive from extensive practice on specific perceptual
tasks, as in the case of perceptual learning (Sagi, 2011).
For example, consistent exposure to dots moving in
one direction leads to enhanced motion perception in
that direction (Ball & Sekuler, 1987; Watanabe, Náñez,
& Sasaki, 2001). Perceptual expectations formed on the
basis of this exposure can bias judgments of stimulus
features (e.g., motion direction) toward the average of
feature values experienced so far (Huang & Sekuler,
2010), or those most frequently experienced, and even
on trials on which no stimulus is present (Chalk, Seitz,
& Series, 2010). Moreover, over a lifetime of experi-
ence, certain objects (e.g., bananas) are perceived to
have their canonical color even when presented
achromatically (Hansen, Olkkonen, Walter, & Gegen-
furtner, 2006).

Benefits may also accrue from minimal experience,
such as a single exposure to a word or object, which
results in faster and more accurate identification upon
repetition (Tulving & Schacter, 1990), even lasting for
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weeks (Cave, 1997). One remarkable feature of such
priming is that it does not require awareness that an
item has been seen before. When encountering a
repeated stimulus, people may erroneously attribute
their perceptual fluency to aspects of current viewing
conditions (e.g., presentation duration, the level of
noise) rather than to memory (Witherspoon & Allan,
1985; Jacoby, Allan, & Collins, 1988). Furthermore,
amnesic patients, who are not able to consciously recall
recent experiences, nevertheless can exhibit priming
(Warrington & Weiskrantz, 1974).

Taken together, this prior work shows that infor-
mation encoded into long-term memory can automat-
ically influence perception, partly by enhancing
perceptual sensitivity for that information when it is
presented again. Although this suggests that long-term
memory interacts with current sensory inputs in some
way to determine perception, how these interactions
occur is less well understood.

Recently, the field of visual memory has developed
quantitative modeling techniques to characterize the
strength and fidelity of visual representations (Zhang &
Luck, 2008; van den Berg, Shin, Chou, George, & Ma,
2012; Fougnie, Suchow, & Alvarez, 2012; Suchow,
Brady, Fougnie, & Alvarez, 2013). These tools have
spurred advances in our understanding of diverse
phenomena (see Brady, Konkle, & Alvarez, 2011),
including feature binding in visual working memory
(e.g., Fougnie, Asplund, & Marois, 2010; Bays, Wu, &
Husain, 2011), encoding precision (Bays & Husain,
2008; van den Berg, Awh, & Ma, 2014), false memory
and swapping effects (Bays, Catalao, & Husain, 2009),
visual long-term memory (VLTM) encoding and
retrieval (e.g., Williams, Hong, Kang, Carlisle, &
Woodman, 2012; Brady, Konkle, Gill, Oliva, &
Alvarez, 2013; Fan & Turk-Browne, 2013), attentional
orienting (Golomb, L’Heureux, & Kanwisher, 2014),
and ensemble perception (Brady & Alvarez, 2011).

Here we use these tools to examine how VLTM
representations and current sensory evidence jointly
determine perceptual judgments. As a case study of
when these information sources may be most likely to
interact, we asked observers to judge the appearance of
a familiar object near the threshold of awareness.
Specifically, we first associated shapes with unique
colors in VLTM, then later presented the shapes again,
but now in unrelated colors. Observers estimated the
color in which each shape appeared, using continuous
report. We manipulated the amount of sensory
evidence available during these later presentations by
reducing stimulus duration (from 150 ms to 10 ms). We
hypothesized that reducing the availability of sensory
information would increase reliance on memory, even
though long-term memory was entirely task irrelevant
(as original and current colors were uncorrelated). By
tightly controlling the similarity between the contents

of VLTM and sensory experience (i.e., distance in color
space) and the amount of sensory evidence (i.e.,
duration), this study provides novel quantitative insight
into the influence of long-term memory on perception.

Methods

Participants

Across three experiments, 72 observers (49 women,
age 18–33 years) who reported normal or corrected-to-
normal visual acuity and color vision participated. The
sample size was the same for each experiment (24
observers) and was determined based on piloting and
previous research. Each observer received course credit
or $12/hr as compensation and provided informed
consent to a protocol designed in accordance with the
principles expressed in the Declaration of Helsinki and
approved by the Institutional Review Board of
Princeton University.

Stimuli

Eight ‘‘alphabets’’ of 12 shapes each were used (Fan
& Turk-Browne, 2013), for a total of 96 novel items.
Each shape repeatedly appeared in the same randomly
chosen angular location (radial eccentricity ¼ 88) and
color (CIE L*a*b* space centered at L¼ 54 / a¼ 18 / b
¼�8; radius¼ 598). Later, each shape reappeared in the
same location but in a new, independently sampled
color. Stimuli were presented using a CRT monitor
;70 cm from the observer with MATLAB and
PsychToolbox (http://psychtoolbox.org).

Procedure

The experiment contained eight blocks, each em-
ploying a unique alphabet. Blocks were subdivided into
initial exposure and final test phases (Figure 1). For each
initial exposure trial, a shape was presented for 500 ms,
followed by a 1500-ms blank interval. An achromatic
version of the shape (the probe) then reappeared at the
same location, along with a color response wheel (radius
¼ 48). Observers were instructed to recreate the color in
which the shape had just appeared by adjusting the
probe’s color using the color wheel, clicking to report the
final selection (Wilken & Ma, 2004). The full alphabet of
shapes was repeated three times during initial exposure;
the order of shapes within each repetition was random-
ized. The exposure phase was identical across all three
experiments. There were 36 trials/block3 8 blocks¼ 288
exposure trials in total.
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The final test trials were similar except for three
changes: (1) Each shape was presented in a new,
randomly chosen color. (2) Shapes were presented
between forward and backward color-noise masks of
jittered duration (150–225 ms). Noise masks were trial-
unique, ring-shaped arrays of randomly colored shape
fragments that covered all possible angular locations
(inner radius¼ 6.58; outer radius¼ 9.58). (3) The shape
presentation duration was shortened to 150 ms
(Experiment 1), 50 ms (Experiment 2), or 10 ms
(Experiment 3). Finally, a random subset of ‘‘invisible’’
trials in each experiment did not contain a shape at all
(i.e., 0 ms). Observers were always instructed to report
the color of the shape as it appeared on the current
trial, identical to the exposure phase, and were
informed about ‘‘invisible’’ trials only during debrief-
ing. There were 12 test trials/block3 8 blocks¼ 96 test
trials in total.

Experiment 1

Twenty-four naı̈ve observers participated (17 wom-
en, mean age ¼ 19.3 years). Shapes were assigned in
equal proportion to one of two visibility conditions,
‘‘150-ms’’ and ‘‘0-ms,’’ and this assignment was
counterbalanced between observers (48 shapes/condi-
tion).

Experiment 2

Twenty-four naı̈ve observers participated (15 wom-
en, mean age ¼ 21.1 years). One third of all items (32
shapes) were assigned to a 50-ms condition and two
thirds (64 shapes) were assigned to a 0-ms condition, to

ensure there was sufficient statistical power in the 0-ms
condition to derive robust model parameter estimates.
Upon reporting the color on each trial, observers
indicated whether they detected the shape using a 4-
point scale in response to the question, ‘‘How confident
are you that you saw the shape?’’: sure present, maybe
present, maybe absent, or sure absent.

Experiment 3

Twenty-four naı̈ve observers participated (17 wom-
en, mean age ¼ 22.5 years). In this experiment, two
thirds of items (64 shapes) were assigned to a 10-ms
condition, and the remaining one third (32 shapes) to a
0-ms condition, to ensure sufficient statistical power in
the 10-ms condition to derive robust model parameter
estimates. As in Experiment 2, 4-point present/absent
responses were collected.

Data Analysis

Because of the small number of final test trials
collected per condition per observer, errors were pooled
across observers within each condition for subsequent
analysis, providing sufficient statistical power to derive
robust model estimates. Random-effects reliability was
established across observers using bootstrapping (see
below).

Modeling performance on initial exposure trials

During initial exposure, there was only one feature
associated with each shape. To model performance on

Figure 1. Task display. (a) During initial exposure trials, a colored shape was briefly presented and then an achromatic version of the

shape reappeared to probe observers for the color. (b) Final test phase trials were identical, other than the use of forward and

backward masks, the duration of the initial shape, and the fact that the shape had previously appeared in a different color.
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these trials, we employed a mixture-modeling proce-
dure that uses maximum-likelihood estimation to
partition errors into two component distributions
(Equation 1): a uniform distribution reflecting the
probability of guessing (inversely related to the
proportion of trials on which the response was
‘‘anchored’’ around the true color value); and a von
Mises distribution of the anchored responses whose
variance provides a measure of the precision (1/SD) of
the color representation (Zhang & Luck, 2008).

pðĥÞ ¼ b/rðĥ� hÞ þ ð1� bÞ 1

360
ð1Þ

b represents the frequency of responding from the color
representation, where / denotes the von Mises distri-
bution centered on the correct feature value h, with
standard deviation r.

Modeling performance on final test trials

On test trials containing a stimulus (‘‘visible’’ trials),
observers may have used one of two distinct sources of
information to generate responses: long-term memory
for the color associated with the shape on previous
encounters or recent sensory information about the
color of the shape on the current trial (Figure 2). To
estimate the likelihood of responding based on long-
term memory, we adapted the mixture model above to
include three components (Equation 2): a von Mises
distribution for the ‘‘original’’ color, describing the
precision and probability of anchoring upon the long-
term memory representation of feature value horig from
exposure; a von Mises distribution for the ‘‘current’’

color, describing the precision and probability of
anchoring upon the sensory representation of feature
value hcurr that just appeared; and a uniform distribu-
tion describing the probability of guessing.

pðĥÞ ¼ borig/rorig
ðĥ� horigÞ þ bcurr/rcurr

ðĥ� hcurrÞ

þð1� borig � bcurrÞ
1

360
ð2Þ

According to this model, perceptual judgment entails
sampling directly from either long-term memory or
sensory representations, resulting in a mixture of
response distributions that reflect the independent
origins of the underlying signals. This modeling
approach has also been used to capture ‘‘swap’’ errors in
continuous-report tasks, in which multiple items were
concurrently presented but only a single target item was
cued for report (Bays et al., 2009). In that case, swaps
occurred when a distractor item from the current trial
was reported, as opposed to our case, in which swaps
reflect a substitution from long-term memory.

Assessing reliability of parameter estimates

As responses were pooled across observers, the
above modeling approaches produced single sets of
parameter estimates for each condition. To determine
the random-effects reliability of these estimates within
experiments, we used a bootstrapping procedure (Efron
& Tibshirani, 1986). On each of 1,000 iterations, 24
observers’ worth of data were randomly sampled with
replacement from the original 24 observers, and the
models were refit to this bootstrapped pooled data set.

Figure 2. Modeling approach at test. Responses across observers in the final test phase were modeled as a mixture of three

component distributions: a uniform distribution to capture guess responses and von Mises distributions to capture responses

centered on the ‘‘original’’ color of the shape from exposure and its ‘‘current’’ color, respectively. b¼ probability of anchoring on a

color; r�1 ¼ precision of anchored responses.
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The logic underlying this resampling approach is that
insofar as the effect is reliable across observers, similar
results will be obtained regardless of the subset of
observers sampled on a given iteration. Across itera-
tions, this procedure yielded an empirical distribution
for each model parameter. These distributions were
used to construct confidence intervals, as well as to
assess model performance. We have used this approach
in other published studies that involve single-trial
analysis (Kim, Lewis-Peacock, Norman, & Turk-
Browne, 2014; Hindy & Turk-Browne, 2016).

Assessing the fit of the three-component model

To evaluate the general validity of the three-
component mixture model (Equation 2), we compared
its Akaike Information Component (AIC) scores
(Akaike, 1974; Burnham & Anderson, 2004) with those
of two reduced versions of the model and a null model:
(1) a two-parameter version containing only the
current-color component (thus ignoring long-term
memory), plus guessing; (2) a two-parameter version
containing only the original-color component (thus
ignoring immediate sensory information), plus guess-
ing; and (3) a zero-parameter null model, containing
only the uniform-guessing component.

To assess variability in our group-level estimate of
AIC, we used the same bootstrapping procedure as
above to construct confidence intervals for the AIC
scores of the full, reduced, and null versions of the
model in each experiment (Supplemental Figure S1).
The p value reported in the results as evidence that
observers’ performance exceeded that expected for
random responding was defined as the number of
iterations on which the null model attained a lower
AIC (i.e., a better fit) than the full model, and is labeled
pAIC. For invisible trials, the full model contained only
the original-color component, plus guessing.

Comparing parameters across experiments

To evaluate the consequences of reducing sensory
evidence on final test trials, we performed a randomiza-
tion test across groups that assessed the statistical
reliability of trends in model parameters across experi-
ments. Such trends were quantified as the slope of the line

fit to observed parameter values versus stimulus duration
(10, 50, 150 ms). A null distribution of slope values was
derived by fitting a line 1,000 times to three random,
equally sized subdivisions of the set of all observers. Two-
tailed p values were derived by evaluating the proportion
of values in this distribution that exceeded the observed
slope in magnitude. Follow-up analyses of pairwise
differences in model parameters between experiments
were conducted using a similar procedure. For a given
pair of experiments, the null distribution of differences in
parameter values was derived by fitting the model 1,000
times to two random, equally sized subdivisions of
observers from both groups. Two-tailed p values were
derived by looking up the observed difference in this null
distribution and identifying the proportion of iterations
that exceeded it in magnitude.

Results

Initial exposure trials

We first assessed performance on initial exposure trials
to verify successful encoding of color associations into
VLTM. Performance on these trials exceeded chance
across all three presentations of each shape (all
experiments, pAIC� 0.001). These reports were not only
statistically reliable but also highly accurate in absolute
terms, with anchoring probability exceeding 96% and
precision exceeding 0:0718�1 in all experiments (Table 1).

Visible test trials

The task remained exactly the same on final test
trials (Figure 3), except that the shape (when visible)
was presented for different durations (across experi-
ments), was visually masked, and was rendered in a
new, independently sampled color (hcurr). Performance
on these trials greatly exceeded chance (all experiments,
pAIC , 0.001). Confirming that the duration manipu-
lation influenced performance, present/absent judg-
ments in Experiment 3 (10 ms) were less sensitive
(Table 2; t¼ 6.3, p , 0.001) and more conservative (t¼
4.4, p , 0.001) than in Experiment 2 (50 ms).1

We hypothesized that reducing the amount of
sensory evidence for the current color would result in a
poorer representation of the current color of the shape.
Indeed, as stimulus durations decreased (150 ms to 50
ms to 10 ms), so did anchoring proportion (slope: p ,
0.001; E1 vs. E2: p ¼ 0.002; E2 vs. E3: p ¼ 0.025) and
precision (slope: p , 0.001; E1 vs. E2: p , 0.001; E2 vs.
E3: p¼ 0.003).

This is consistent with the hypothesis that a decrease
in the amount of sensory evidence leads to a

Experiment

Anchoring probability (b) Precision (r�1)

MLE 95% CI MLE 95% CI

E1(150-ms) 0.962 [0.940, 0.981] 0.074 [0.067, 0.081]

E2(50-ms) 0.967 [0.955, 0.978] 0.071 [0.064, 0.078]

E3(10-ms) 0.974 [0.964, 0.983] 0.078 [0.072, 0.085]

Table 1. Model parameter estimates for responses during the
initial exposure phase.
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concomitant increase in substitutions from VLTM
(Figure 4). Indeed, the probability that an observer’s
report was anchored on the original color increased as
stimulus duration decreased (Table 3; slope: p¼ 0.003;
E1 vs. E2: p¼0.006; E2 vs. E3: p¼0.075). Duration did
not, however, affect the precision of these reports from
long-term memory (slope: p ¼ 0.215).

Invisible test trials

No shape was presented at all (invisible or ‘‘0-ms’’
condition) on a subset of final test trials in all
experiments, although visual masking disguised these

trials from observers. We included these trials to isolate
the contribution of VLTM to perceptual judgments, as
no sensory information was available. Overall, perfor-
mance on these trials exceeded chance (all experiments,
pAIC , 0.007). Intrusions occurred both on trials where
observers erroneously reported that the shape had been

Figure 3. Distribution of errors in test phase. Each panel contains a histogram of errors pooled across all observers and the

corresponding fit from the three-component model (dotted line). In (a) and (b), all visible trials are plotted: In (a), errors represent the

difference between each response and the current color, whereas in (b), errors represent the difference between each response and

the original color. (c) On invisible trials, responses clustered around the original color.

Experiment Sensitivity (d0) Criterion

E2(50-ms) 2.27 0.341

E3(10-ms) 0.753 �0.246

Table 2. Present/absent performance during the final test
phase. Response criterion was calculated as in Snodgrass and
Corwin (1988).
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present (pAIC , 0.018)—thus misattributing their
report to sensory input on the current trial—as well as
on trials where they correctly reported that the shape
had been absent (pAIC , 0.031; Table 4). On these
‘‘present’’ trials, anchoring on the original color in
VLTM was as likely (Experiment 3; p¼ 0.276) or more
likely (Experiment 2; p¼ 0.030) than on ‘‘absent’’
trials.2 Neither anchoring probability nor precision
differed across experiments (slope: ps . 0.167).

Testing an alternative ‘‘blend’’ model

The modeling approach so far assumes that a
perceptual judgment entails sampling directly from
either memory or sensory representations (‘‘swap’’
mechanism), resulting in a bimodal mixture of response

distributions that reflects the independent origins of the
underlying signals. Another possibility, however, is that
perceptual judgment entails sampling from an inte-
grated representation (‘‘blend’’ mechanism) that is
formed by combining memory and sensory represen-
tations according to Bayes’ rule, resulting a single
unimodal response distribution (Knill & Pouget, 2004).
Here we evaluate how well such a mechanism might
explain our findings.

Formally, this Bayesian blend account asserts that
responses are generated by sampling from the posterior
density function, which is proportional to the product
of three functions: a likelihood function based on the
original color seen during exposure trials, a second
likelihood function based on current sensory informa-
tion, and the prior density function representing the
probability of the shape taking on any given color.

Figure 4. Modeling results for test phase. (a) The probability of anchoring on the current color and the precision of these responses

decreased as stimulus duration was reduced from 150 ms to 50 ms to 10 ms. (b) This reduction increased the probability of anchoring

on the original color. At shorter durations (50 ms, 10 ms), the precision of responses anchored on the original color was high, at least

relative to the precision for the original color on initial exposure trials (see Table 1). (c) On trials containing no colored shape,

anchoring on the original color occurred reliably, and at a consistent rate across experiments, with similar and high precision. Error

bars represent bootstrapped 68% confidence intervals (comparable in width to 1 SEM).

Experiment

Anchoring probability (b) Precision (r�1)

Current Original Current Original

MLE 95% CI MLE 95% CI MLE 95% CI MLE 95% CI

E1(150-ms) 0.972 [0.900, 0.990] 0.000 [0.000, 0.032] 0.047 [0.043, 0.051] 0.028 [0.006, 0.080]

E2(50-ms) 0.729 [0.616, 0.848] 0.086 [0.021, 0.176] 0.025 [0.020, 0.031] 0.063 [0.022, 0.084]

E3(10-ms) 0.251 [0.146, 0.685] 0.216 [0.124, 0.336] 0.017 [0.010, 0.024] 0.065 [0.038, 0.087]

Table 3. Model parameter estimates for the current and original feature values when the stimulus was visible during final test phase.
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This latter probability is uniform across colors, so it
does not affect the proportionality relationship:

pðĥjhorig; hcurrÞ}pðhorigjĥÞpðhcurrjĥÞ ð3Þ
We again assume that the current and original color

representations follow von Mises distributions, each
centered on the correct feature value hcurr and horig,
respectively, with concentration parameters jcurr and
jorig capturing the amount of uncertainty in the
representation of the current color and noise in the
long-term memory representation, respectively. The
product of these two von Mises distributions is also a
von Mises distribution centered on hblend with concen-
tration parameter jblend, given by:

hblend ¼ atan2�
jorigsinðhorigÞ þ jcurrsinðhcurrÞ;jorigcosðhorigÞ

þjcurrcosðhcurrÞ
�

jblend ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

orig þ j2
curr þ 2jorigjcurrcosðhcurr � horigÞ

q
ð4Þ

We used maximum-likelihood estimation to derive
estimates of jcurr and jorig that provided the best fit to

errors on visible test trials across all three experiments,
then converted these j values to r�1 values in units of
degrees for ease of interpretation. To better account for
large errors, a weight parameter b was also estimated,
reflecting the contribution of this integrated represen-
tation relative to a uniform ‘‘guessing’’ distribution:

pðĥÞ ¼ bblend/rblend
ðĥ� hblendÞ þ ð1� bÞ 1

360
ð5Þ

Interestingly, the resulting parameter estimates for
this blend model suggest an overall interpretation that
is compatible with those based on the swap model,
namely, that the contribution of the current color
representation to the posterior diminishes (i.e., its
precision decreases) as presentation duration is re-
duced, whereas the contribution of the original color
representation increases (Table 5). These trends are
accompanied by increasing guessing proportions, pos-
sibly reflecting greater overall response uncertainty at
shorter durations. Nevertheless, we found that the
blend model consistently underperformed relative to
the swap model, as quantified by the difference in AIC
(Table 5; Supplemental Figure S1). Thus, although the
blend model yields interpretable parameter estimates,
the data suggest that the swap mechanism is more
likely.

Consistent with these results, visual inspection of
normalized error distributions (Figure 5) in the 50-ms
and 10-ms conditions suggests that they are bimodal,
with modes centered on the current and original colors.
This is inconsistent with the blend account, which,
critically, predicts a unimodal distribution that peaks
between these two color values. Taken together, these
findings lend further support to the idea that VLTM
manifests in perceptual judgments as discrete substitu-
tions, as expressed by the swap model.

One caveat we would like to add to these model-
comparison results is that the AIC differences per
participant are small (range: 0.24–3.03), as each model
was fit to data aggregated across 24 participants. As a
rule of thumb, AIC differences smaller than 5 should be
interpreted with caution (Burnham & Anderson, 2004).
Thus, we consider the blend account to still be very
theoretically interesting and potentially relevant. We
speculate that blend and swap mechanisms need not be
mutually exclusive and that some version of each may
dominate in different situations. Specifically, large and

Experiment

Anchoring probability (b) Precision (r�1)

MLE 95% CI MLE 95% CI

E1(0-ms) 0.144 [0.080, 0.227] 0.060 [0.036, 0.078]

E2(0-ms) 0.144 [0.046, 0.263] 0.062 [0.044, 0.086]

‘‘Present’’
only 0.240 [0.093, 0.382] 0.056 [0.036, 0.115]

‘‘Absent’’
only 0.119 [0.031, 0.242] 0.065 [0.042, 0.095]

E3(0-ms) 0.243 [0.138, 0.384] 0.060 [0.042, 0.084]

‘‘Present’’
only 0.323 [0.163, 0.499] 0.063 [0.046, 0.102]

‘‘Absent’’
only 0.216 [0.102, 0.375] 0.057 [0.037, 0.088]

Table 4. Model parameter estimates for responses anchored on
the original feature value when the stimulus was invisible
during final test phase. Rows labeled ‘‘present’’ contain
parameter estimates based only on trials where the observer
erroneously reported that the shape was present; ‘‘absent’’
rows were based on trials where the shape was correctly
reported as absent.

Experiment

Anchoring

probability (b)
Original

precision (r�1)
Current

precision (r�1) AICblend AICswap

E1(150-ms) 0.965 0.011 0.047 10,451.80 10,446.05

E2(50-ms) 0.727 0.011 0.025 8,309.03 8,279.02

E3(10-ms) 0.267 0.067 0.014 17,584.33 17,511.62

Table 5. Blend-model parameter estimates for visible trials during the test phase. For side-by-side model comparison, the final column
reports the corresponding AIC for the swap model.
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random disparities between old and new information
(as in the current study) may promote the formation of
more discrete representations, leading to memory
substitution errors, whereas an alternative scenario
with smaller and/or predictable disparities between old
and new information may encourage integration of
these two sources of information, leading primarily to
memory-driven biases at test (Golomb et al., 2014).

In addition, there exists an interesting intermediate
possibility between these strict blend and swap mech-
anisms. The current formulation of the Bayesian
‘‘blend’’ account assumes that the two likelihood
functions reflecting VLTM and sensory information are
von Mises distributed, but guessing nevertheless occurs
on some proportion of trials. If it were the case that
failure to retrieve the color association in VLTM or
failure to register current sensory information some-
times occurred with independent probabilities, then the
posterior distribution would be formed by combining
mixtures of von Mises and uniform distributions by
multiplication, according to Bayes’ rule. When the
disparity between original and current colors is large
enough, the resulting posterior distribution is bimodal
and very similar in form to the mixture distribution
predicted by the swap model, except that the modes are
slightly shifted toward each other. This alternative
model is intriguing because it provides a subtly distinct
account of the source of the bimodality in response
distributions—as arising from direct updating of a
single underlying representation that supports two
feature values versus arising from sampling a mixture
of two representations, each supporting one feature
value. However, it is several times more computation-
ally intensive to carry out the necessary simulations to
compare these two accounts, because the product of
VMþU mixtures does not yield parameters with closed-
form definitions. Moreover, the large, random dispar-
ities used in the current study may make such small

biases especially difficult to detect. Nevertheless,
although the current study design was not optimized to
resolve differences between these two accounts, we
hope that future investigations will employ designs that
are more sensitive to measuring small biases in bimodal
distributions.

Discussion

The present study aimed to elucidate how object
representations in long-term memory and sensory
information about a just-seen object mutually inform
perceptual judgments. We examined this question by
associating colors with shapes in VLTM and then
testing how these memories informed judgments about
the color of these shapes when they later appeared
again. We found independent contributions of both
long-term memory and immediate sensory input on
responses, with a greater likelihood of drawing upon
VLTM as sensory information decreased. This study
provided a strong test of the contribution of VLTM, as
these memories were both task-irrelevant (observers
were instructed to judge the current color) and
orthogonal to the current information (original and
current colors were uncorrelated). Interestingly, the
precision of these memory substitutions was compara-
ble to the precision with which colors were initially
encoded (see also Brady et al., 2013) and was not
modulated by the amount of sensory input.

Although we interpret these findings as reflecting
automatic substitutions from VLTM during perceptual
judgment, an alternative possibility is that observers
employed a controlled strategy of defaulting to the
original color on certain trials, such as when they did
not see the shape. However, this account is insufficient
in several ways: (1) The original color was objectively

Figure 5. Distribution of responses relative to the current and original colors on visible test trials. Errors were normalized by taking the

difference between the response and current color and dividing it by the distance between the original color and current color for

each item. This results in a distribution in which the current and original colors have been remapped to 0 and 1, respectively, and

errors have been scaled in proportion.
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uncorrelated with the current color across shapes,
making it irrelevant to the task of reporting the current
color; (2) observers accurately reported the current
color when the shape did appear on test trials, showing
that they did not assume that the original color was the
correct response on these trials; (3) anchoring proba-
bilities on the original color were reliable but notably
smaller (8%–22%) than in explicit long-term memory
tests in similar paradigms (40%–65%; Brady et al.,
2013; Fan & Turk-Browne, 2013), suggesting that
anchoring did not simply reflect the accessibility of
representations in VLTM; (4) observers reliably re-
sponded that a shape had been ‘‘present’’ after
reporting the original color on invisible trials, thus
misattributing their report to sensory input on the
current trial; and (5) on these ‘‘present’’ trials,
anchoring on the original color was as likely (Exper-
iment 3; p ¼ 0.276) or more likely (Experiment 2; p ¼
0.030) than on ‘‘absent’’ trials.

Together, these points are more consistent with
automatic than controlled expression of VLTM during
perceptual judgment. Specifically, the representation of
the original color is reactivated when there is sensory
overlap with specific prior experiences (i.e., a matching
shape cue), and this reactivation from memory may be
falsely attributed to immediate sensory experience,
thereby influencing perceptual judgments even when
this influence confers no benefit to (and perhaps even
impairs) task performance.

In this study, we collected present/absent judgments
to assess the relationship between subjective judgments
about the visibility of the current shape and color
responses. A promising direction for future research
would be to also measure the relationship between
subjective confidence in the precision of the current
color representation and the rate of substitutions from
visual long-term memory, which would provide insight
into the metacognitive processes that arbitrate between
sensory and long-term representations on a moment-to-
moment basis (Suchow, Fougnie, & Alvarez, 2012).

Throughout, we employed a mixture-modeling
approach to gain basic insights into interactions
between long-term memory and sensory information in
perceptual judgments. In future studies, alternative
modeling techniques, in which encoding precision is
modeled as varying across items and trials (Fougnie et
al., 2012; van den Berg et al., 2012) and/or determined
by variability in spiking activity of neural populations
(Bays, 2014), may yield a more nuanced understanding
of how such interactions influence the content and
fidelity of visual representations (see also
Supplementary Figure S2).

Taken as a whole, our findings suggest that the visual
system automatically recruits long-term memory dur-
ing perceptual decision making. Ultimately, such
retrieval mechanisms may be crucial for deploying past

experience efficiently and for improving perceptual
inference.

Keywords: object perception, episodic memory, visual
awareness, model fitting
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Footnotes

1 These judgments were not collected in Experiment 1.
2 These p values reflect the proportion of iterations

from the random-effects bootstrapping procedure on
which the anchoring probability for ‘‘absent’’ trials
exceeded that for ‘‘present’’ trials, multiplied by 2 (two-
tailed).
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