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All perceptual and cognitive circuits in the human cerebral cortex are organized into
layers. Specializations of a canonical laminar network of bottom-up, horizontal, and
top-down pathways carry out multiple kinds of biological intelligence across different
neocortical areas. This article describes what this canonical network is and notes
that it can support processes as different as 3D vision and figure-ground perception;
attentive category learning and decision-making; speech perception; and cognitive
working memory (WM), planning, and prediction. These processes take place within
and between multiple parallel cortical streams that obey computationally complementary
laws. The interstream interactions that are needed to overcome these complementary
deficiencies mix cell properties so thoroughly that some authors have noted the difficulty
of determining what exactly constitutes a cortical stream and the differences between
streams. The models summarized herein explain how these complementary properties
arise, and how their interstream interactions overcome their computational deficiencies
to support effective goal-oriented behaviors.

Keywords: neocortex, attention, perceptual grouping, category learning, 3D vision, working memory, catastrophic
forgetting, adaptive resonance theory

1. INTRODUCTION: WHY DOES THE CEREBRAL CORTEX HAVE
LAYERS?

This article discusses a particular combination of feedforward and feedback pathways in the
cerebral cortex that plays a crucial role in combining information to make adaptive decisions and
predictions. In so doing, it falls directly within the purview of the Frontiers Research Topic on
Feedforward and Feedback Processing in the Cerebral Cortex: Connectivity and Function to which it
contributes. This circuit design benefits from the fact that all perceptual and cognitive neocortical
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Grossberg A Canonical Laminar Neocortical Circuit

circuits are organized into layers, typically six of them
(Brodmann, 1909; Martin, 1989). These layers enable a canonical
neocortical circuit to be realized whose specializations carry out
multiple functions of biological intelligence.

Given the diversity of functions carried out by specialized
neocortical circuits, it is of interest to ask what processes are
shared across variations in this canonical circuit. Grossberg
(1999) identified several general processes that all laminar
neocortical circuits seem to share. These include:

(1) the bottom-up adaptive filtering process whereby neocortex
compresses, or categorizes, familiar information in order to
recognize it;

(2) the horizontal grouping process whereby neocortex binds
distributed features into coherent object representations that
are sensitive to the contrasts and spatial arrangement of their
inducing features;

(3) the top-down matching process whereby neocortex uses
learned expectations to focus attention upon critical feature
patterns that predict valued outcomes, while suppressing
irrelevant features; and

(4) the developmental and learning processes whereby
neocortex shapes its circuits in response to environmental

constraints, while dynamically stabilizing adaptations, such
as those in items (1)–(3), to avoid catastrophic forgetting.

When these feedforward and feedback processes are
combined into a canonical laminar cortical circuit, they
clarify how seemingly unrelated psychological properties are
mechanistically related. For example, they clarify how the fact
that neocortex can develop and learn in a self-stabilizing way
implies why top-down attention requires matched bottom-up
inputs or volitional signals to fully activate cortical cells, whereas
horizontal groupings do not.

This article provides an overview and unified analysis
of laminar cortical models of multiple types of biological
intelligence, including 3D vision and figure-ground
perception; attentive category learning and decision-making;
speech perception; and cognitive working memory (WM),
planning, and prediction. These models are consistent with
descriptions and statistical analyses of cortical connectivity
patterns (e.g., Gilbert and Wiesel, 1979; Felleman and
Van Essen, 1991; Markov et al., 2013; Vezoli et al., 2021),
as well as recent data about ‘‘visual evoked responses in
laminar recordings from six cortical areas in awake mice’’
(Barzegaran and Plomp, 2021).

FIGURE 1 | Boundary completion and surface filling-in obey computationally complementary laws. See the text for details (Reprinted with permission from
Grossberg, 2021).
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The current models additionally explain how
neurophysiological dynamics in specific feedforward and
feedback anatomies generate emergent properties that enable
quantitative properties of behavior to be explained and simulated
on the computer. Moreover, although the anatomies in
these models are all variations of known canonical cortical
circuits, the explanations herein of how their variations realize
psychological processes as distinct as 3D vision and figure-
ground perception; attentive category learning and decision
making; speech perception; and cognitive working memory,
planning, and prediction, cannot be explained using purely
anatomical analyses, and stand as testable predictions for further
experimentation.

2. PERCEPTUAL GROUPINGS FORM
PREATTENTIVELY AND AUTOMATICALLY

2.1. Boundary and Surface Processes Are
Computationally Complementary
The visual cortex is designed to enable us to consciously see
objects and scenes in the world. Objects percepts are not just
jumbles, or ‘‘bags,’’ of features. Rather, spatially distributed
features are bound together into emergent structures within an
object percept. The two most important emergent structures
during visual perception of a depthful world are boundary
groupings and surface representations (Grossberg, 1994, 1997;
Grossberg and Pessoa, 1998; Grossberg et al., 2002; Grossberg
and Hong, 2006; Grossberg and Huang, 2009).

The processes that complete boundaries and fill-in surfaces
obey computationally complementary laws. As summarized in
Figure 1, boundary formation occurs inward between pairs or
greater numbers of inducers in an oriented fashion. Boundaries
are insensitive to direction-of-contrast, or contrast polarity,
in the sense that they can group inducers with opposite
contrasts relative to an inducing scenic background. In Figure 1,
boundaries pool opposite directions-of-contrast at different
positions. More generally, boundaries pool opposite directions-
of-contrast at every position, starting in cortical area V1 at
complex cells that sum up opposite polarity signals from pairs
of like-oriented simple cells at that position (Figure 2). Because
boundaries pool signals from opposite contrast polarities, they
cannot tell the difference between light and dark. As a result, ‘‘all
boundaries are invisible’’ (Grossberg, 1994, 1997).

In contrast, the process that fills in surface brightness and
color spreads outward from individual inducers in an unoriented
manner until a boundary blocks its further spread. Filling-in
is also sensitive to direction-of-contrast, or contrast polarity,
because filled-in brightnesses and colors may be consciously seen
(Figure 1). Thus, all conscious percepts of visible qualia are
surface percepts.

These three pairs of boundary and surface properties (inward
vs. outward; oriented vs. unoriented; sensitive vs. insensitive to
contrast polarity) are manifestly complementary.

The perceptual groupings that form due to boundary
completion are sensitive to statistically significant spatial
distributions of contour, texture, shading and depth cues in

FIGURE 2 | Oppositely-polarized simple cells at the same position with
similar orientational preferences input to a complex cell that responds to both
contrast polarities, after their activities are thresholded, or half-wave rectified,
as they generate output signals (Reprinted with permission from Grossberg,
2021).

scenes and images (Julesz, 1971; Ramachandran and Nelson,
1976; Beck et al., 1983; Polat and Sagi, 1993). Illusory contours
are a well-known type of perceptual grouping, and one which
can be easily manipulated in the laboratory to reveal deep
computational properties of the boundary completion process.
Significantly, an illusory contour can form over image positions
that do not receive contrastive bottom-up inputs from an image
or scene. Figure 3 illustrates several examples of the illusory
contours that induce percepts of Kanizsa squares (Kanizsa, 1955,
1974, 1976).

A surface representation is formed after the brain
compensates for variable illumination conditions by discounting
the illuminant, and then uses the surviving feature contours
to fill-in surface qualities like brightness and color within
completed boundary contours, or perceptual groupings. The
percepts induced by the four images in Figure 3 illustrate
how illusory surfaces with different perceived brightnesses and
depths can form in response to different combinations of image
inducers.

2.2. Spatial and Contrast Sensitivity of
Kanizsa Square Percepts to Image
Inducers
Figure 3A illustrates the simplest kind of Kanizsa square, one
that is induced by boundary completion between pairs of colinear
edges of the four pac man figures. I have called this kind of
inward boundary completion bipole boundary completion due to
the fact that boundaries form inwardly between pairs of colinear
inducers (Figure 4). Bipole boundary completion is realized in
laminar neocortex using like-oriented and colinear horizontal
axons in layer 2/3 of cortical area V2 (Grossberg, 1984a;
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FIGURE 3 | Kanizsa square and reverse-contrast Kanizsa square percepts:
(A) The classical Kanizsa square is generated by four pac man figures with
pairs of colinear edges. The Kanizsa square is perceived to be brighter than
the white background because the black pac men induce brighter feature
contours within the square due to the process whereby the illuminant is
discounted. At a subsequent processing stage, the illusory contour
boundaries that are induced by the square, and the feature contours that are
adjacent to them, are both topographically projected. The feature contours
can then fill-in the entire square with a higher level of perceived brightness.
(B) A reverse-contrast Kanizsa square is induced by two black pac men and
two white pac men on a gray background. The black pac men induce
brighter feature contours, whereas the white pac men induce darker feature
contours, than the gray background. When all the feature contours fill-in the
emergent square, their contrasts cancel, leaving a percept of a gray square
surface with the same contrast as that of the gray background. As a result,
the Kanizsa square can be recognized but not seen. Panels (C,D) illustrate
how edges and line ends can cooperate or compete to form illusory squares
and disks in depth (Reprinted with permission from Grossberg, 2021).

Grossberg and Mingolla, 1985a,b). Similar, but shorter-range
horizontal axons also exist in cortical area V1.

Said more concretely, a bipole cell in layer 2/3 of V2 in
Figures 4 and 5 can fire under any of three conditions: (1) the
bipole cell body—namely, the cell body that receives long-range
horizontal connections from both sides—is directly activated
by a bottom-up input from layer 4; (2) the cell body is not
directly activated by a bottom-up input from layer 4, but
it is simultaneously activated by signals from its long-range
horizontal connections on both sides; or (3) the inputs in both
(1) and (2) are simultaneously active.

In all the layers where oriented receptive fields develop within
the V1 cortical map, horizontal interactions may also develop
along with them, driven by a small number of developmental
laws (Grossberg andWilliamson, 2001). In addition to horizontal
interactions among cells in layer 2/3, horizontal interactions
may also occur between oriented simple cells in layer 4 (Sincich
and Blasdel, 2001). The inhibitory horizontal interactions among
simple cells whose development Grossberg and Williamson
(2001) have modeled have been shown to play an important role
in visual percepts of transparency (Grossberg and Yazdanbakhsh,
2005). Figure 3B shows an example of boundary completion
in which the completed sides of the Kanizsa square can be

FIGURE 4 | A bipole cell in layer 2/3 of cortical area V2 has two oriented
branches, or poles, in its receptive field. The bipole cell can be activated by
bottom-up inputs directly to its cell body. It can also be activated by
sufficiently big inputs to both receptive field branches, hence the name
“bipole” (Reprinted with permission from Grossberg, 2021).

consciously recognized but not seen. Such an invisible percept
is sometimes said to be amodal. In both Figures 3A and 3B one
can perceive that the pac man figures are amodally completed
into circular disks ‘‘behind’’ the emergent Kanizsa square. Such
depthful amodal percepts are even more vividly perceived in
Figures 3C and 3D. Indeed, the ability to complete boundaries
behind occluders in the natural world is crucially important
to survival.

The percepts induced by Figure 3 illustrate how easily simple
images can generate deep questions about how our brains
consciously see. Since the 1980s, I and my colleagues have
been incrementally developing a unified neural theory, called
FACADE theory, to provide principled mechanistic explanations
of how humans carry out 3D vision and figure-ground
perception. The 3D LAMINART theory extends FACADE theory
to explain how laminar cortical circuits naturally embody these
perceptual processes, and to explain and predict much more
psychological and neurobiological data as a result. My web page
sites.bu.edu/steveg contains dozens of downloadable articles
about the FACADE and 3D LAMINART theories that explain
various aspects of how this happens. The following heuristic
articles are a good place to start: Grossberg (1994, 1997).

3. TOP-DOWN ATTENTION IS
MODULATORY, UNTIL VOLITION
ACTIVATES IMAGERY, THINKING, OR
PLANNING

3.1. Object Attention Is Focused by a
Top-Down, Modulatory On-Center,
Off-Surround Network
Top-down attention enables humans to selectively process
information that is of interest (Figure 6). In contrast to a
perceptual grouping such as an illusory contour, top-down
attention, acting by itself, does not form percepts over positions
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FIGURE 5 | Macrocircuit of bottom-up, horizontal, and top-down pathways
within and between the lateral geniculate nucleus (LGN) and cortical areas
V1 and V2. The similarity of interactions in V1 and in V2 illustrates the
canonical laminar neocortical circuit that occurs with one or another
specialization in all perceptual and cognitive neocortical areas. The long-range
horizontal connections in layer 2/3 of V1 and of V2 converge at bipole cells,
with those in V2 of longer range than those in V1. Bipole cells in V2 are
responsible for forming the boundary contours that generate illusory contours
such as those displayed in Figure 3. Green connections are excitatory. Red
connections are inhibitory (Reprinted with permission from Grossberg, 2021).

that receive no bottom-up inputs. Rather, attention can sensitize,
modulate, or prime an observer’s mental state to expect an
object to occur that has particular combinations of visual features
(Duncan, 1984), or that is expected to occur at a given position
(Posner, 1980). However, attention, acting by itself, cannot
generate a consciously seen representation of an object. Figure 6
summarizes how object attention is embodied in laminar
neocortex by a top-down, modulatory on-center, off-surround
network that supports excitatory priming of features in the on-
center, suppression of features in the off-surround, and gain
amplification of matched data (e.g., Redies et al., 1986; Murphy
and Sillito, 1987; Downing, 1988; Zeki and Shipp, 1988; Sillito
et al., 1994; Steinman et al., 1995; Bullier et al., 1996; Hupé et al.,
1997; Luck et al., 1997; Zhang et al., 1997; Caputo and Guerra,
1998; Roelfsema et al., 1998; Murphy et al., 1999; Reynolds
et al., 1999; Somers et al., 1999; Mounts, 2000; Vanduffel et al.,
2000; Temereanca and Simons, 2004; Reynolds and Heeger,
2009).

This kind of attentional circuit is said to obey the ART
Matching Rule because of how it matches bottom-up inputs
with top-down learned expectations within Adaptive Resonance
Theory, or ART. It is easier to understand how this circuit works
by considering it as part of ART, starting with a simplified version
of it that is not encumbered by laminar cortical details. This is
done in Section 3.2.

3.2. Three ART Matching Rule Functions:
Learn Expectations, Pay Attention and
Stabilize Memory
ART is currently the most advanced biological neural model of
how our brains learn to attend, recognize, and predict objects

FIGURE 6 | A top-down, modulatory on-center, off-surround network
embodies how attention operates between cortical areas. Here a schematic
of the circuit is shown from V2 to V1. A top-down signal from a cell in layer
6 of V2 activates a cell in layer 5 of V1 via its apical dendrites in layer 1. The
layer 5 cell then activates a cell in layer 6 of V1 which, in turn, activates a
modulatory on-center, off-surround network from layer 6-to-4 via “folded
feedback”. This circuit embodies what is called the ART Matching Rule within
Adaptive Resonance Theory. The ART Matching Rule dynamically stabilizes
learned category memories within multiple brain systems. Green pathways
are excitatory. Red pathways are inhibitory. The black pathways from LGN to
layers 4 and 6 provide driving inputs to their target cells. When both direct
inputs to layer 4 from LGN and indirect inputs from LGN to layer 4 via layer 6,
converge upon a layer 4 cell, the resultant layer 4 activities are sensitive to the
ratios of all the inputs received across the network. Contrast normalization is
hereby achieved (Reprinted with permission from Grossberg, 2021).

and events in a changing world that is filled with unexpected
events. This claim is based upon the fact that ART currently
explains and predicts a much larger body of psychological and
neurobiological data about these brain processes than alternative
theories. See Grossberg (2013a, 2017, 2018, 2019, 2021) for
reviews. Figure 7 depicts the ART Matching Rule circuit in a
way that highlights its modulatory on-center and driving off-
surround. In response to sufficiently large bottom-up excitatory
inputs, the feature-selective cells at the lower processing level
of Figure 7 can be driven to fire output signals, other things
being equal. However, if only top-down signals from the
category level are active, then feature-selective cells cannot
fire. This is true because the top-down excitatory signals in
the on-center (green pathways) are approximately balanced by
top-down inhibitory signals in the off-surround (red pathways).
This is a case of one excitatory signal balanced by one
inhibitory signal. The net signal to feature-selective cells can
sensitize, modulate, or prime them, but cannot fire them to
suprathreshold levels.

Feature-selective cells can fire when they receive both
bottom-up and top-down excitatory signals, because then two
sources of excitatory signals converge in the on-center that can
win over the inhibitory off-surround (two against one). Cells in
the off-surround cannot fire, even if they receive a bottom-up
excitatory input, because they are balanced by the top-down
off-surround (one against one).
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FIGURE 7 | The ART Matching Rule stabilizes real time learning using a
top-down, modulatory on-center, off-surround network. Object attention is
realized by such a network. A volitional signal from the basal ganglia also
enables humans to imagine, think, and plan. See the text for additional
discussion (Reprinted with permission from Grossberg, 2021).

The adaptive weights, or long-term memory (LTM) traces
in an ART Matching Rule top-down circuit can learn an
expectation, or prototype, of critical features that are predictively
important for classifying the object or event that the prototype
encodes. These LTM traces occur at the ends, or synapses
(denoted by green hemi-disks) of the top-down excitatory
pathways in Figure 7. These expectations enable ART circuits
to pay attention to their learned critical feature patterns. In
addition to learning expectations and paying attention, the ART
Matching Rule circuit is necessary to dynamically stabilize the
recognition categories that ART circuits incrementally learn in
response to the sequences of input patterns that they experience
through time. In other words, the ART Matching Rule helps
to solve the catastrophic forgetting problem. See Carpenter and
Grossberg (1987a) for a mathematical proof, and the discussions
of catastrophic forgetting throughout this article.

Figure 7 draws the off-surround overlapping on-center cells,
rather than being restricted to cells outside the prototype. One
reason for this is that it is not known before learning occurs what
features will be part of the learned prototype. A no less important
reason for this is that, in response to the first occurrence of a
novel event, its bottom-up adaptive filter from the feature level
to the category level must be able to learn a novel category,
without the top-down signals that the category activates causing
a mismatch at the feature level that could reset this category
before it is learned. At the category level, however, it is not known
what features are active at the feature level. The initial top-down
expectation must be able to match any feature pattern. Thus,
initial top-down expectation signals are uniformly large across
all feature detectors. As category learning proceeds, the top-down
expectation is pruned until it learns a prototype whose top-down
signals are positive only at critical features.

Figure 7 also includes a volitional signal from the basal
ganglia. Section 3.7 discusses how this volitional signal permits

processes that are vital to the development of human societies,
such as the ability to imagine, think, and plan.

3.3. High-Density Cortical Counterstream
Architectures
Figure 5 summarizes key bottom-up, horizontal, and top-down
cortical pathways within and between the LGN and cortical areas
V1 and V2. These pathways are drawn from the perspective
of a single LGN cell, or cell population, which sends outputs
topographically to V1. The depicted circuit does not include
the anatomically and functionally homologs top-down pathways
from V1 to LGN, or the pathways between the LGN and
the retina (Sillito et al., 1994; Gove et al., 1995; Grunewald
and Grossberg, 1998; Murphy et al., 1999; Grossberg and
Grunewald, 2002). However, the bottom image in Figure 12
does include feedforward and feedback pathways between LGN,
V1, and V2.

A much greater omission occurs in Figure 5, one that
is necessitated by the limitations of drawing topographically
organized bottom-up, horizontal, and top-down pathways in
a 2D picture. This omission is that the circuit in Figure 5 is
repeated densely across LGN, V1, and V2. Indeed, the bottom-up
pathways, taken together, and the top-down pathways, taken
together, constitute ‘‘high-density counterstream architectures’’
(Markov et al., 2013; Vezoli et al., 2021).

As illustrated by the data of Barzegaran and Plomp (2021), one
can tease apart ‘‘multiple concurrent feedforward and feedback
streams in a cortical hierarchy’’ whose properties map upon the
model circuits that are summarized herein. Taken together as
a single slice through a dense cortical matrix of connections,
Figures 5, 6 and 10 are consistent with their claim that there
are ‘‘two feedforward and two feedback pathways’’ discernible in
their data.

In fact, depending upon how one counts, which is limited
by the resolution of particular experimental methods, there are
more than two pairs of feedforward and feedback streams.

3.4. Form and Motion Stream Interactions
Overcome Computationally
Complementary Deficiencies
This fact becomes clearer when one supplements the primarily
parvocellular cortical streams that subserve visual form
perception through V1, V2, V4, and IT, among other cortical
areas, with the primarily magnocellular parallel cortical streams
that subserve visual motion perception through V1, MT, MST,
and PPC, among other cortical areas. It has been shown that
these parallel streams are needed because visual form and
motion perception obey computationally complementary laws
to accommodate the orientationally-tuned specializations
needed for form perception and the directionally-tuned
specializations needed for motion perception (Grossberg,
1991, 2014; Berzhanskaya et al., 2007).

Because visual form and motion are complementary,
interactions across the form and motion streams are needed to
overcome their complementary deficiencies, notably from V2 to
MT, to compute moving-form-in-depth. The 3D FORMOTION
model shows how form and motion information can be fused
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in MT by V2-to-MT interactions to enable efficient tracking of,
say, an animal moving at variable speeds, even if its movement
trajectory is intermittently occluded by trees, bushes, and
other environmental obstructions (Francis and Grossberg, 1996;
Baloch and Grossberg, 1997; Grossberg et al., 2001; Browning
et al., 2009).

3.5. Complementary Computing: Are There
Cortical Streams?
The V2-to-MT interaction links a ventral What cortical stream
with a dorsalWhere cortical stream. Figure 1 illustrates that form
and motion are not the only computationally complementary
pairs of cortical processing streams. The complementary
properties of boundary completion and surface filling-in that are
summarized in Figure 1 are overcome by interactions between
the interblob and blob streams of the visual cortex, both of which
are substreams of the What cortical stream.

Because complementary computing is basic design principle
of our brains, there are many computationally complementary
streams that need cross-stream interactions to overcome their
complementary processing deficiencies (Grossberg, 2000b). Each
cross-stream interaction mixes signals between the two streams,
so that it is difficult for current neurobiological experimental
methods to clearlymeasure their complementary properties. This
general problem led Van Essen and Deyoe (1995, p. 383) in their
review article in The Cognitive Neurosciences to question whether
there are in fact cortical streams. They write: ‘‘Although there
is widespread support for this hypothesis in general terms, it
has proved difficult to decipher what exactly constitutes a visual
processing stream and to ascertain the key functional differences
between streams. . .’’.

3.6. Feature-Category Resonance,
Self-stabilized Memory, and Conscious
Recognition
Figure 8 summarizes how the ART Matching Rule functions
when the bottom-up adaptive filters and top-down learned
expectations in ART architectures interact via their positive
feedback loops (Figure 5). In Figure 8, a single pathway is
drawn for simplicity to represent each array of bottom-up
or top-down pathways. As noted in Section 3.2, the hemi-
disk the hemi-disk synapses at the ends of these pathways
are where learning can occur, or at the abutting postsynaptic
membranes, or both. Learning in the bottom-up pathways tunes
their adaptive weights, or long-term memory (LTM) traces, so
that the cells which they activate respond selectively to particular
combinations of environmental features. Such cells function as
recognition categories. Activation of a category triggers read-out
of top-down signals by pathways that obey the ART Matching
Rule.

As in Figures 6 and 7 the ART Matching Rule on-center
focuses attention upon critical features (the attended feature
clusters colored light green in Figure 8) while cells in the
off-surround are suppressed (the regions with a red outline).

When both the bottom-up and top-down pathways are
activated by this positive feedback loop, their mutual activation
synchronizes, amplifies, and prolongs the network response,

leading to a resonant state. The particular type of resonance
in Figure 8 is called a feature-category resonance because it
binds together critical features and the categories that learn to
code them. A feature-category resonance supports conscious
recognition of the object or event that is coded by its critical
feature pattern (Grossberg, 2017).

It is the feature-category resonance that drives an ART
network to rapidly learn how to recognize objects, while also
preserving learned memories indefinitely. Hence the name
Adaptive Resonance Theory. In other words, ART networks
do not experience catastrophic forgetting. Attentive matching
between bottom-up feature pattern inputs and top-down
expectations prevents catastrophic forgetting by focusing object
attention upon expected patterns of features, while suppressing
outlier features that might otherwise have caused catastrophic
forgetting if they also were learned. In other words, the ART
Matching Rule solves the catastrophic forgetting problem as part
of resonant dynamics.

ART hereby solves the stability-plasticity dilemma; namely,
how a system can learn quickly without also experiencing
equally fast forgetting of an unpredictable part of its previously
learned memories. See Grossberg (2020) for a discussion of
why alternative neural models like back propagation and Deep
Learning do experience catastrophic forgetting, and are thus
untrustworthy models to use in applications.

ART dynamics have been used to explain how and where
various brain oscillations occur—notably gamma, beta, and
theta oscillations—and what their functional roles are in
learning and behavior, including in the case of gamma and
beta oscillations their laminar cortical distribution through
time, and in the case of theta oscillations their cortical and
subcortical generators. These explanations can be found in
Grossberg and Versace (2008), Pilly and Grossberg (2013) and
Grossberg (2017, 2021).

3.7. When ART Matching Is Not
Modulatory: Volition, Imagery, Thinking,
and Hallucinations
If attention is supplemented by volitional signals from the basal
ganglia, it can be converted from amodulatory to a driving circuit
that can activate target cells to suprathreshold values. A volitional
signal from the basal ganglia can convert the modulatory
on-center into a driving one by, for example, weakening the
off-surround signal that inhibits excitatory on-center signals
(Figure 7). How perceptual, cognitive, and motor processes are
gated on and off by volitional signals from the substantia nigra
pars reticulata (SNr) of the basal ganglia is reviewed in Grossberg
(2016b).

Such a volitional signal enables us to internally perceive
visual imagery (Kosslyn, 1996) if the top-down expectation that
focuses attention has previously learned internal representations
of those visual images. More generally, top-down expectations
across a brain learn the featural information that is used to
activate all of that brain’s recognition categories via feature-
category resonances (Figure 8). The full diversity of top-down
expectations can therefore be used to drive internal cognitive

Frontiers in Systems Neuroscience | www.frontiersin.org 7 April 2021 | Volume 15 | Article 650263

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Grossberg A Canonical Laminar Neocortical Circuit

FIGURE 8 | A feature-category resonance synchronizes, amplifies, and
prolongs the activities of attended feature clusters (in light green), also called
critical features, and the recognition category with which they are resonating
via active bottom-up and top-down pathways. A feature-category resonance
enables us to rapidly learn how to recognize objects without experiencing
catastrophic forgetting. It hereby solves the stability-plasticity dilemma.
Attentive matching between bottom-up feature pattern inputs and top-down
expectations prevents catastrophic forgetting by focusing object attention
upon expected critical features, while suppressing outlier features (outlined in
red; Reprinted with permission from Grossberg, 2021).

processes of thinking and planning that are essential to the
success of human societies.

These benefits of volitional signals come with costs: if
volitional signals become tonically hyperactive during a mental
disorder, they can convert top-down attentional primes into
hallucinations that represent vivid perceptual experiences that do
not correspond to external stimuli. Grossberg (2000a) provides a
unified explanation of various clinical data about hallucinations
from this perspective, including why auditory hallucinations are
typically more frequent than visual ones.

3.8. Contrasting ART With Bayesian Brain
Models
The above-cited data properties are consistent with top-down
ART circuits, but not with predictive coding models that embody
Bayesian explaining away, in which matches with top-down
feedback cause only suppression (e.g., Mumford, 1992; Rao
and Ballard, 1999; Bastos et al., 2012). Bastos et al. (2012,
p. 698) have, for example, proposed that ‘‘feedback connections
convey predictions from higher cortical areas to suppress
prediction errors in lower areas.’’ Their article cites several of
the same articles that are cited herein. Indeed, all of these
articles include evidence of top-down suppression or inhibition.
Because the off-surround inputs are fully suppressive, whereas
the on-center effects are merely modulatory, other things being
equal, an impression of a fully suppressive top-down signaling
may seem to exist. This impression can best be tested by doing
experiments that additionally search for an on-center that can
become driving in response to matched bottom-up inputs.

In addition to problems explaining the kinds of data
described above, these models do not, at least currently,
solve the stability-plasticity dilemma. Although ART is also a
‘‘predictive coding’’ model, because it instantiates its top-down
predictive mechanisms using different principles and circuits
than Bayesian models, it can solve the stability-plasticity
dilemma, along the way explaining and simulating many
experiments in which facilitatory on-center effects are reported.
For a comparative discussion of biological vs. Bayesian
approaches to understanding how our brains make perceptual
decisions, see Grossberg and Pilly (2012) and Grossberg (2021).

4. A SOLUTION OF THE
ATTENTION-PREATTENTION INTERFACE
PROBLEM

4.1. Attention and Grouping Both Occur
Throughout the Visual Cortex
Perceptual groupings can form preattentively and automatically
in cortical layer 2/3 using variants of bipole cells with long-range
horizontal connections, even without conscious attention from
the viewer, in both cortical area V1 (Redies et al., 1986; Grosof
et al., 1993) and V2 (von der Heydt et al., 1984; Peterhans
and von der Heydt, 1989), among other cortical areas, with the
V2 groupings typically being longer-range (Figure 5). Top-down
attentional circuits occur as early as from V1 to the lateral
geniculate nucleus, or LGN (Sillito et al., 1994), as well as between
pairs of all subsequent perceptual and cognitive neocortical areas
(Figures 5 and 6). In particular, top-down attention operates
between visual cortical areas V1, V2, and V4 that process visual
form in the ventral, or What, cortical stream (Motter, 1994a,b;
Reynolds et al., 1995; Beauchamp et al., 1997; Ito et al., 1997;
Johnson and Burkhalter, 1997; Lamme et al., 1997;McAdams and
Maunsell, 1997; Press and van Essen, 1997; Hupé et al., 1997), as
well as between cortical areas MT, MST, and PPC that process
visual motion in the dorsal, orWhere, cortical stream (Treue and
Maunsell, 1996; O’Craven et al., 1997).

4.2. Attention and Grouping Interact
Throughout the Visual Cortex
I have called the interacting properties of attention and
grouping the attention-preattention interface problem. Indeed,
attention and grouping interact in all cortical areas, leading to
my proposal that there are circuit interfaces where attentive
and preattentive processes coexist. Figure 5 summarizes key
anatomical interactions within and between layers 6 and 4 that
define interfaces in both V1 and V2 where a top-down attentive
process interacts with a horizontal preattentive grouping process.

4.3. Attention and Grouping Share a
Modulatory On-Center, Off-Surround
Circuit From Layer 6-to-4
As shown in Figure 5, V1 horizontal groupings form in layer
2/3 and send excitatory topographic signals to layer 6, where
top-down attentional signals from layer 6 of V2 also project. This
is where attentive and preattentive signals begin to comingle.
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Then layer 6 of V1 sends bottom-up signals to layer 4 using the
kind of modulatory on-center, off-surround network that was
discussed in Section 3 and Figure 6. Because top-down signals
from V2 activate bottom-up signals from layer 6-to-4 in V1, this
entire circuit is called a folded feedback circuit.

The on-center is created by excitatory topographic signals
from layer 6-to-4. The on-center excitatory signal is reduced to
being modulatory by inhibitory signals from layer 6-to-4 that
are approximately the same size as the excitatory signals from
layer 6-to-4, with the excitatory signals often slightly larger,
as in Figures 6 and 7. The target layer 4 cells that receive
these converging excitatory and inhibitory signals can thus be
sensitized, modulated, or primed by them, but cannot fire to
suprathreshold values in the absence of additional excitatory
inputs. The off-surround inhibitory signals can strongly inhibit
nearby layer 4 cells. This modulatory on-center, off-surround
ART Matching Rule network is a design that is replicated
in multiple cortical areas, as Figure 5 illustrates, in keeping
with its proposed role in dynamically stabilizing learned
receptive field properties in all cortical areas, as noted in
Section 3.

At the time in 1998 that the model circuits in Figures 5
and 6 were submitted for publication, there were considerably
fewer neurophysiological data to support model hypotheses than
today. One significant exception were the data of Zeki and Shipp
(1988) who wrote (p. 316) that ‘‘backward connections seem not
to excite cells in lower areas, but instead influence the way they
respond to stimuli,’’ in other words, they are modulatory.

In the late 1990s, more neurophysiological data were
published to support this prediction. For example, Hupé et al.
(1997, p. 1031) showed that ‘‘feedback connections from area
V2 modulate but do not create center-surround interactions in
V1 neurons,’’ and that top-down connections have an on-center
off-surround organization (Bullier et al., 1996). An early hint that
this on-center’s action is modulatory was reported by Sandell
and Schiller (1982), who showed that, when feedback to V1 from
V2 is eliminated by reversibly cooling V2, the V1 layer whose
activation is most reduced is layer 6. Stratford et al. (1996)
published compatible neurophysiological data showing that the
layer 4 activation which is elicited by layer 6 stimulation is much
weaker than that caused by stimulation of LGN axons or of
neighboring layer 4 sites. These data also clarified how layer
4 cells could be supraliminally activated by direct LGN excitatory
inputs, even when inputs from layer 6 were only modulatory, as
I will explain below.

Taken together, these data show how attention from V2 to
V1 may be realized by a top-down, modulatory on-center,
off-surround network that projects from layer 6 in V2 to layer
4 in V1, often via apical dendrites of layer 5 cells in layer 1, which
project to layer 6 cells in V1 (Lund and Boothe, 1975; Gilbert
and Wiesel, 1979; Rockland and Virga, 1989) before undergoing
folded feedback to end in a modulatory on-center, off-surround
network from layer 6-to-4 (Figure 6). As part of Adaptive
Resonance Theory, or ART, of which the 3D LAMINART theory
is a laminar embodiment within the visual cortex, this kind
of attentional circuit is said, as noted above, to obey the ART
Matching Rule.

A more subtle kind of data from the 1990s showed that
binocular layer 6 neurons input to monocular layer 4 cells of
both eye types without reducing the monocularity of these layer
4 cells (Callaway, 1998, p. 56). These data can be explained
by the facts that layer 6 neurons receive binocular inputs from
layer 3B, at which monocular layer 4 inputs from both eyes
converge on binocular cells, and that their top-down effect on
layer 4 monocular cells is modulatory (Hubel and Wiesel, 1968;
Poggio, 1972, 1991; Poggio and Fischer, 1977; Katz et al., 1989;
Smith et al., 1997; Callaway, 1998; Grossberg and Howe, 2003;
Cao and Grossberg, 2005, 2012, 2019). Section 5 will summarize
how the canonical laminar circuit that is summarized in Figure 5
naturally accommodates these additional interactions to realize
3D vision and figure-ground perception.

The data of Sillito et al. (1994, pp. 479–482) on attentional
feedback from V1 to LGN tell a similar story: ‘‘the cortico-
thalamic input is only strong enough to exert an effect on
those dLGN cells that are additionally polarized by their
retinal input. . .the feedback circuit searches for correlations that
support the ‘‘hypothesis’’ represented by a particular pattern
of cortical activity.’’ Their experiments demonstrated all of the
properties of a top-down, modulatory on-center, off-surround
network from V1 to LGN, since they found in addition that
‘‘cortically induced correlation of relay cell activity produces
coherent firing in those groups of relay cells with receptive-field
alignments appropriate to signal the particular orientation of
the moving contour to the cortex. . .this increases the gain of
the input for feature linked events detected by the cortex.’’ In
other words, top-down priming, by itself, cannot fully activate
LGN cells. Matched bottom-up retinal inputs are needed to do
so. Those LGN cells whose bottom-up signals support cortical
activity get synchronized and amplified by this feedback.

Anatomical studies have also supported these
neurophysiological conclusions by showing that the top-down
V1-to-LGN pathway realizes a top-down, on-center,
off-surround network (Dubin and Cleland, 1977; Weber
et al., 1989).

4.4. LGN Inputs to Layers 4 and 6 Drive
Normalized Cortical Responses at Layer 4
The previous discussion describes various overlapping pathways
between attention and grouping within the laminar circuits of
V1 and V2. However, they do not explain how these circuits get
activated to suprathreshold values by external inputs. Figure 6
provides an answer to this question. The bottom-up pathways
(in black) from the LGN to layers 4 and 6 are both excitatory.
Although the layer 6-to-4 on-center off-surround circuit can only
modulate the activities of cells in layer 4, the direct LGN input to
layer 4 can, by itself, drive layer 4 cells to fire at suprathreshold
values.

Given that the LGN-to-4 pathway can fire layer 4, why is there
also an LGN-to-6 pathway that can modulate layer 4 activity via
the layer 6-to-4 on-center off-surround network? Were it to act
alone, the LGN-to-4 pathway could saturate the responses of
layer 4 cells at their maximum values. Even small increases in
the LGN input could, in principle, do this. The dynamic range
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of analog sensitivity to changing input amplitudes would then be
quite small.

If, however, LGN inputs to both layer 4 and layer 6, then
the total input to layer 4—when one adds the direct input
from LGN and the indirect LGN input via layer 6—defines a
driving on-center, off-surround network. All the cells in this
laminar cortical architecture obey the membrane equations
of neurophysiology, also called shunting laws (Hodgkin and
Huxley, 1952). In a network whose cells obey shunting laws,
it has been mathematically proved that responses of layer
4 cells to LGN inputs via an on-center off-surround network
remain sensitive to the ratios of their inputs—that is, to their
spatial pattern—even if the total input amplitude changes greatly
through time (Grossberg, 1973, 2013b).

By causing cell responses to track the ratios of their inputs,
it follows that the total network activity tends to be normalized;
that is, its upper bound is independent of the number of
activated cells. The responses of layer 4 cells thus exhibit contrast
normalization. Such a shunting on-center off-surround network
is said to solve the noise-saturation dilemma because its inputs
can be chosen large enough to be registered accurately despite
internal cellular noise, without risking that they will be chosen so
large to cause cell activities to saturate (Grossberg, 2013b).

4.5. What Does Laminar Computing
Achieve? Consensus Between Bottom-Up,
Horizontal, and Top-Down
When both bottom-up driving inputs and top-down,modulatory
on-center, off-surround attentional signals come together, the
ensuing network realizes a combination of useful properties. As
summarized in Figure 9, this network is:

(1) Self-stabilizing in the sense that it can dynamically stabilize
memories formed by development and learning processes.
Said in another way, the network does not experience
catastrophic forgetting (Grossberg, 2020, 2021). These ART
learning properties that rely on the ART Matching Rule
are mathematically proved in articles such as Carpenter and
Grossberg (1987a). The network also realizes:

(2) A seamless fusion of automatic, preattentive, data-driven,
bottom-up processing and attentive, task-selective,
top-down processing within the on-center off-surround
layer 6-to-4 circuit that combines these constraints and
chooses the best possible consensus of them to control
network decision-making. Finally the network can do this
while maintaining:

(3) Analog coherence, or a solution of the binding problem for
perceptual grouping without a loss of analog sensitivity.
Said in another way, the network solves the noise-saturation
dilemma.

4.6. Unifying Feedforward-Feedback,
Analog-Digital, and Preattentive-Attentive
Learning Constraints
Figure 10 restores the horizontal grouping network to the
bottom-up and top-down processing circuits in Figure 9.
Figures 5, 9 and 10 each show how bottom-up, horizontal,

FIGURE 9 | This figure summarizes some of the basic processes that are
achieved when bottom-up and top-down inputs are processed within cortical
layers 6 and 4. See the text for details (Reprinted with permission from
Grossberg, 2021).

and top-down circuits can all influence the competitive decision
making process in layers 6-to-4, leading to the best consensus at
any time of these distinct processing constraints.

Another way to say how bottom-up, horizontal, and
top-down pathways cooperate during decision making is as
follows: the bottom-up inputs instate distributed spatial patterns
of feature categories in a scene. The horizontal interactions
preattentively bind these feature categories into emergent object
boundary representations. The top-down interactions read-out
familiar object boundary representations and use the ART
Matching Rule to select, gain amplify, and synchronize object
boundaries that fall within their modulatory on-center, while
suppressing object boundaries that fall within their off-surround.
These interactions can hereby create novel preattentive object
boundaries across a scene while they attentively select the familiar
ones that are of current interest upon which to base decisions
and predictions.

This kind of canonical circuit, suitably specialized, occurs
in essentially all laminar perceptual and cognitive neocortical
areas, not only the visual ones. Raizada and Grossberg (2003)
summarize data from a large number of experiments that
support every cell and pathway in this circuit. As summarized
in Figure 10, this canonical neocortical circuit parsimoniously
unifies several combinations of computational properties that are
not easy to reconcile in a single system:

4.7. Feedforward and Feedback
In response to unambiguous inputs, a fast feedforward sweep
of activation can progress throughout multiple cortical areas,
as Thorpe et al. (1996) previously demonstrated. If, however,
there are multiple ambiguous alternative interpretations of the
data, then the kind of self-normalizing competitive feedback
processing that Figure 10 illustrates can more slowly choose
the interpretation with the currently greatest support from these
combined constraints.
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FIGURE 10 | This figure summarizes some of the basic properties that are
achieved when the bottom-up, horizontal, and top-down processes interact.
The horizontal connections that support perceptual grouping, notably
boundary completion, occur in layer 2/3. See the text for details (Reprinted
with permission from Grossberg, 2021).

Self-normalizing ratio processing can be interpreted as a
kind of ‘‘real-time probability theory’’ (Figure 10). When
ART hypothesis testing and memory search for the best
alternative is added to the mix, then this ‘‘probability theory’’
is embedded within a self-organizing production system
that incrementally learns, using arbitrary combinations of
unsupervised and supervised learning, to rapidly classify large
non-stationary databases without experiencing catastrophic
forgetting (Carpenter and Grossberg, 1987a; Grossberg, 2020,
2021). ART hypothesis testing trades certainty against speed,
with the most unambiguous data leading to the fastest
categorizations, decisions, and predictions.

4.8. Analog and Digital
Again using vision as an example: recurrent shunting on-center
off-surround networks are capable of binding distributed
features within coherent boundary representations without a loss
of analog sensitivity. This property of analog coherence combines
the stability of digital processing—because the feedback signals
store the chosen representation and buffer it against noisy
perturbations—and the sensitivity of analog processing—because
the shunting on-center off-surround interactions solve the noise-
saturation dilemma.

4.9. Preattentive and Attentive Learning
The circuit depicted in Figures 9 and 10 shows how both
preattentive grouping and attentive matching via the ART
Matching Rule mutually influence one another. The current
discussion focuses primarily on the circuit per se. A more
sustained analysis is needed to explain how ART uses the
ART Matching Rule to dynamically stabilize category learning
in all perceptual and cognitive neocortical areas (Carpenter
and Grossberg, 1987a,b; Grossberg, 1987, 1988, 1995, 2003,
2013a, 2021). ART hereby overcomes the catastrophic forgetting
problem that essentially all other popular neural models

experience, notably the currently popular Deep Learning model
(Grossberg, 2020), which uses the back propagation learning law
and thus suffers from 17 problems that are not problems for ART
(Grossberg, 1988).

4.10. A Preattentive Grouping Is Its Own
Attentional Prime
ART Matching Rule because it is typically realized in larger
ART neural architectures that learn how to attend, recognize,
and predict objects and events in a changing world. A basic
result about this learning process was explained in Carpenter and
Grossberg (1987a) who also proved mathematically that the ART
Matching Rule prevents learned recognition categories from
experiencing catastrophic forgetting. In other words, attentional
matching dynamically stabilizes learned memories.

However, when the ART Matching Rule is removed, then
it is easy to construct environments in which catastrophic
forgetting does occur. These environments, moreover, can be
quite simple. For example, learning categories of just four input
patterns (A, B, C, D) can cause catastrophic forgetting when
the inputs are presented over and over in the order ABCAD
ABCAD etc., if the input patterns obey some simple constraints.
When these constraints hold, catastrophic forgetting occurs
because input pattern A is periodically classified by two different
categories, so its learned category never stabilizes. Grossberg
(2020) summarizes this result from Carpenter and Grossberg
(1987a) as well as the efforts of recent models to overcome their
catastrophic forgetting problems.

In order for the ART Matching Rule to dynamically stabilize
learned memories, its top-down on-center must be modulatory.
In other words, bottom-up inputs must occur in order to
fire cells that are modulated by attention. Illusory contours
seem to violate this constraint because, by their very nature,
they complete suprathreshold boundaries over positions that
receive no bottom-up inputs (Figure 3). It is also known that
the cells and connections whereby perceptual boundaries form
develop through experience-dependent learning (Hubel and
Wiesel, 1977; Stryker and Harris, 1986; Calloway and Katz, 1990;
Antonini and Stryker, 1993; DeAngelis et al., 1993; Ghose et al.,
1994; Durack and Katz, 1996; Galuske and Singer, 1996; Ruthazer
and Stryker, 1996; Sur and Learney, 2001). Since these learned
connections support the formation of illusory contours, they
seem to violate the ART Matching Rule. Why, then, are they not
degraded regularly by catastrophic forgetting?

My proposed solution to this problem is that both preattentive
grouping and attention use the same competitive decision circuit
within layers 6 and 4 as part of the attention-preattention
interface (Figures 9 and 10). This modulatory on-center,
off-surround network in both networks dynamically stabilizes
their learning, whether in response to inputs from layer 6 of a
higher cortical area in the case of attention, or from layer 2/3 in
the same cortical area in the case of boundary grouping.

Due to the latter property, I like to say that ‘‘a preattentive
grouping is its own attentional prime.’’ From a broader
perspective, this result highlights the functional wisdom that
is embodied within the feedforward and feedback interactions
that have been selected by evolution to carry out dynamically
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FIGURE 11 | This schematic of the 3D LAMINART model labels some of the main cell types that are needed to achieve 3D vision and figure-ground perception. A
3D binocular surface percept in V4 is generated by a series of processing steps. Boundaries begin to be formed by monocular simple cells in layer 4 of V1.
Monocular simple cells that respond to vertically oriented inputs with the same contrast polarity, but at horizontally displaced positions, add their outputs at binocular
simple cells in layer 3B of V1 that respond selectively to different binocular disparities. Pairs of binocular simple cells that are sensitive to opposite contrast polarities
at each position add their outputs at complex cells in layer 2/3A of V1. Complex cells input to bipole cells in layer 2/3 of V2. Interactions between boundaries and
surfaces lead in successive stages to the binocular surface representation in V4, with monocular surfaces that fill-in brightnesses and colors from each eye
separately in V2 before they are combined into the binocular surface representation in V4. Excitatory connections end in arrowheads. Inhibitory connections end in
filled disks and ellipses (Reprinted with permission from Grossberg, 2021).

stabilized learning during both attentive and preattentive
processing.

5. 3D LAMINART: CANONICAL CIRCUIT
GENERALIZES TO 3D VISION AND
FIGURE-GROUND PERCEPTION

5.1. Extra Neocortical Layers Enable 3D
Vision to Occur
Multiple refinements of the canonical laminar cortical circuit
are needed to enable 3D vision and figure-ground perception
to occur. The labels in the 3D LAMINART circuit of Figure 11
highlight some of the processes that are needed. These
refinements are introduced and explained in detail in FACADE
theory and its 3D LAMINART generalization (e.g., Grossberg,
1994, 1997, 2016a; Grossberg and McLoughlin, 1997; Kelly
and Grossberg, 2000; Grossberg and Howe, 2003; Grossberg
and Swaminathan, 2004; Cao and Grossberg, 2005, 2012, 2019;
Grossberg and Yazdanbakhsh, 2005; Grossberg et al., 2008;
Fang and Grossberg, 2009). Remarkably, they can all build

upon the canonical neocortical circuit that has already been
summarized.

For present purposes, one main point will be made as an
answer to the following basic question: in what V1 cortical layer
do cells first become binocular, and how do the layers of the
canonical circuit permit this refinement?

5.2. Binocular Disparity-Selective Cells
Occur First in Layer 3B
The answer is that binocular matching begins within a layer
3B that is interpolated between layers 4 and 2/3 in V1
(Figure 12). Layer 4 contains monocular simple cells that
respond at a particular position and orientation to a visual
stimulus to either the left or right eye, but not both. Layer
2/3 in V2 is where the kind of boundary grouping occurs
that can generate illusory contours. Because groupings can
form between an object’s image features with opposite contrast
polarities (e.g., Figure 3B), the cells in layer 2/3 are downstream
from complex cells that can pool inputs from opposite contrast
polarity features (Figures 2 and 12). Groupings can also occur
between object features at different depths (e.g., Figure 3D).
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FIGURE 12 | This figure shows how a balance between excitatory and
inhibitory inputs from layer 4 to layer 3B creates disparity-selective binocular
cells in layer 3B that obey an obligate property. See the text for details
(Reprinted with permission from Grossberg, 2021).

Binocular fusion thus needs to occur between layers 4 and
2/3 in V1 in order for perceptual groupings to represent objects
in depth.

In layer 3B, pairs of like-oriented inputs from positionally-
displaced left and right eye monocular simple cells of similar
orientational preference in layer 4 are binocularly matched
(Figure 12). If only excitatory inputs were matched, then
these binocular cells would not fire only if their left and right
eye inputs were both activated, and activated approximately
equally due to the fact that the same feature in the world has
activated them.

This obligate property (Poggio, 1991) is realized by letting the
excitatory inputs to layer 3B also activate inhibitory interneurons
which inhibit both their layer 3B target cells and each other
(Figure 12, upper panel). The mutual inhibition normalizes the
total activity of the inhibitory interneuron population. As a
result, if only (say) the left eye is activated, then its excitatory
input to layer 3B will be inhibited by an approximately equal

inhibitory input from its recurrent inhibitory interneuron. If, in
contrast, both the left and right eyes are activated, then their
total excitatory inputs to their layer 3B target cell add, whereas
the total inhibitory input to the target layer 3B cells from all the
active inhibitory interneurons is normalized. This is a case of two
excitatory inputs balanced against one inhibitory input (2 against
1), so that the target layer 3B cell can then fire. It is thus a truly
binocular cell which fires selectively only when the depth of the
object in the world creates a binocular disparity that can activate
both the left and right eye inputs to the corresponding disparity-
selective layer 3B cells.

5.3. Binocular Boundary Formation
Circuitry From LGN to V1 and V2
As noted in Section 4.3, a binocular cell in layer 3B is part of a
feedback loop that sends top-down signals to monocular simple
cells in layer 4, and whose effect on layer 4 monocular cells is
modulatory. This modulatory effect can now be understood as a
special case of the ARTMatching Rule for dynamically stabilizing
the learned binocular fusion at layer 3B cells of V1 that ensures
their disparity selectivity.

The cells in layer 3B where binocular fusion occurs are
binocular simple cells. These binocular simple cells combine
inputs from both the left eye and the right eye. When both eyes
fixate on a particular part of an object, light signals from every
other part of the object hit the two eyes at different positions
relative to their foveas. These positionally-shifted signals activate
monocular simple cells at different, but nearby, positions in the
visual cortex. The outputs from these monocular simple cells
are pooled at binocular simple cells in layer 3B that lie at an
intermediate position between these monocular simple cells in
the cortical map. This first stage of binocular processing enables
the brain to begin estimating the depth of an object relative to
the observer using the size of this positional difference, which is
called binocular disparity. Different binocular simple cells, and
the binocular complex cells in layer 2/3A to which they project
(Figures 11 and 12), hereby become sensitive to different ranges
of binocular disparity, and thus to different depths of objects
from the observer.

Thus, because the cells in layer 3B binocularly fuse signals
from monocular simple cells that respond best at disparate
positions, the binocular boundaries that start to be formed
in layer 3B, and their projections to layers 2/3A in V1 and
V2 (Figures 11 and 12), may be positionally displaced, or
shifted, relative to their monocular input signals from layers
6 and 4. This raises the question of how the positionally
displaced binocular boundaries in layer 2/3A of V2 manage to
contact the correct monocularly activated cells in layers 6 and
4, so that they can complete the ART feedback loop between
layers 2/3A-to-6-to-4-to-3B-to-2/3A that can select winning
3D groupings.

Figure 12 (upper panel) shows how horizontal signals from
the monocular layer 4 cells in V1 activate binocular obligate cells
in layer 3B, which in turn activate layer 2/3A complex cells.
This raises the question: How can such a layer 2/3A cell also
use horizontal signals to activate its correct layer 6 monocular
sources via ART Matching Rule circuits? The 3D LAMINART
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model (Grossberg and Howe, 2003; Grossberg, 2003) proposes
that horizontal connections which are known to occur in layers
5 and 6 (Callaway and Wiser, 1996) accomplish this. As shown
in Figure 12 (lower panel), feedback signals from layer 2/3A
propagate vertically to layer 5, whose cells activate horizontal
axons in this layer that contact the appropriate layer 6 cells. These
layer 5-to-6 horizontal contacts are assumed to be selectively
formed during development. Grossberg and Williamson (2001)
and Grossberg (2003) have simulated how positionally-aligned
layer 2/3 connections and layer 6-to-4 connections may be
formed during development. The selective layer 5-to-6 contacts
are proposed to form according to similar developmental laws.

In summary, inward horizontal layer 4-to-3B and 2/3A-
to-2/3A connections are proposed to form binocular
cells and their boundary groupings, respectively, while
outward layer 5-to-6 connections are proposed to close the
feedback loops that help to select and sustain the correct
3D groupings via ART learning dynamics. This role in
3D grouping of layer 6 horizontal connections forces a
proposal for how attention fits into the 3D circuit: namely,
top-down topographic signals from layer 6 of a higher cortical
level like V2 activate the same layer 5 cells that contact
monocular input sources in layer 6 via horizontal connections.
Then the layer 6-to-4 modulatory on-center, off-surround
network controls attentional priming and matching, as in
Figure 6.

This hypothesis raises the additional question of how the
top-down pathways from layer 6 of a higher cortical level
know how to converge on the same layer 5 and 6 cells to
which the layer 2/3 cells project at the lower cortical level so
that preattentive boundary grouping and attentive priming are
positionally aligned (Figure 9). The same basic laws of associative
learning are proposed to work here as well.

5.4. Homologous Circuits in V1 for
Binocular Fusion and in V2 for Perceptual
Grouping
It is worth noting that the bipole cells which control boundary
completion also use a ‘‘2 against 1’’ network of excitatory and
inhibitory interactions to form boundaries inwardly between
pairs of colinear inducers, but not outwardly from a single
inducer. Figure 11 illustrates these homologous circuits in layer
3B of V1 and layer 2/3A of V2.

Just as in the case of binocular fusion, if a single cell in layer
2/3 of V2 sends an excitatory signal to a nearby cell, then its
excitation is balanced by inhibition from a recurrent inhibitory
interneuron. If, however, a pair of colinear cells activate a
similarly oriented cell between them, their excitatory inputs
add, but their total inhibitory input is normalized by recurrent
inhibitory interactions between their inhibitory interneurons. In
summary, homologous combinations of excitatory and recurrent
inhibitory interactions occur in layer 3B of V1 to support
binocular fusion, and in layer 2/3A of V2 to support bipole
boundary grouping, respectively (Grossberg and Williamson,
2001).

A third homologous circuit exists in layer 2/3A of V1 to
carry out the shorter-range version of the bipole grouping that
is shown in layer 2/3A of V2. This third circuit is omitted from
Figure 11 to avoid crowding. It is included in Figure 5.

6. LIST PARSE: CANONICAL CIRCUIT
GENERALIZES TO WORKING MEMORY
AND LIST CHUNKS

6.1. A Universal Design for Linguistic,
Spatial, and Motor Working Memories
Specializations of the canonical laminar cortical design are found
throughout the neocortex in modalities other than vision. The
LIST PARSE laminar cortical model of working memory in
prefrontal cortex is one example. LIST PARSE is able to store
sequences of variable length and to perform them at variable
speeds under volitional control. LIST PARSE is said to be an
Item-Order-Rank working memory because it can temporarily
store sequences of item chunks in a particular order, even for
lists such as ABACBD that contain repeated items, such as A
and B, at more than one list position, or rank. It is a content-
addressable working memory because inputs directly activate
item chunks.

The items that are stored with the largest activities are
performed soonest. This happens because, in response to a
rehearsal wave that is nonspecifically, and thus equally, delivered
to all the item chunks, the cell whose activity is largest exceeds
its output threshold first. As each cell fires, it self-inhibits its
stored activity so that the next most active cell can be performed.
This cycle continues until all the items that are stored in working
memory have been rehearsed (Grossberg, 1978a,b; Grossberg
and Pearson, 2008).

LIST PARSE working memories are used in storing all
kinds of linguistic, spatial, and motor sequences. It is a
ubiquitous design in multiple brain regions because it enables
learning and stable memory of these sequences for future
skilled performance and prediction of subsequent events. For
example, LIST PARSE models a prefrontal linguistic working
memory to quantitatively simulate psychophysical data about
speech perception, immediate serial recall, and immediate,
delayed, and continuous distractor free recall (Grossberg and
Pearson, 2008; Grossberg and Kazerounian, 2011). LIST PARSE
models a prefrontal motor working memory to quantitatively
simulate neurophysiological data about sequential recall of
stored motor sequences, as when performing a dance or
other skilled motor act (Grossberg and Pearson, 2008).
Finally, LIST PARSE models a prefrontal spatial working
memory to quantitatively simulate neurophysiological data
about the learning and planned performance of saccadic eye
movement sequences or other spatially represented activities
(Silver et al., 2011).

In order to carry out such linguistic, motor, or spatial
functions, a LIST PARSE working memory is just part of a larger
neural architecture. Figure 13 summarizes the macrocircuit
of the conscious ARTWORD, or cARTWORD, architecture
for conscious speech perception that uses LIST PARSE to
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FIGURE 13 | The cARTWORD model of conscious speech perception ends in an Item-Order-Rank laminar cortical cognitive working memory (WM) whose list
chunks can store sequences of linguistic items with repeats. As a list chunk in layer 2/3 of the cognitive working memory wins the competition among other chunks,
it triggers top-down feedback (vertical downward purple arrow) that drives acoustic items and features above their resonant thresholds. cARTWORD hereby
simulates percepts of phonemic restoration; namely, how future context can disambiguate noisy past speech sounds in such a way that the completed percept is
consciously heard to proceed from past to future as a feature-item-list resonant wave propagates through time (Reprinted with permission from Grossberg, 2021).

temporarily store sequences of linguistic items, supplemented by
auditory preprocessing stages that transform acoustic inputs into
the item chunks that input to working memory (Grossberg and
Kazerounian, 2011, 2016; Kazerounian and Grossberg, 2014).

6.2. Masking Fields Learn List Chunks of
Stored Item Chunk Sequences
Item-Order-Rank working memories have many desirable
properties, including their ability to support learning and stable
memory of categories that respond selectively to particular
sequences of stored items, such as familiar syllables, words, and
sentences. These sequence categories are also called list chunks.
List chunks of variable length can be categorized by a multiple-
scale, self-similar, recurrent, shunting, on-center off-surround
network that is called a Masking Field (Figure 14).

The LTM Invariance Principle is the main postulate from
which Item-Order-Rank working memories are derived. The
LTM Invariance Principle insists that working memories be
designed to enable stable learning of list chunks by a network like
a Masking Field.

The LTM Invariance Principle guarantees, for example, that
the first time a novel word, such as MYSELF, is stored in working
memory, it does not force the forgetting of previously learned list
chunks that code for its familiar subwords MY, ELF, and SELF.
Without such a property, longer chunks (e.g., for MYSELF)
could not be stored in working memory without risking the
catastrophic forgetting of previously learnedmemories of shorter
chunks (e.g., for MY, SELF, and ELF). Language, motor,
and spatial sequential skills would then be impossible. As a
consequence of LTM Invariance, as new items are stored through
time in working memory, smaller stored sequences of items
can continue to activate their familiar list chunks until they are
inhibited by longer, and more predictive, list chunks; e.g., until
MY is supplanted by competition from MYSELF through time
(Figure 14).

The LTM Invariance Principle is achieved by preserving the
relative activities, or ratios, between previously stored working
memory activities as new list items are stored in the working
memory through time. Newly arriving inputs may, however, alter
the total activity of each active cell across the workingmemory. In
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FIGURE 14 | A Masking Field is a recurrent shunting on-center off-surround
network whose cells can learn categories that selectively fire to sequences, or
lists, of items that are stored in an Item-Order-Rank working memory. In order
to selectively fire in response to stored lists of multiple lengths, Masking Field
cells and their connections develop with multiple sizes according to simple
activity-dependent growth rule (Cohen and Grossberg, 1986; Grossberg,
1987), with the largest cells responding to the longest lists. These multiple
scales are related to each other through a property of self-similarity, which
enables a Masking Field to choose the category that best represents the
sequence that is currently stored in working memory. Thus a cell in the
Masking Field that selectively responds to the word MYSELF is larger than a
cell that responds to MY. Both its top-down adaptive connections (in green
with hemi-disks at their ends) and its recurrent inhibitory connections (in red
with non-adaptive arrows at their ends) have a strength and size that covaries
with that of the cell from which they grow by self-similar growth laws.
Self-similar growth is familiar throughout biological development, much as a
small leaf can grow into a larger leaf without dramatically changing its shape
(Reprinted with permission from Grossberg, 2021).

this way, the previous learning of chunk MY is not undermined,
but the current activity of the chunk MY can be inhibited
by MYSELF.

Masking Fields have been used to explain and simulate
psychophysical data from many experiments about how speech
sounds are temporarily stored in an Item-Order-Rank working
memory before they are categorized through learning, and
recognized during an item-list resonance with a Masking Field
(Grossberg, 1984b, 2003, 2017; Cohen andGrossberg, 1986, 1987;
Grossberg and Stone, 1986; Cohen et al., 1988; Grossberg et al.,
1997; Grossberg and Myers, 2000; Grossberg and Kazerounian,
2011; Silver et al., 2011; Kazerounian and Grossberg, 2014). The
Masking Field can then, in turn, predict appropriate outcomes
in the temporal context of the event sequence that its categories
encode, whether they be the next words, visual scenes, eye
movements, arm movements, or navigational movements.

6.3. pART: A Neural Architecture to Clarify
How Autonomous Adaptive Biological
Intelligence Works
The ability of an Item-Order-Rank working memory to store
the same item at multiple positions derives from a topographic
projection from the parietal cortex to the ventrolateral prefrontal
cortex. This projection converts numerical representations
in the parietal cortex (Dehaene, 1992, 1997; Grossberg and
Repin, 2003) into the ranks of items stored in prefrontal

working memory (Barone and Joseph, 1989; Averbeck et al.,
2003a,b; Mushiake et al., 2006; Grossberg and Pearson, 2008;
Silver et al., 2011), so that items in stored sequences with
repeats each have their own positional representations in
prefrontal hypercolumns. Remarkably, just two successive levels
of Item-Order-Rank working memories can store sequences
of repeated words, as in the sentence ‘‘DOG EATS DOG’’
(Grossberg, 2021).

Item-Order-Rank working memories illustrate the general
hypothesis that a relatively small number of processing stages are
needed to realize many properties of biological intelligence. In
particular, these working memories form part of the predictive
Adaptive Resonance Theory, or pART, neural architecture
which also includes other processes that are needed to explain
how our brains make our minds (Grossberg, 2018, 2021).
Figure 15 illustrates, for the case of visual intelligence, how
four collections of brain regions interact to realize this goal
within pART. The working memories combine with learned
plans, predictions, and optimized actions as part of a system
of seven prefrontal cortical areas that are marked in green.
Processes that are marked in red carry out evaluative processes
that modulate and regulate the prefrontal processes using
reinforcement learning, emotion, motivation, and adaptively-
timed learning. The prefrontal processes are fed by category
learning and recognition circuits in the posterior inferotemporal
cortex (Itp) and the anterior inferotemporal cortex (Ita; outlined
with a red border), as well as by spatial representations from the
posterior parietal cortex (PPC/LIP), so that predictions may be
based both on objects and their locations. The categories receive
their inputs from multiple visual cortical areas, marked in black,
that interact to enable our brains to see.

7. CONCLUDING REMARKS

The canonical laminar cortical architecture that is illustrated
in Figures 5, 6, 9 and 10 is specialized within all laminar
cortical areas to help carry out the diverse functions that together
realize biological intelligence. Such specializations include the 3D
LAMINART model for 3D vision and figure-ground perception
(Figure 11), the cARTWORD model for conscious speech
perception (Figure 13), and the more comprehensive pART
architecture that unifies and coordinates many of the brain
processes that together realize biological intelligence (Figure 15).
These examples elaborate the claim embodied in this article’s
title that there exists ‘‘a canonical laminar neocortical circuit
whose bottom-up, horizontal, and top-down pathways control
attention, learning, and prediction.’’

The current article has focused upon how feedforward
and feedback cortical connections can support the simplest
properties of 3D vision; namely, those that depend upon
early stages of binocular fusion in cortical layer 3B and
boundary grouping in layers 2/3A of V1 and V2. As the 3D
LAMINART model illustrates (Figure 11), multiple additional
processing stages in cortical areas V1, V2, and V4 are
needed to convert the results of binocular fusion in V1 into
a 3D surface percept in V4 that supports figure-ground
perception.
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FIGURE 15 | Macrocircuit of the predictive ART, or pART, architecture which integrates key processes that are needed to achieve biological intelligence. The various
brain regions are color-coded along with their functional roles in brain dynamics. The architecture illustrates that many higher-order functions can be carried out with
a relatively small number of brain regions, if they are properly designed. Abbreviations: V1, striate, or primary, visual cortex; V2 and V4, areas of prestriate visual
cortex; MT, middle temporal cortex; MST, medial superior temporal area; ITp, posterior inferotemporal cortex; ITa, anterior inferotemporal cortex; PPC, posterior
parietal cortex; LIP, lateral intraparietal area; VPA, ventral prearcuate gyrus; FEF, frontal eye fields; PHC, parahippocampal cortex; DLPFC, dorsolateral prefrontal
cortex; HIPPO, hippocampus; LH, lateral hypothalamus; BG, basal ganglia; AMGY, amygdala; OFC, orbitofrontal cortex; PRC, perirhinal cortex; VPS, ventral bank of
the principal sulcus; VLPFC, ventrolateral prefrontal cortex (Reprinted with permission from Grossberg, 2021).

Interactions with other brain regions are needed to
consciously see and recognize this surface percept, so that
it can be used as a basis for goal-oriented actions. In particular,
surface-shroud resonances between V4 and parietal cortex
support conscious seeing, and feature-category resonances
between V4 and inferotemporal cortex support conscious
recognition (Grossberg, 2017, 2019).

The current article has also restricted its attention to how
feedforward and feedback cortical connections can support
vision in response to a stationary scene. It does not incorporate
models that clarify how the apparent stability of 3D vision and
figure-ground separation are realized when our eyes scan a
scene during the learning of view-, position-, and size-invariant
recognition categories. How this happens is explained and
simulated using the 3D ARTSCAN Search neural model,
which has been incrementally developed in a series of articles
(McLoughlin and Grossberg, 1998; Cao and Grossberg, 2005,
2012, 2019; Fang and Grossberg, 2009; Fazl et al., 2009; Cao et al.,
2011; Foley et al., 2012; Chang et al., 2014; Grossberg et al., 2015).

As noted by Grossberg et al. (2015), achieving active 3D
vision and invariant recognition learning requires far more
cortical machinery than the visual cortex itself. Indeed, the 3D

ARTSCAN Search model ‘‘clarifies how perceptual, attentional,
and cognitive interactions among multiple brain regions (LGN,
V1, V2, V3A, V4, MT, MST, PPC, LIP, ITp, ITa, SC) may
accomplish predictive remapping as part of the process whereby
view-invariant object categories are learned. These results build
upon earlier neural models of 3D vision and figure-ground
separation and the learning of invariant object categories as the
eyes freely scan a scene. A key process concerns how an object’s
surface representation generates a form-fitting distribution of
spatial attention, or attentional shroud, in parietal cortex that
helps maintain the stability of multiple perceptual and cognitive
processes. Predictive eye movement signals maintain the stability
of the shroud, as well as of binocularly fused perceptual
boundaries and surface representations.’’ Laminar feedforward
and feedback interactions that are variations and specializations
of the ones described herein can be used to model all of
these processes.
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