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A B S T R A C T

Significant amounts of toxic metal-containing mining waste are produced by chromium mining 
activities, along with the production of air pollutants. The presence of toxic metals in various 
environmental media including air, water, and soil, along with their chemical species such as 
hexavalent chromium, pose major health hazards for both directly exposed mining workers and 
the population residing near the mining areas. Highlighting the requirements for enhanced 
environmental protection and safety measures, this comprehensive review shed light on the 
global environmental pollution stemming from chromite mining activities. Based on the pub
lished literature, the study also investigated into the pollution caused by toxic metals and 
explored their probable health effects on exposed individuals. The exposure routes and the 
mechanisms of toxic metal induced carcinogenicity in the exposed groups were assessed. Addi
tionally, the generated reactive species in exposed individuals and the toxicity mechanisms of 
hexavalent chromium were discussed. Considering these findings, this review proposed the ne
cessity of cross-sectional biomonitoring studies involving occupationally exposed workers from 
chromite mining operations. The anticipated impact of this review is to influence the global and 
national chromite mining industry, instigating improvements in occupational settings, real-time 
pollution monitoring, and healthcare provisions for exposed workers.

1. Introduction

Ore mining and smelting along with the related industrials activities act as the main sources of toxic metals in various environ
mental media [1,2]. Mining involves extracting and utilizing metallic and nonmetallic minerals found in mineral and ore deposits. It is 
one of the most important industries for any country where coal, copper, gold, chromite, and other important metalliferous deposits 
are discovered, extracted and utilized [3]. Despite its high economic value, mining is considered a significantly hazardous occupation 
due to the frequent occurrence of severe mining injuries, health complaints, and fatalities [4]. Regions with extensive industrial ac
tivities covering mining, smelting, and other metal-based manufacturing processes are usually tagged as being highly polluted [5]. 
Globally, mining is one of the largest industries with millions of employees associated, who are involved in different kinds of jobs such 
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as ore extraction, loading, machine operation, maintenance, etc. [6,7]. The employees engaged in mining and the related industrial 
activities, as well as the nearby residents, are highly exposed to toxic metals [8,9]. Several studies have reported elevated level of toxic 
metal pollution and high health risks for the workers exposed to and people living around the mining sites [9,10].

Chromite ore mining is a typical mining industry with substantial environmental hazards. Chromium metal derived from industrial 
chromite mining is used in the production of stainless steel, leather industry, paint industry, and other important industrial usages 
[11]. Nevertheless, the presence of chromium ions, particularly hexavalent chromium (Cr(VI)) in soil, groundwater, and surface water 
poses serious threats to public health [12]. Prolonged exposure to Cr(VI) has been connected to a variety of adverse health effects, 
including abdominal disturbances, gastrointestinal issues, weakened immunity, and the development of conditions such as stomach 
cancer, diarrhea, tumors, and ulcers [13]. Due to its high toxicity and cancer-causing properties, the International Agency for Research 
on Cancer (IARC) has declared Cr(VI) as Group 1 human carcinogen [14].

The largest countries in terms of chromite production are South Africa, Kazakhstan, India, Finland, Türkiye and Pakistan. Over the 
last few decades, the mining industry in Muslimbagh in Pakistan and Jharkhand in India has developed at a rapid pace. From ore 
extraction to processing for quality improvement, open dumping of mining wastes into surrounding areas has severely contaminated 
air, water and agricultural field soil with hazardous metals, causing serious health issues. Besides, mining workers typically operate for 
extended periods without the adoption of rest, break, and job rotation policies [8]. Human biomonitoring studies are essential to assess 
pollutant exposure and its health effects, particularly for workers exposed to heavy metals like chromium. While there are tangible 
studies conducted in top chromite producing countries to evaluate the environmental contamination and health risks stemming from 
those mining activities, a systematic review of the pollution status, environmental hazards, and the related toxicity mechanism of 
chromite mining is essential to promote the complete enforcement of occupational safety and health practices for labor in mining 
activities in developing countries.

This review highlighted the environmental pollution resulted from the chromite mining and processing industries globally, 
examined the probable toxicity mechanisms of the related toxic metals on exposed workers as well as other human population, and 
summarized the cross-sectional biomonitoring studies involving chromite mining workers. With a particular focus on the health risks 
of Cr(VI), this study aims to drive improvements in global occupational safety, pollution monitoring, and healthcare provision of 
chromite ore mining.

2. Methodology

To evaluate the effects of hazardous metal contamination from chromite mining, a comprehensive review was carried out, with 
particular attention to human exposure, chromium toxicity mechanisms, and biomonitoring investigations. Using keywords including 
chromite mining pollution, mining occupational hazards, and chromium toxicity across databases including PubMed, Scopus, Web of 
Science, and Google Scholar, the review adhered to an organized process, as illustrated in Fig. 1. After the search was narrowed down 
using Boolean operators (AND, OR), 346 pertinent journal articles were found. Only peer-reviewed journal papers were included while 
conference abstracts and non-peer reviewed papers were not included. 156 papers were chosen for the review using a phased screening 
procedure that eliminated about 190 publications based on the content of the title and abstract.

The quality of the chosen studies was assessed based on the following criteria: robustness of the data analysis, measurement 

Fig. 1. Framework of review methodology utilized in this study.
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techniques, sample size, and study design. Data on study titles, authors, publication year, study site, sample collection and analysis 
techniques, major conclusions about the health effects of toxic metal exposure, outcomes of biomonitoring, and hypothesized 
mechanisms of chromium toxicity were retrieved. Tables 1–3 provide a summary and presentation of the results. The three primary 
aspects of the review were biomonitoring initiatives, toxicity mechanisms of chromium, and pollution and human exposure from 
chromite mining. To find similar themes on contamination levels, health hazards from occupational exposure, and the application of 
biomonitoring, a comparative analysis was carried out. This thorough analysis gives recommendations for better risk management and 
mitigation techniques in addition to insights into toxic metal contamination from chromite mining.

3. Results and discussion

The detailed full text evaluation of selected publications on chromite mining pollution revealed key trends in global chromite 
mining pollution studies. This section presents data and techniques related to exposure to toxic metals, chromium toxicity mechanism, 
and biomonitoring studies for exposure assessment. Data from 12 studies ranging from 2006 to 2022 on toxic metal concentrations in 
dust and soil are presented in Table 1. Concentrations of toxic metals such as Chromium (Cr) Nickel (Ni), Lead (Pb), Cadmium (Cd), 
Manganese (Mn), Zinck (Zn), and Iron (Fe) are calculated in soil and dust samples form mining areas with a majority from chromite 
mines. Chromium concentrations are reported ranging from 138 mg kg− 1 in Spain [20] to 32,063.4 mg kg− 1 in India [15]. Dust 
samples show chromium levels from 420 mg kg− 1 in Pakistan [48] to 7070 mg kg− 1 in South Africa [24]. The studies highlight sig
nificant environmental impacts of chromite mining across regions like India, Pakistan, Vietnam, and South Africa. Furthermore, 
Table 2 outlines different exposure routes such as inhalation, ingestion and dermal contact for miners, industrial workers, farmers, and 
nearby residents. The studies mentioned used biological samples such as blood, urine, hair and nails to assess short-term and long-term 
exposures to toxic metals like lead, chromium, cadmium, and mercury. Similarly, Table 3 compiles 19 biomonitoring studies from 
1999 to 2024 taken from the selected publications on urinary heavy metals. These studies have assessed levels of urinary heavy metals 
of exposed subjects in different occupational settings with chromium values ranging from 0.95 μg/g creatinine in occupationally 
exposed iron and steel workers [44] to 58.15 μg/g creatinine in surgical industry workers [41]. Apart from Chromium, the concen
trations of other toxic metals such as urinary Cadmium (Cd), Nickel (Ni), Copper (Cu), Manganese (Mn), Zinc (Zn) and Lead (Pb) are 
also listed. These results collectively provide a comprehensive view of toxic metal exposure and health risks in occupational settings 
globally.

3.1. Global chromite mining and processing

Chromium can appear in 82 diverse ore types, but chromite is the sole type extracted in significant commercial quantities and 
serves as an essential raw material in the stainless steel manufacturing process [49]. Chromite (FeCr2O4) is a naturally occurring 
mineral that falls under the spinel group of minerals. Chromite ore occurs exclusively in ultramafic igneous rocks and its general 
formula can be expressed by (MgxFe1-x) O⋅(AlyCr1-y)2O3 [22]. There are two forms of commercial chromite deposits found in the world, 
including irregular podiform and stratiform seam deposits. The major global reserves of chromite are found in South Africa, followed 
by countries in Asia and Europe, as well as Australia and Brazil [12]. There are over 12 billion tons of chromite of shipping grade 
available worldwide, which is enough to supply all potential demand for several centuries. A majority of the chromium resources in the 
world (95 %) are concentrated in South Africa and Kazakhstan. The probable exploitable deposits in India are 100 million metric tons 
and fairly large deposits are also found in Pakistan [50,51]. In 2021, the global production of chromite amounted to 410 metric million 
tons, with South Africa contributing the highest share at 18 million metric tons.

The specific hazards in chromite mines are based on factors such as mine type and depth, chemical composition of mineral and ore, 
and the techniques employed for extraction, transportation and processing. The generated dust containing different toxic elements is 
dispersed by wind, vehicular traffic and other machinery employed in the working areas [10]. Chromite mining in specific may 
contribute highly to pollution as comparatively it is hard mineral ore and is mined by dynamite blasting prior to extraction, transport, 
and further processing. Moreover, dry milling is identified as the sole process for ore beneficiation, and is highly associated with the 
production of toxic hexavalent chromium [52,53].

Stainless steel production is the primary application of chromium, as chromium is an important element for producing ferrochrome 
alloys and special type steel [50,54]. Around 90 % of mined chromite ore undergoes transformation within the metallurgical industry, 
resulting in various grades of ferrochrome [50]. About 80 % of the ferrochrome produced is consumed by stainless steel [55]. Chromite 
ore is processed prior to marketing or export, and the intended treatment depends on the ore primary source, parent rock material and 
planned end use. Chromite often shows variations in its composition (Mg, Cr, Al, Fe2+, Fe3+) and is generally divided into three 
different class types based on their usages and grades. In the metallurgical grade, this ore contains 44–56 % Cr2O3 and the Cr/Fe ratio is 
around 2:5. The second type is the chemical grade, characterized by substantial iron content with a Cr/Fe ratio approaching 1. And the 
refractory grade is at the third place, which contains comparatively great amounts of Al2O3 usually greater than 20 % [56,57]. Simple 
mechanical sorting and washing are often sufficient for upgrading the extracted ores from the mine. However, for international 
marketability, all low-grade and finely dispersed ores require upgrading through various separation and concentration techniques, 
such as flotation, gravity concentration, selective flocculation, electrostatic separation, and magnetic separation, which usually cause 
severe environmental hazards in the local and occupational settings [53,54].
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Table 1 
Concentration/range of toxic metals in dust and soil samples from major mining areas worldwide (mg kg− 1).

Study area Mining type Sample Cr Ni Pb Cd Mn Zn Fe References

Pakistan Chromite mine Dust 420.0 38.76 7.94 5.08 46.8 – – [8]
India Chromite mine Soil 14749.22–32063.4 5460.4–8865.9 70–208.5 0.95–5.25 209–360 221.2–349.32 531.8–28847 [15]
India Chromite mine Soil 404–49100 45–3688 0–67 – 284–5553 42–131 – [16]
Pakistan Chromite mine Soil 202–564 58–270 8.0–58 1.0–5.0 – 17–43 – [17]
Iran Chromite mine Soil 156.19 321.7 – – – – ​ [18]
India Chromite mine Soil 2622–27963 – – – – 53.1–133.5 – [19]
Spain Copper mine Soil 138 121 24.7 – – 176 – [20]
India Chromite mine Soil 1715.8–9548.5 223.8–522.8 – – 1052.3–1993.6 10.9–24.0 21823.7–58490.1 [21]
China Gold mine Soil 302.64 – 271.31 1.3 – 142.34 – [22]
Vietnam Chromite mine Soil 5750 5590 – – – – – [23]
South Africa Ferrochrome production Dust 7070 – – – – – – [24]
Spain Silver and lead mines Soil – – 8300 40.9 – 12500 – [25]
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3.2. Exposure to toxic metals in chromite mining environment

3.2.1. Chromium and other metals in chromite mining
Mine tailings, wastes from smelters, and metals deposited from atmosphere are the primary sources of metal contamination in soil 

[58]. It has been noted that in the vicinity of smelting practices and mining zones, metals typically coexist as a mixture. For example, 
Pb and As were frequently found to coexist in the air, soil, and domestic dust around the smelters and mining areas in Mexico [59]. 
Similarly, the soil and plants in Mahd Ad-Dahab, a city of Saudi Arabia’s Hejazi region, were significantly contaminated with more 
than thirteen toxic metals from nearby mining activities [60]. In the chromite mining areas of Karnataka, India, several heavy metals 
were also found to be high in concentration in soil, and the heavy metal enrichment in soil was attributed to the five mining sites in this 
area [61].

High concentrations of metal pollutants are always anticipated in the chromite mining environment. As shown in Table 1 and Fig. 2, 
high concentrations of Cr, Pb, Cd, and several other heavy metals have been previously found in smelters and mining areas in various 
countries, with levels many folds higher than the concentrations found in control or far from the pollution source. Waste rock, tailings 
and slag that are waste materials generated by mining activities in large amounts can in turn lead to environment contamination 
ultimately [62]. Metals in high concentration are reported in food crops, agrarian soils and streams as a direct outcome of release and 

Table 2 
Exposure routes and analysis of biological samples as biomarkers in assessing toxic metal exposure.

Study area Subject Exposure route Sample Analysis subject Reference

Iraq Smokers Smoking: inhalation Urine Cr, Cd, Pb [26]
Pakistan Chromite mining 

workers
Air: dermal contact, inhalation and 
ingestion

Blood & 
Urine

Cr, Cd, Pb, Mn, Zn [8]

Thailand Electronic waste 
workers

Air: dermal contact, inhalation and 
ingestion

Blood & 
Urine

Cd, Mn, Pb [27]

Pakistan Lather tanning 
workers

Air: dermal contact, inhalation and 
ingestion

Urine Cr, Cd, Ni, Cu, Zn, Pb [28]

Nigeria E-waste workers Air: dermal contact, inhalation and 
ingestion

Blood Blood malondialdehyde, Catalase, Superoxide 
Dismutase and Glutathione Peroxide

[29]

Pakistan Adult and children Air and food: dust exposure, 
drinking water and food.

Toenail Cr, Mn, Co, Ni, Cu, Zn, Cd, Pb. [30]

Qatar Immigrant Farm 
workers

Air, food intake: inhalation and 
ingestion

Toenail As, Ba, Cd, Cu, Mn, Mo, Pb, Se, [31]

United 
States

Welders Air: inhalation Toenail Pb, Mn, Cd, Ni, As [32]

China E-Waste employees Air: dermal contact, inhalation and 
ingestion

Blood Pb, Cd, Cr, Ni [33]

France Welders Air: dermal contact, inhalation and 
ingestion

Blood DNA gene polymorphisms (GSTM1, GSTT1) [34]

Italy Cr plating workers Air: dermal contact, inhalation and 
ingestion

Urine Cr [35]

Germany Incinerator Air: dermal contact, inhalation and 
ingestion

Urine Cd, Ni [36]

Table 3 
Levels of urinary heavy metals of the exposed subjects in different occupational settings.

Study area Exposed group Cr Cd Ni Cu Mn Zn Pb Reference

Iraq Smokersc 1.93 1.18 – – – – 0.07 [26]
United States Cardiovascular disease patientsa – 0.24 – – – – 0.48 [37]
China Suburban populationa – 1.05 2.25 – – – 0.96 [38]
Germany Non-specifically exposeda – 0.16 1.40 – – – 0.59 [39]
Malaysia Malaysian adultsa – 0.35 4.49 – – – 0.70 [40]
Thailand Electronic waste workersb – 0.65 – – 7.07 – 6.58 [27]
Pakistan Leather manufacturing workersa 5.16 2.9 0.93 2.31 3.39 18.12 7.58 [28]
Pakistan Surgical industry workersa 58.15 41.38 12.04 2.53 5.57 215 10.15 [41]
Pakistan Working childrena 0.38 0.36 3.33 11.5 1.5 169 3.6 [42]
Pakistan Surgical industry workersa 23 0.48 7.45 16.3 3.33 278 4.27 [43]
Spain Iron and steel workersa 0.95 0.25 1.67 – 0.93 – 22.28 [44]
Poland Slide bearings workersa - – – 17.8 – 334 25.5 [45]
Pakistan Steel mill workersa 18.58 15.41 9.479 – – – 147.48 [46]
Italy Chrome plating workersa 7.31 – – – – – – [35]
Germany Incinerator workersa - 0.45 14.8 – – – – [36]
Germany Dry cell workersa - - – – 0.26 – – [47]

a unit in μg L− 1.
b unit in μg g(creatinine)− 1.
c unit in mg L− 1.
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dispersion of mining effluents [63]. [64] reported the application of a passive bio-indicator, Scots pine (Pinus sylvestris L.) bark, in 
heavy metal monitoring and found that the regular concentration of heavy metals in pine bark in the open-pit chromite mine area 
(Kemi–Tornio) of northern Finland exceeded the background concentration. Besides, a significant amount of fine particles are 
generated and dispersed over extensive distance from the source during specific mining processes, which would contaminate the 
environment through wet and/or dry atmospheric deposition [64]. In Vietnam, some chromite mining operations at small scale were 
related to high contamination of nearby agricultural soil with Cr, Co and Ni after heavy rains distorted a soil barrier [23].

3.2.2. Human exposure to chromium
Mining activities lead to the pollution of water, soil, and air through heavy metal accumulation and also result in contamination of 

the surrounding area through diverse processes [21,19]. A chromite mining study in Pakistan revealed that in the impact areas of 
chromite mining, the toxic metal concentration including Cr, Pb, Cd, and Ni in drinking water exceeded the permissible limits [65]. 
The Cr(VI) pollution in both surface and ground waters as direct consequences of chromite mining activities have also been revealed in 
India [54]. In USA, (Cr(VI)) naturally occurs in groundwater in parts of California, Arizona, and San Francisco, primarily due to the 
hydrolysis of feldspar, Cr-bearing pyroxenes, chromite, and calcite [54]. Chromium pollution in Southwest, Northwest, and North 
China primarily stems from mining activities, particularly those involving chromite deposits. Cities like Jinchang and Panzhihua are 
notably affected [66]. In India, a 2007 “Black Smith Institute Report” advised that residents within 1 km from the chromite mining site 
were significantly associated with diseases that were brought by pollution specifically due to Cr(VI) [67].

Generally, humans are exposed to harmful elements such as hazardous metals by means of three major routes, which are dermal 
contact, ingestion, and inhalation, as summarized in Table 2. Previous studies indicate that the inhalation of ionic species of toxic 
metals such as Cr, Pb, and Cd is the primary route contributing to health risks associated with these exposures. Once inside the human 
body, there is strong adsorption, accumulation, and biomagnification of toxic metals, leading to a wide variety of diseases [68]. For 
example, prolonged exposure to dust from chromite mines in occupational settings can cause various autoimmune diseases and high 
risk of lung cancer [69].

Chromium exists in the more common trivalent chromium Cr(III) form, but the industrial significance of the hexavalent chromium 
(Cr(VI)) form, found in chromate compounds, is notable. Chromite mining ores serve as a major source of chromium production. Other 
occupational exposures to chromium typically occur in the production of stainless-steel as well as chrome plating and tanning in
dustries. While nasal mucosa irritation and considerable sneezing can be caused by breathing in Cr(VI) with a concentration of 2 μg m3, 
the Cr(VI) concentration in air can get much higher in occupational settings depending on the types of processes carried out [70,71]. 
Therefore, chromium compounds often show acute adverse effects as a result of occupational exposures.

As discussed earlier, Cr(VI) is recognized to be carcinogenic whereas the toxic dose varies depending on the exposure route. Long- 
term exposure results in bioaccumulation in tissues, which affects the immune system, liver, and kidney [72]. Acute exposure above 5 
mg kg− 1 day− 1 may cause severe gastrointestinal, renal, and liver damage. For a lifetime of exposure, the EPA’s oral reference dose 

Fig. 2. Major study areas on chromite mining pollution worldwide.

C. Khan et al.                                                                                                                                                                                                           Heliyon 10 (2024) e40083 

6 



(RfD) of 0.003 mg kg− 1 day− 1 is considered safe. However, the lung cancer risk can rise even at 1 μg m− 3 for Cr(VI) inhalation [73]. 
According to the European Union Scientific Committee on Occupational Exposure Limits (SCOEL), 40 years of exposure to 1 μg m− 3 of 
Cr (VI) could lead to four more instances of lung cancer per 1000 workers [74]. In Europe, the current binding occupational exposure 
limit for Cr (VI) is 10 μg m− 3 (8-h time weighted average), which will be reduced to 5 μg m− 3 by 2025. In France and the Netherlands, 
the occupational exposure limit is much stringent, at 1 μg m− 3 [75].

3.3. Chromium toxicity and the potential mechanisms

3.3.1. General impacts on human body
It has been recognized that there is a significant association between toxic metals, chemical toxicants, and a high risk of human 

cancer [76]. Severe heavy metal pollution from the mining areas also highlighted the elevated health risks for the exposed group, 
including both carcinogenic and non-carcinogenic risks [77]. [78] reported ’high’ cancer risk in mining sites for both adults (5.38E-04) 
and children (4.45E-04). In contrast, other study sites of agricultural and roadside soils exhibited cancer risk ranging from ’low’ to 
’very low’. This was attributed to the significant contributions of metals including Ni, Pb, and Cr(VI) (73 %, 11 %, and 10 %, 
respectively).

Chromium has been evidenced as a lethal, cancer-causing and mutagenic metal posing serious threat to the exposed group. There 
are two stable forms of chromium present in the environment, which are trivalent (Cr(III)) and hexavalent (Cr(VI)) chromium. Cr(III) is 
recognized as insoluble and less toxic, while Cr(VI) is highly soluble and extremely toxic, known as a carcinogen [70,79]. Human and 
animal-based studies recognized the importance of trace quantities of Cr(III) (50–200 μg day− 1) as essential in maintaining normal 
glucose metabolism [80]. Cr(VI) is usually more readily absorbed than Cr(III), but the absorption rate relies on the compound type. The 
fatal oral dose is estimated to be 50–70 mg chromates per kilogram of body weight for adult humans [80,81]. The toxic doses of 
chromium by oral ingestion mainly take effects through liver and kidney necrosis.

The most common adverse effects after a prolonged exposure of Cr(VI) usually include abdominal disturbance, gastrointestinal and 
stomach cancer, weak immunity, diarrhea, tumor, and ulcer [82–84]. The assessment by IARC based on different studies indicated a 

Fig. 3. Intracellular toxicity and carcinogenicity of Cr(VI): potential mechanisms leading to cell cycle arrest [10,95].
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lung cancer risk in workers who are exposed to Cr(VI) through inhalation, especially those in electroplating and chromate and/or 
chromate pigment manufacturing industries [84,85]. Inhalation of hexavalent chromium Cr(VI) compounds results in marked irri
tation in the respiratory tract and bronchial asthma in human body. The rip of the nasal septum and ulceration have arisen regularly in 
workers who work in the chromate related industries. Bronchospasm pneumonia and rhinitis have also been reported in workers who 
were exposed to Cr(VI) together with respiratory dynamics impairment during respiration [86]. Moreover, workers exposed to 
chromium-containing materials consistently report acute irritative dermatitis and chronic skin ulcers. Ulceration as a result of 
interaction with through damaged skin and mucous membrane is also a common occupational damage when suitable workplace 
protection is absent [87]. The powerful oxidizing and strong acidic properties of soluble Cr(VI) have been recognized as the main 
reasons of its irritant effect on epithelia [88].

3.3.2. Chromium genotoxicity and carcinogenicity
The uptake of chromium in human body is mainly through the gastrointestinal tract, lung, and to a lesser extent, the skin via dermal 

contact [10]. Chromium excretes through the body whereas kidney/urine and bile/feces are the key routes for the elimination of 
chromium [89]. Upon exposure to Cr(VI), this chemical specie enters the cell more easily than Cr(III) compounds and is eventually 
reduced to Cr(III). The Cr(VI) reduction is considered a detoxification process in the body if this reduction occurs away from the actual 
target site. However, if the reduction occurs inside or around the cell nucleus of the target, it may activate the chromium toxicity in 
organs [84]. It is recognized that the intracellular reduction of Cr(VI) infers the formation of short-lived chromium species in 
pentavalent chromium form with strong attraction for cellular constituents [90]. The early binding of cellular macromolecules might 
involve the pentavalent chromium. The key factors for the intracellular reduction of Cr(VI) appear to be glutathione and cysteine, 
which can stabilize pentavalent chromium [91]. When the chromium species are eventually absorbed and retained in the biological 
tissues of the body, the chromium compounds predominantly exist as Cr(III).

Prolonged exposure and high doses of chromium can result in various genotoxic and cytotoxic reactions which can then impact the 
whole-body system. However, on the other hand, the Cr(VI) induced cytotoxicity mechanism is still not fully understood. As shown in 
Fig. 3, the reduction process through which Cr(VI) is converted to Cr(III) can give rise to various kinds of DNA damage, including 
chromium-DNA adducts, DNA-protein cross-links, DNA-DNA inter-strand crosslinks, as well as other oxidative DNA lesions such as 
strand breaking. In a series of in vivo and in vitro studies, it has also been demonstrated that Cr(VI) tends to trigger oxidative stress 
through the elevation of reactive oxygen species (ROS). This, in turn, ultimately results in oxidative degradation of proteins and lipids 
and genomic DNA damage [10,92]. Due to the elevated oxidative stress imposed by Cr(VI), a cascade of cellular events ensues, 
including the high production of ROS such as hydroxyl radicals and superoxide anions, genomic DNA fragmentation, increased lipid 
peroxidation, protein kinase C activation, intracellular oxidized state modulation, altered gene expression, and apoptotic cell death 
[93,94].

Inflammation plays a key role in Cr(VI)-induced illnesses. Previous studies have shown lung inflammation and signaling pathway 
activation in animals, along with increased interleukin–6 (IL-6) in Cr(VI) exposed workers [96,97]. Alveolar macrophages convert Cr 
(VI) to a less harmful form but also produce pro-inflammatory cytokines and reactive oxygen species, potentially leading to lung 
damage and fibrosis [87]. Exposure to Cr(VI) stimulates macrophages, which in turn releases inflammatory mediators such as IL-1beta, 
IL-23, and IFN-gamma. This systemic inflammation raises the risk of lung illnesses, destroys lung tissue, and reduces lung function. In 
the study by Zhang et al., higher blood levels of pro-inflammatory cytokines and the inflammatory biomarker suPAR, which is con
nected to chronic lung illness, were found to correlate with higher blood chromium levels [96].

3.3.3. ROS generation and the induced oxidative stress
The genotoxic effects of toxic metals are multifactorial, involving direct interference with enzyme activity, deactivation of anti

oxidant sulfhydryl pools, as well as competitive inhibition of the absorption of essential trace minerals [98,99]. It has been previously 
reported that healthy individuals living in and around the severely polluted mining area with heavy metal contamination can expe
rience substantial changes in the expression of DNA repair genes and detoxifying genes as well as some xenobiotic metabolizing 
enzymes [100]. Several studies have acknowledged that exposure to elements like Cd and Pb is associated with obviously increased 
lipid peroxide levels and altered antioxidant enzyme activity [101,102]. According to a study by Ref. [29], the markedly elevated 
blood malondialdehyde (MDA) concentration in the study group exposed to e-waste could directly indicate the enhanced lipid per
oxidation and thus the elevated oxidative damage, which is an important mechanism contributing to carcinogenesis.

Heavy metals such as Cr, Pb, Cd, and As can exert similar cellular impact by increasing oxidative stress [103]. Oxidative stress is in 
fact an imbalance between the levels of pro-oxidants producing ROS and antioxidants within the human body [104]. Exposure to heavy 
metals can lead to the generation of a fatal amount of ROS during the metabolism of toxic heavy metals within the body. This, in turn, 
causes oxidative damage to different human organs [105,106]. Typically, oxidative damage involves the proliferation of ROS, which 
subsequently alters the molecular structure of nucleic acids, lipids, and proteins through detrimental interactions. Blood malondial
dehyde (MDA), a product of the lipid peroxyl radical breakdown in cells, is a singular lipid peroxidation product. Its concentrations can 
be used to indicate the level of lipid peroxidation in human body [107]. In a study by Yiin et al., the lipid peroxidation assessment 
through MDA analysis revealed an increase in lipid peroxidation in the presence of Pb [107]. Additionally, the MDA concentration also 
showed an increase in the liver and kidney upon exposure to Cd. Other studies have also consistently reported lipid peroxidation as a 
consequence of heavy metal toxicity [29,102].

ROS induction in the body by metals are termed cytotoxic properties of metals that ultimately results in DNA damage. The potential 
pathway for the induction of oxidative damage in cells treated by metal may involve the iron release from ferritin and the subsequent 
formation of ROS, which is highly dependent on iron [108,109]. Another potential pathway may involve the activation of NADH 
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oxidase and the production of super oxides, as described by Lynn et al. [110]. The Fenton reaction facilitated by copper is also an 
important process, which catalyzes the formation of hydroxyl radicals [59]. On the other hand, antioxidant enzymes, including 
glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT), are of vital importance in individual adaptive response 
to toxic metal exposure. Antioxidant can eliminate major ROS such as super oxides and peroxides, preventing the production of 
additional harmful species near cells or DNA. However, an imbalance between oxidants and antioxidants can lead to oxidative stress, 
as characterized by an increased generation of ROS, which may overwhelm the cell’s central antioxidant defence system [111,112].

3.4. Exposure assessment of heavy metals by human biomonitoring

Human biomonitoring (HBM) is a method employed to assess pollutant exposure by monitoring environmental chemicals and the 
reaction products in biological samples such as hair, urine, milk, and blood [113–115]. As a rapidly developing discipline, HBM is often 
applied to assess pollutant exposures and risks regarding environmental and occupational health, contributing not only to scientific 
understanding but also influencing the development and implementation of programs and policies aimed at protecting human health 
[116]. Various toxic heavy metals, gases, and dust fumes are present in different occupational settings, particularly in industries where 
metals are widely used for various manufacturing processes. It is acknowledged that metals and the related compounds can pose toxic 
effects when their concentrations go beyond established limits [117]. Typically conducted in cross-sectional studies, the objective of 
biomonitoring is to gauge human exposure by comparison of toxic element concentrations in the exposed group with those of un
exposed individuals for control, or with ’background’ values based on literature results [116,118]. The quantification of toxic metals in 
the biological samples of living organisms is also an important procedure for clinical screening. In the health risk assessment, un
derstanding reference values (RVs) in human biological samples sheds light on the level of exposure and plays a significant role in 
environmental pollution control.

An overview of the recent biomonitoring studies on heavy metal exposure is provided in Table 3. While different biological samples 
were utilized, the most extensively employed matrices for exposure biomonitoring of trace metals are blood and urine [119]. Overall, 
the referenced studies examined the association among human exposure, the concentrations of toxic metals in human biological 
samples and the activities of other biological markers. For example, a series of studies on toxic metal contamination around the Mahd 
Ad-Dahab gold mine area in Saudi Arabia revealed that healthy volunteers living near the mine exhibited significantly higher blood 
concentrations of heavy metals compared to the unexposed study subjects for control [100,120]. In addition, human biomonitoring 
can also help identify potential harmful exposures before clear adverse health effects manifest. In this aspect, the study of DNA damage 
in populations exposed to toxic metals has been utilized as a biomarker of adverse health effects [121].

4. Research gaps and conclusions

Accompanying the economic values, chromite mining and ore refining processes have been reported to cause significant envi
ronmental pollution. Hexavalent chromium (Cr(VI)), a chemical species of chromium, is particularly harmful, and can have distinctly 
adverse effects on humans, the environment, and its living organisms. This review highlighted the environmental pollution resulted 
from chromite mining and processing industries globally, and explained the probable toxic effects as well as toxicity mechanisms of the 
related toxic metals on exposed workers as well as other human population. The harmful impacts of chromite mining not only seriously 
pollute the environment, but it also put the workers who are directly involved and the adjacent neighbors in risk. Regarding the 
occupational exposure of workers to hazardous metals in mining contexts globally, there is a discernible research gap. These workers’ 
prolonged exposure to toxic metals would probably increase the oxidative stress, which leads to a number of hereditary and non- 
genetic health consequences covering from respiratory disease to cancer. Therefore, evaluating the relationship between antioxi
dant biomarker levels and exposure to hazardous metals, as well as the rates of sickness and mortality among mining workers, is 
crucial.

It is important to implement certain changes regarding pollution reduction and occupational safety in hazardous mining envi
ronments. Firstly, the workplace environments need to adopt stringent safety laws governing the supply of suitable protective gear and 
regular training on safety precautions. Secondly, in order to continuously monitor and lower emissions from mining operations, it is 
advised to implement real-time pollution monitoring systems. Thirdly, there should be improvement made to the healthcare alter
natives available to workers who are exposed, including support for any health issues brought on by pollution exposure, access to 
medical facilities, and routine health checkups.
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