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In this study, we looked for potential gene-gene interaction in susceptibility to
schizophrenia by an exhaustive searching for SNP–SNP interactions in 3 GWAS
datasets (phs000021:phg000013, phs000021:phg000014, phs000167) using our
recently published algorithm. The search space for SNP–SNP interaction was confined
to 8 biologically plausible ways of interaction under dominant-dominant or recessive-
recessive modes. First, we performed our search of all pair-wise combination of 729,454
SNPs after filtering by SNP genotype quality. All possible pairwise interactions of any 2
SNPs (5 × 1011) were exhausted to search for significant interaction which was defined
by p-value of chi-square tests. Nine out the top 10 interactions, protein coding genes
were partnered with non-coding RNA (ncRNA) which suggested a new alternative insight
into interaction biology other than the frequently sought-after protein–protein interaction.
Therefore, we extended to look for replication among the top 10,000 interaction SNP
pairs and high proportion of concurrent genes forming the interaction pairs were found.
The results indicated that an enrichment of signals over noise was present in the top
10,000 interactions. Then, replications of SNP–SNP interaction were confirmed for 14
SNPs-pairs in both replication datasets. Biological insight was highlighted by a potential
binding between FHIT (protein coding gene) and LINC00969 (lncRNA) which showed
a replicable interaction between their SNPs. Both of them were reported to have
expression in brain. Our study represented an early attempt of exhaustive interaction
analysis of GWAS data which also yield replicated interaction and new insight into
understanding of genetic interaction in schizophrenia.

Keywords: schizophrenia, GWAS, exhaustive search, second order SNP–SNP interaction, gene–lncRNA
interactions
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INTRODUCTION

Schizophrenia is a highly heritable disorder and it affected
about 1% of the population worldwide (Sullivan et al., 2003,
p. 20; Henriksen et al., 2017; Avramopoulos, 2018; Weinberger,
2019). Twins studies suggested the heritability is around 80%
(Sullivan et al., 2003; Henriksen et al., 2017; Avramopoulos,
2018) and common variants contributed to up to half of
the genetic risk of schizophrenia (International Schizophrenia
Consortium et al., 2009; The Schizophrenia Psychiatric Genome-
Wide Association Study (Gwas) Consortium, 2011). Genome-
wide association studies (GWAS) identified more than 180 loci
that were associated with the risk of schizophrenia (Ripke et al.,
2014; Li et al., 2017; Pardiñas et al., 2018). Some of the genes were
well known target for treatment such as dopamine receptor D2
(DRD2) and some new genes related to immune system were
identified, which provided new target for therapy development.
However, the SNPs identified by GWAS only explained a small
effect on the disease risk (Manolio et al., 2009) and a large subset
of SNPs associated with the disease is uncovered.

Single SNPs often have a small effect on the phenotype and
they cannot account for all the genetic susceptibility of diseases.
Many researchers explored various ways to re-analyse the GWAS
data using approaches on top of the prevailing single SNP
analysis, commonly used in GWAS analysis. For example, sub-
classification of the phenotypes (Ruderfer et al., 2018), integration
of omics data (Jaffe et al., 2018) and various ways of pathway or
network analysis had been performed (Wang et al., 2019). On the
other hand, it is recognized that SNP–SNP interaction can act
as a stronger risk factor by working synergistically. Recently, the
specific mode of enhancer-promoter interaction in GWAS had
been pursued (Wu and Pan, 2018). A study showed some SNPs
were not associated with the phenotypes of the disease when they
were examined individually and they were only identified when
examined in combination (Gerke et al., 2009). Our previous study
on IGF1 promoter showed the interaction between a pair of SNPs
and short tandem repeat (STR) resulted in the regulation on the
level of circulating IGF1 (Chen et al., 2011, 2013, 2016). However,
the association was not significant when individual SNP was
examined. Furthermore, a recent study showed that the weak
interaction of transcription factor to its promoter was able to
regulate the expression of the gene (de Boer et al., 2020), further
supporting SNP–SNP interaction provided synergistic effect on
gene regulation. Other than SNP–SNP interaction occurring on
the same gene, we and others showed SNP–SNP interaction
across different genes were also important in determining the
risk or severity of diseases including psoriasis (Lee et al., 2018),
schizophrenia (Schrode et al., 2019), cancer (Lin et al., 2013), and
obesity (Dong et al., 2017).

Genome-wide association studies is an important tool to
identify SNP associating with a variety of diseases. However, only
marginal effects of SNPs were detected. SNP–SNP interaction
played an essential role in the pathogenesis of complex diseases
(Phillips, 2008). To examine the SNP–SNP interaction in a
GWAS dataset, there were over 10 billions of pairwise SNP
combinations and it caused a huge demand of computational
power. One approach was to limit the pairing of SNPs using

specific features like genomic location in a study focused to
the scope of Enhancer–Promoter interaction (Wu and Pan,
2018). With the improvement of computational power and better
algorithm, it is now possible to exhaust all possible pairwise
SNP combinations in a GWAS dataset to calculate the statistical
significance of all possible pairwise interactions (Wan et al., 2010;
Zhu et al., 2013; Lee et al., 2018). Another challenge for the
detection of SNP-SNP interaction is arose from the multiple
testing and interactions with weak effect size will not be detected
under the stringent threshold. Exhaustive search approach is
one of the major categories for detecting SNP–SNP interaction
and the multi-factor dimensionality reduction (MDR) approach
generates 3 × 3 genotype tables which may predict for high
risk and low risk genotype. However, the SNP–SNP interaction
identified might not be biologically interpretable.

We developed an algorithm which generated eight biological
plausible SNP-SNP interactions (Chu et al., 2016) and identified
some novel SNP-SNP interactions associating with the risk of
psoriasis in our previous study (Lee et al., 2018). In this study,
we utilized this algorithm to perform the exhaustive search
for statistically significant 2nd order SNP–SNP interactions
from our discovery dataset phs000021:phg000013. First, we
found that 9 out of the top 10 SNP-SNP interactions in terms
of p-value could be interpreted as the interactions between
protein coding genes and non-coding RNA (ncRNA) genes
which suggested the importance of interactions other than that
of the traditional protein-protein interactions. After that, we
investigated the replication among the top 10,000 SNP-SNP
interactions and there was a high proportion of concurrent
genes among the gene-gene interaction predicted from these
SNP–SNP interaction. Therefore, there was an enrichment of
signals over noise among these interactions. Finally, 9 SNP–
SNP interactions were successfully replicated in both replication
datasets. Among these SNP–SNP interactions, one of them could
be interpreted as the interaction between FHIT (protein coding)
and LINC00969 (lncRNA). Both of them were reported to have
expression in brain.

MATERIALS AND METHODS

Restricting Search Space of SNP–SNP
Interaction With Biologically Plausible
Genotype Interaction Patterns
The distribution of different genotypes of every 2nd order SNP
combination across cases and controls can be measured and
visualized as a 3 × 3 genotype table. Each genotype is represented
as a cell in the 3 × 3 genotype table and can be labeled as high-
risk or low-risk through statistical or heuristic algorithms like
multi-factor dimensionality reduction (MDR) algorithm and its
derivatives (Gola et al., 2015). However, the interactions found
by these algorithms may have labeling patterns which may not be
explained biologically. In this paper, we have applied eight 2nd
order biological plausible SNP–SNP interaction labeling patterns
(Chu et al., 2016; Lee et al., 2018) for labeling genotypes as
high-risk or low risk in our exhaustive search. The principles
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and assumptions in deriving these eight SNP–SNP interaction
patterns are shown in Figure 1 and are explained below.

1. SNP1 and SNP2 are found in two different functional sites
namely Site1 and Site2 respectively. (Letters “A” and “B”
represent the major alleles of SNP1 and SNP2 respectively.
Meanwhile, letters “a” and “b” represent the minor alleles of
SNP1 and SNP2 respectively).

2. SNP1 and SNP2 can affect their respective functional sites
and cause each site to generate at most two different
subtypes of bio-molecules. For example, bio-molecules pA is
generated from Site1 with SNP1 having a major allele.

3. The bio-molecules generated from Site1 and Site2 can
randomly dock with each other to form at most four different
bio-molecule complexes For example, bio-molecules pA and
pB can combine with each other to form complex pApB.

4. A bio-molecule complex is considered to be associated to the
genetic disease if any one of the following two conditions is
satisfied:

a. Its dominant interaction can either promote or
inhibit a disease.

b. Its recessive interaction presence can either promote or
inhibit a disease.

Those eight SNP–SNP interaction patterns are shown in
Figure 2. The pattern 1 in Figure 2 is derived through the
following procedure. Without the loss of generality, assuming
that pApB is the only bio-molecule complex associated to the
genetic disease. If the dominant presence of pApB can either
promote or inhibit the risk of a genetic disease, samples carrying
genotype {AA, BB}, {AA, Bb}, {Aa, BB}, and {Aa, Bb} obviously

would have a different disease risk level comparing to other
samples. Pattern 1 is hence derived after labeling these genotypes
with two different colors to reflect their difference in risk level. On
the other hand, if only the recessive presence of pApB can either
promote or inhibit a disease, samples carrying genotype {AA,
BB} would have a different disease risk level comparing to other
samples. Pattern 5 is hence derived after labeling these genotypes
with two different colors to reflect their difference in risk level.
Other patterns shown in Figure 2 can be also defined through a
similar procedure shown above.

Finding Statistically Significant SNP–SNP
Interactions With Exhaustive Search
After labeling the 3 × 3 genotype table of a 2nd order SNP
combination, it can then be transformed into a 2 × 2 contingency
table shown in Figures 3, 4. Among the black cells of the 3 × 3
genotype table at the left-hand side of Figure 3, the number of
cases and controls are aggregated into the total number of cases
(ND,B) and Controls (NH,B) respectively as shown in the table at
the right-hand side of Figure 3. Similarly, the number of cases
and controls of white genotypes are aggregated into ND,W and
NH,W respectively. After calculating the aggregated number of
cases and controls under different cell colors (ND,B, NH,B, ND,W
and NH,W), a 2 × 2 contingency table can then be generated as
shown in Figure 4.

After the corresponding 2 × 2 contingency tables of a 2nd
order SNP combination (SNPi, SNPj) is calculated, statistical test
like 1 d.f. chi-square statistical test can be performed to calculate
the pairwise p-value of SNPi and SNPj.

FIGURE 1 | This figure shows the bio-molecule interaction mechanism behind a 2nd order SNP–SNP interaction where SNP1 and SNP2 are both having genotype
(Major, Minor). Major alleles represented by upper-case letters (i.e., A, B) and minor alleles represented by lower-case letters (i.e., a, b) (Lee et al., 2018).
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FIGURE 2 | This figure shows the eight biologically plausible 2nd order genotype labeling patterns and their corresponding disease-associated complexes. Under
dominant interaction patterns 1, 2, 3, and 4, their corresponding disease-associated complexes are presence in the samples carrying the black genotypes and
absence in the counterpart genotypes. Meanwhile, under recessive interaction patterns 5, 6, 7, and 8, their corresponding disease-associated complexes are the
only presence in the samples carrying the black genotypes and other complexes are presence in the counterpart genotypes. Among these eight interaction patterns,
black genotypes and white genotypes have different risk levels caused by the difference in concentration of the disease associated bio-molecule complexes. Major
alleles are represented by upper-case letters (i.e., A, B) and minor alleles are represented by lower-case letters (i.e., a, b) (Lee et al., 2018).

Source of Real Datasets
We downloaded three schizophrenia GWAS datasets
(phs000021:phg000013, phs000021:phg000014 and phs000167)
from the database of Genotypes and Phenotypes (dbGaP). These
three datasets were cleansed to remove low quality SNPs and
samples with Plink (Purcell et al., 2007) following the common
recommendations from NCBI (Anderson et al., 2010). The
cleansing parameters are shown in Supplementary Tables S1,

S2. The demographic information of the three datasets are shown
in Supplementary Tables S4–S6.

After data pre-processing, there were 729,454 SNPs and
2,306 samples (cases: 1,051, controls: 1,214) in dataset
phs000021:phg000013; 761,628 SNPs and 1,726 samples
(cases: 829, controls: 874) in dataset phs000021:phg000014;
767,002 SNPs and 2689 samples (cases: 1,176, controls: 1,325) in
dataset phs000167. The genotypes of every SNP in these three
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FIGURE 3 | This figure shows the process of aggregating the number of cases and controls with black and white genotypes in a 3 × 3 table between SNP1 and
SNP2, where the genotypes are colored according to the pattern 1 in Figure 2. Major alleles represented by upper-case letters (i.e., A, B) and minor alleles
represented by lower-case letters (i.e., a, b) (Lee et al., 2018).

datasets were encoded as 0, 1, 2, 3 according to the encoding
scheme shown in Supplementary Table S3.

Exhaustive Search on Schizophrenia
Datasets in Discovery Dataset and 2
Replication Datasets
To identify potential biologically plausible and statistically
significant 2nd order SNP–SNP interactions, we performed
search on these three cleansed datasets. As phg000013 got a
slightly larger sample size and was restricted to Caucasian
subjects, it was chosen as the discovery dataset and the
other two were used for replication of findings obtained from
phg000013. First, we performed our search on these three
datasets after filtering out SNPs in chromosome X, Y and
mitochondrial DNA. After SNP–SNP interactions were ranked
by their pairwise p-value, high ranking interactions would be
selected for further analysis.

After sorting SNP–SNP interactions found in the discovery
datasets in terms of their p-value, only a handful of interactions
found in datasets phs000021:phg000013 had a p-value better than
10−11 which could be used as a cut-off value for statistically
significant and the top 10 pairs of interaction were listed in
Supplementary Material. They were largely related to SLC35A5

and an unknown transcript LOC105375629. However, the
interaction was not replicated in the other 2 datasets.

Enrichment of Interacting Genes Among Top 10,000
Interactions
We considered using the Bonferroni approach for correction of
cut-off p-values was too conservative and important interactions
would be missed. Then we looked at the extend of replication
among top ranked interaction found in the discovery dataset.
Five sets of top ranked interaction found in phg000013 were
checked if their component genes were also found to have
high ranking in the two replication datasets (Supplementary
Tables S9, S10). From the 2 tables, it was clear that up to 30%
of genes reported in the top 10,000 interaction list could be
replicated. This percentage replication (labeled as % common in
the Supplementary Tables) increased with increasing number of
top ranked interaction selected. The results indicated that signal
were in fact enriched in the top ranked interaction SNPs pairs
though they were not significant by Bonferroni correction. The
very extreme p-values in the Supplementary Tables represents
the probability of null hypothesis that there was no signal
enrichment. We tried an addition way of sample filtering to
exclude data bias or confounding by limiting to using female
only subjects and repeating the whole procedure. Indeed, the
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FIGURE 4 | This figure shows the process of arranging the summed counts of cases and controls calculated in figure into a 2 × 2 contingency table. Major alleles
represented by upper-case letters (i.e., A, B) and minor alleles represented by lower-case letters (i.e., a, b) (Lee et al., 2018).

same signal enrichment results was found among the top 10000
interacting gene pairs. Therefore, in the subsequent replication
analysis, we selected top 10000th SNP–SNP interactions in terms
of p-value.

After that, we selected nth (n = 100, 500, 1000, 5000,
10000) SNP–SNP interactions in terms of p-value from each
dataset after each stage of our experiment and we predicted
gene–gene interactions from these SNP–SNP interactions with
CADD (Kircher et al., 2014). Then, we compared the gene-gene
interactions predicted from the results of different datasets and
analyzed the consistency among different datasets. Furthermore,
we inferred and analyzed the biological function of these gene–
gene interactions with GSEA (Mootha et al., 2003; Subramanian
et al., 2005). Meanwhile, we constructed gene networks based
on the gene–gene interactions which have a potential biological
function based on our analysis with GSEA. Then, we performed
follow-up network analysis on these gene networks. Genes
which had a high degree within our network are selected
for further analysis to identify potential novel schizophrenia
associated genes.

Replication of SNP–SNP Interaction in Other 2
Datasets
Based on the top 10,000 SNP–SNP interaction pairs found
discovery datasets, they were analyzed in the two replication
datasets to see if they were also among the top 10,000 interaction.
For those replicated interactions, odd ratios, p-values and 3 × 3

genotype data were shown. Bioinformatic methods were used
to explore the potential biology of these replications including
analysis of non-coding RNA binding sites, GO terms and gene
set enrichment analysis.

According to existing literature, gene-gene interactions could
be discovered through analyzing SNPs which are acting as
conditional eQTLs (Jansen et al., 2017). After retrieving the
genomic position of every SNP through referring the genome
assembly GRCh37 published by Genome Reference Consortium
(Schneider and Church, n.d.), the gene closest to every
component SNP of every SNP-SNP interaction (if available)
could then be found with CADD version 1.4 (Kircher et al.,
2014). By making an assumption that if SNPi and SNPj were
having a SNP–SNP interaction, Genei and Genej would have a
corresponding gene-gene interaction (where Genei and Genej
are the genes closest to SNPi and SNPj respectively), gene-
gene interactions could then be predicted from the SNP–SNP
interactions which we found.

Analysis of Protein Coding Transcript and
Non-coding Transcripts
If there were non-coding genes closest to the SNP-SNP
interaction pairs, LncRRIsearch (Fukunaga et al., 2019) was used
to predict the lncRNA–RNA interactions of the corresponding
gene–gene pairs. Threshold interaction energy was set to -12
kcal/mol here. To see whether the lncRNA–RNA interaction was
specific, we used LncRRIsearch to investigate the interaction of
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the mRNA with 10 adjacent lncRNAs located both upstream and
downstream of the interacting lncRNA.

RESULTS AND DISCUSSION

Analysis on Top 10 SNP–SNP
Interactions Found in Discovery Dataset
To reduce bias and confounding, we tried to analysis the
discovery dataset in two different stages by using two sample
filters. In our stage one experiment, we performed exhaustive
search after filtering out SNPs in chromosome X, Y and mtDNA.
Interactions were then ranked according to their p-value. Top 10
SNP–SNP interactions are listed in Supplementary Table S7. In
the discovery dataset phs000021:phg000013, there were six SNPs
rs7819913, rs1580508, rs16884273, rs35385383, rs16884251, and
rs35648 reported to be associated to schizophrenia (Glessner
et al., 2010; Bigdeli et al., 2016). On the other hand, there was
a SNP rs34165590 being as an eQTL of a gene MMP16 in
tibial nerve tissue according to GTEx Portal (Lonsdale et al.,
2013). This gene was known to be associated to schizophrenia
(Bitanihirwe et al., 2016). Meanwhile, there was a SNP rs8463
located in the 3-prime UTR region of gene RBM17 and this gene
was known to be related to neurodegenerative diseases. There
were two SNPs rs34729156 and rs1755286 which were located
in the intron region of two schizophrenia-associated genes RYR2
and ADAMTSL1 respectively.

In our stage two experiment, we performed exhaustive
search only using female samples and every SNP in autosomal
chromosomes and chromosome X. Interactions were then ranked
according to their p-value. Top 10 SNP–SNP interactions
were selected from each dataset for further analysis and are
listed in Supplementary Table S8. In the discovery dataset
phs000021:phg000013, there were two SNPs rs10926030 and
rs6050455 already reported in GTEx portal (Lonsdale et al., 2013)
as expression quantitative trait loci (eQTls) of three genes FMN2,
NOP56 and TMC2 in tibial nerve tissue where SNP rs10926030
acted as an eQTL of gene FMN2 and SNP rs6050455 acted an
eQTL of genes NOP56 and TMC2. These three genes were known
to be associated to schizophrenia and other neurodegenerative
disorders (Mulligan et al., 2010; Kobayashi et al., 2011; Pamphlett
et al., 2011; Van Scheltinga et al., 2013; Zhang et al., 2018). On
the other hand, there were three SNPs rs12777747, rs41453047,
and rs11755127 which were located in the intron region of the
three literature-reported schizophrenia-associated genes TACC2,
SEMA3A, and RPS6KA2 respectively. There were two SNPs
rs8061891 and rs8057600 which were both located in the intron
region of a schizophrenia-associated gene RBFOX1. We believed
that these SNPs might have the potential to be associated to
schizophrenia.

However, as it was more evidence in the female only analysis,
genes or SNPs that were already significant predisposition gene
by itself were mostly ranked among the top 10. For example,
rs1277747 of TACC2 got a p-value of 2.03 × 10−7 on single
SNP association analysis. In another word, many SNPs were also
significant by itself and formed one of the interacting partner. In
fact, 7 out of top 10 interacting pair was formed by exactly the

same SNP, rs1277747. We believed that such GWAS significant
SNP would dominate the interaction analysis and masked the
true interacting pairs as they ranked lower in the list.

Predicting Gene–Gene Interactions After
Annotating SNPs With CADD
We selected the top nth (n = 100, 500, 1000, 5000, 10000)
SNP–SNP interactions in terms of p-value from each stage of
our experiment independently and the corresponding gene-
gene interactions of these SNP–SNP interactions could then be
derived. First, we counted the number of gene-gene interactions
predicted from each dataset and the number of individual
component genes involved in those interactions. Then, we
compared the gene–gene interactions predicted from each dataset
against every other dataset and the number of common gene-
gene interactions and common component genes between every
pair of datasets were counted accordingly. The p-value on the
number of occurrences of gene-gene interactions given the null
hypothesis of no enrichment of signal were also calculated.
Furthermore, the proportion of common component genes and
the proportion of common gene-gene interactions in each dataset
were calculated. These results are shown in Supplementary
Tables S9, S10. Through observing the p-value on the number
of common component genes, we believed that the occurrence
of common component gene among datasets could not be
simply explained as random cooccurrence by chance and genuine
interaction signals must be enriched in the top ranked list.
Furthermore, we observed that the proportion of common
component genes under different pairs of datasets is roughly
increasing linearly with the number of top ranked nth interactions
selected until n = 1000. When n = 5000, the increase trends
in the proportion of common component genes under different
pairs of datasets might start to reach the plateau. Therefore, we
believed that top 10000th of SNP–SNP interactions should already
cover most of disease-associated SNP–SNP interactions in all
three datasets. The top 10,000 gene–gene interactions found in
the discovery dataset were visualized as circos diagrams as shown
in Supplementary Figure S1. It was obvious that most gene–gene
interactions were inter-chromosomal interactions.

Analysis on Predicted Gene–Gene
Interactions With GSEA
Every component gene G in every predicted gene-gene
interaction was annotated through the Molecular Signatures
Database of Gene Set Enrichment Analysis (GSEA) such that
every functional gene set containing G could be found. In our
analysis, if both component genes of a gene-gene interaction I
belonged to a common functional gene set F, then we believe
that interaction I was associated to the biological function
represented by functional gene set F. Among the gene-gene
interactions predicted from top nth (n = 100, 500, 1000, 5000,
10000) SNP–SNP interactions, the number of predicted gene–
gene interactions associated to each GSEA functional gene
set was counted and shown in Supplementary Table S11.
There were several predicted gene–gene interactions found
to be associated to the following three functional gene sets
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namely GO_NEURON_PART, GO_NEURON_PROJECTION,
and GO_SYNAPSE in stage one experiment of the discovery
dataset. These gene–gene interactions were believed to be
associated to the nervous system functionality and associated
to schizophrenia.

Gene–gene interactions, which were considered to be
associated to at least one biological functions in our analysis, were
selected for forming gene networks. A gene–gene interaction
could be selected for forming gene network only if both of
its component genes were commonly predicted across three
datasets. A gene network was then constructed for based on our

results in the stage one experiment. Top 10 genes in terms of
degree were separately selected from these two networks where
the degree of a gene was the number of other neighboring
genes directly interacting with it. These genes were listed in
Supplementary Table S12. For each gene G in this table, direct
interactions involving G were validated by the following three
external biological interaction databases StringDB (Jensen et al.,
2009), BioGrid (Stark et al., 2006) and RNAInter (Lin et al.,
2020). A direct interaction was considered to be validated if there
was at least one direct or indirect interactions between its two
component genes in the external biological interaction databases.

TABLE 1 | This table shows the p-value and odds ratio of the 14 SNP–SNP interactions found in discovery dataset phs000021:phg000013 which are all replicable in
both replication datasets phs000021:phg000014 and phs000167.

SNP1 SNP2 Pattern Discovery Replication

phs000021: phg000013 phs000021: phg000014 phs000167

P-Value Odds Ratio P-Value Odds Ratio P-Value Odds Ratio

rs2638037 rs7819913 4 3.54 × 10−10 3.92 0.0480 1.22 0.00729 1.56

rs2638037 rs1580508 4 3.54 × 10−10 3.92 0.0480 1.22 0.00729 1.56

rs1873571 rs35385383 4 3.73 × 10−10 3.92 0.0476 1.22 0.00908 1.54

rs2638037 rs35385383 4 3.86 × 10−10 3.91 0.0448 1.22 0.00705 1.56

rs7735699 rs2755145 5 1.59 × 10−9 1.88 0.0479 1.23 0.00267 1.33

rs16867416 rs7026201 7 4.58 × 10−9 2.69 0.0429 1.51 0.0458 1.35

rs7735699 rs2755152 5 6.91 × 10−9 1.84 0.0412 1.25 0.00545 1.31

rs4704591 rs2755145 5 8.09 × 10−9 1.83 0.0404 1.23 0.00236 1.34

rs17746902 rs9635370 4 8.77 × 10−9 3.52 0.0316 1.23 0.0346 1.42

rs668805 rs11591783 4 1.30 × 10−8 1.78 0.00400 1.63 0.0229 1.25

rs3856662 rs2550266 4 1.38 × 10−8 2.01 0.0456 1.45 0.0141 1.32

rs585870 rs11591783 4 1.38 × 10−8 1.78 0.00301 1.56 0.0403 1.22

rs9556688 rs4822752 1 1.39 × 10−8 1.66 0.0397 1.28 0.0268 1.21

rs16867416 rs17680408 1 1.50 × 10−8 1.89 0.0343 1.42 0.0400 1.24

TABLE 2 | This table summarizes our analysis on the gene–gene interactions predicted from the 14 SNP–SNP replicable interactions.

Gene1 (SNP1) Gene2 (SNP2) Gene2 is lncRNA Alias for Gene2 lncRNA
(Gene2) | RNA

(Gene1)
interaction

Specific
lncRNA | RNA

interaction

Both Gene1
and Gene2

expressed in
Brain

FHIT (rs3856662) LINC00969 (rs2550266) Yes MUC20-OT1 Yes Yes Yes

ATG3 (rs2638037) RP11-586K2.1 (rs7819913) Yes AC090578.1 Yes No Yes

ATG3 (rs2638037) RP11-586K2.1 (rs1580508) Yes AC090578.1 Yes No Yes

ATG3 (rs1873571) RP11-586K2.1 (rs35385383) Yes AC090578.1 Yes No Yes

ATG3 (rs2638037) RP11-586K2.1 (rs35385383) Yes AC090578.1 Yes No Yes

VPS41 (rs17680408) AC104820.2 (rs16867416) Yes LINC01934 Yes No No

C9orf171 (rs7026201) AC104820.2 (rs16867416) Yes LINC01934 No — —

ABTB2 (rs2755145) CTC-431G16.2 (rs7735699) Yes AC008496.2 No — —

ABTB2 (rs2755152) CTC-431G16.2 (rs7735699) Yes AC008496.2 No — —

ABTB2 (rs2755145) CTC-431G16.2 (rs4704591) Yes AC008496.2 No — —

CRYBB1 (rs4822752) LINC00456 (rs9556688) Yes LINC00456 No — —

PEX14 (rs668805) TCERG1L (rs11591783) No — — — —

PEX14 (rs585870) TCERG1L (rs11591783) No — — — —

BIN3 (rs17746902) PAQR5 (rs9635370) No — — — —

The alias of each lncRNA gene is shown in this table. Furthermore, interactions which involved gene transcript with no protein product, or non-coding RNA and interactions
where both genes were found to be expressed in brain are marked accordingly.
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TABLE 3 | Interaction of transcript of FIHT (ENST00000468189) and 10 lncRNA near the upstream or downstream of the LINC00969 (MUC20-OT1) based on
LncRRIsearch (Fukunaga et al., 2019).

Nearby lncRNA Ensemble ID Chromosome Start position Hgnc symbol Sum of interaction energies Expressed in brain#

Downsteam_10 ENSG00000287073 3 194708010 ID is not found* NA

Downsteam_9 ENSG00000237222 3 194708093 LINC01968 −12.42 kcal/mol No

Downsteam_8 ENSG00000230401 3 194765238 LINC01972 No interaction NA

Downsteam_7 ENSG00000238031 3 194827890 No interaction NA

Downsteam_6 ENSG00000233303 3 195094588 XXYLT1-AS1 No interaction NA

Downsteam_5 ENSG00000230266 3 195147871 XXYLT1-AS2 No interaction NA

Downsteam_4 ENSG00000287005 3 195260632 ID is not found NA

Downsteam_3 ENSG00000229325 3 195280723 ACAP2-IT1 No interaction NA

Downsteam_2 ENSG00000223711 3 195544048 No interaction NA

Downsteam_1 ENSG00000229178 3 195655565 No interaction NA

Selected_LncRNA ENSG00000242086 3 195658062 MUC20-OT1 −40.44 kcal/mol (3 interactions) Yes

Upstream_1 ENSG00000223783 3 195836193 LINC01983 No interaction NA

Upstream_2 ENSG00000286004 3 195900986 No interaction NA

Upstream_3 ENSG00000224614 3 195908076 TNK2-AS1 No interaction NA

Upstream_4 ENSG00000286168 3 195996262 ID is not found NA

Upstream_5 ENSG00000224652 3 196142525 LINC00885 −38.26 kcal/mol (3 interactions) NA

Upstream_6 ENSG00000228028 3 196250542 No interaction NA

Upstream_7 ENSG00000235897 3 196318330 TM4SF19-AS1 −12.12 kcal/mol NA

Upstream_8 ENSG00000225822 3 196431385 UBXN7-AS1 -12.91 kcal/mol Yes

Upstream_9 ENSG00000273013 3 196474801 No interaction NA

Upstream_10 ENSG00000286661 3 196598549 ID is not found NA

ID is not found* means the lncRNA was not included in the database of LncRRIsearch. Expressed in brain#; The expression level of the lncRNA in brain samples was
investigated based on the RNA-seq data of GTEx consortium (E-MTAB-2919) (Lonsdale et al., 2013) if the lncRNA has interaction with FIHT.

For each gene G and external biological database D, the number
of validated direct interactions involving G and the mean and
variance of the number of hidden interactors of these validated
interactions under D were calculated.

Among the top 10 genes in terms of its degree selected from
the network constructed based on the results of our stage one
experiment, there were seven genes (CTNND2, ASTN2, DAB1,
CAMK1D, PTPRD, RUNX1, ROBO2) which were reported to
be associated to schizophrenia in existing literature as shown
in Supplementary Table S12. This indicated schizophrenia-
associated genes could be discovered from this network. Gene
WDR27, VIT and CLSTN2 had not been previously reported
to be associated with schizophrenia. However, these three genes
were reported to be associated to insomnia (Hammerschlag
et al., 2017), human brain asymmetry (Tadayon et al., 2016)
and memory performance (Preuschhof et al., 2010) respectively.
Therefore, they might all be associated to schizophrenia. This
indicated GWAS discovered schizophrenia predisposition genes
could also be discovered by our interaction analysis, however, this
was not the primary aim of our analysis.

List of Replicated SNP–SNP Interactions
in the Three Datasets and Gene–lncRNA
Interactions
Using phg000013 as discovery dataset and the other 2 as
replication datasets, the top 10,000 interaction pairs were mined
to see if they were replicated in other datasets. Only replication by
the exactly identical pattern out the 8 interactions were counted.

After filtering out interactions with at least one component SNP
which could not be mapped to a gene according to CADD,
14 interactions were replicated in both replication datasets in
the exactly the same way as in the discovery dataset. These
interactions were shown in Table 1.

While we and most researchers are expecting to find protein
interacting partners and investigate our discoveries with protein-
protein interaction databases such as StringDB (Jensen et al.,
2009), PINBA (Yu et al., 2014), and DMS (Jia et al., 2011)
in this kind of analysis, 11 out of 14 replicated interactions
involved gene transcript with no protein product, or non-
coding RNA. 3 of them are recognized long non-coding RNA
(lncRNA), including LINC01934 (AC104820.2), MUC20-OT1
(LINC00969), and LINC00456 (Table 2).

Therefore, we detailly investigated if there was evidence
of binding sites between each of these coding transcripts
and lncRNA transcripts using LncRRIsearch (Fukunaga
et al., 2019). Six SNP–SNP interactions were found to have
lncRNA–RNA interactions in their associated genes: rs16867416
(LINC01934, alias AC104820.2) and rs17680408 (VPS41),
rs7819913 (AC090578.1, alias RP11-586K2.1) and rs2638037
(ATG3), rs1580508 (AC090578.1, alias RP11-586K2.1) and
rs2638037 (ATG3), rs35385383 (AC090578.1, alias RP11-
586K2.1) and rs1873571 (ATG3), rs35385383 (AC090578.1, alias
RP11-586K2.1) and rs2638037 (ATG3), rs3856662 (FHIT) and
rs2550266 (MUC20-OT1, alias LINC00969) (Figure 5). The
sum of local base-pairing interaction energies of lncRNA-RNA
interactions in LINC01934 (AC104820.2)-VPS41, AC090578.1
(RP11-586K2.1)-ATG3 and LINC00969 (MUC20-OT1)- FHIT
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FIGURE 5 | This figure shows the distribution of genotypes of two SNPs rs3856662 (FHIT gene) and rs2550266 (LINC00969). The height of the bar represents the
number of samples of each of the nine combinations of the genotypes in these two SNPs. For each genotype combination, the bar in blue color represents the
number of healthy samples (controls) and the bar in red color represents the number of patients (cases). It is apparent that the four blue (control) bars in the shaded
area (dominant-dominant interaction between minor alleles of both SNPs) are over-represented than the four red (case) bars.

gene pairs are −38.97 kcal/mol (3 interactions), −12.20 kcal/mol
and −40.44 kcal/mol (3 interactions) respectively. As it is based
on the principle of alignment entropy, it is difficult to assess how
specific are these in silico identified binding sites. We screened the
adjacent 10 lncRNAs located both upstream and downstream in
the chromosomal region of the specific interacting lncRNA to see
if these adjacent lncRNAs might interact with the protein-coding
gene and its mRNA transcript. Among the three lncRNA–RNA
interactions, only LINC00969-FHIT interaction is specific,
with the mRNA of FHIT showing no interaction or weaker
interaction with the adjacent lncRNAs of LINC00969 (Table 3
and Figure 6A). Furthermore, the tissue expression profiles of
both the coding transcript and lncRNA were examined. The
interaction is only plausible if both are expressed in the same
tissue and more specific, brain or neuronal tissues. According to
the LncRRIsearch result (Figure 6B), both LINC00969 and FHIT
are expressed in multiple tissues at the same time, especially
brain tissue, based on the RNA-seq data of GTEx consortium
(E-MTAB-2919) (Lonsdale et al., 2013). The above analysis is
summarized and showed in Table 2.

A notable results was interaction between rs3856662 (FHIT
gene) and rs2550266 (LINC00969). The 3 × 3 genotype table

of this interaction is visualized in Figure 5, while the 3 × 3
genotype table of the other 13 replicable interaction are visualized
as Supplementary Figures S2–S14. Statistical analysis of the
interaction indicated that minor alleles of both gene interacted
to reduce the risk of schizophrenia in a dominant way, such that
carriers of both minor alleles of both genes had a 50% reduction
in risk for schizophrenia (odds ratio = 0.50, confidence interval:
0.39–0.64). Combined p-values from 3 datasets were 3.15 × 10−9.
Binding sites analysis were confirmed by both lncRNA software
we used. It was possible for LINC00969 to bind to transcribed
region of FHIT with a good predicted value of entropy.

Interaction of this profile might be genuine and representing
how real interaction would look like. Genuine interaction profile
should have these characteristics: (1) neither SNPs is significant
by itself, or both interacting SNPs are not GWAS hits, (2)
interaction should have a stronger effect size than single SNP
GWAS hits, which usually have odds ratios in the range of 1.1–
1.2 and (3) replication of interaction is evident. The example
of rs3856662 (FHIT gene) and rs2550266 (LINC00969) indeed
fulfills these expectations. Firstly, neither of them was significant
by single SNP, and single SNP association p-values were not
significant at only 5 × 10−3 and 1 × 10−1. Secondly, the
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FIGURE 6 | The output of LncRRIsearch (Fukunaga et al., 2019) for the interaction of the transcripts of LINC00969 and FHIT. (A) The graphical and text view of the
global base -pairing interactions of LINC00969 and FHIT predicted by RIblast (Fukunaga and Hamada, 2017); (B) The expression pattern of LINC00969 and FHIT in
RNA-seq data of GTEx consortium (E-MTAB-2919) (Lonsdale et al., 2013). LINC00969 and FHIT were represented by blue color and red color respectively.

interaction protective effect was 0.5 (effect size is equivalent to
odds ratio of 2). So such genetic risk profile is more useful in
clinical setting. Finally, the interaction was observed in all 3
datasets. It is of note that replication was seen across ethnic
groups (as phg000014 was an African dataset). The reduction
of risk could be found even though the allelic frequencies of
rs2550266 were very different between Africans and Caucasians.
The pan-ethnic variation of allele frequency can be found
in dbSNP1. Other potential interacting SNP pairs that could
be replicated in one dataset but not both were shown in
Supplementary Table 13.

CONCLUSION

In conclusion, after exhaustively search for every 2nd order
SNP-SNP interaction from the discovery schizophrenia
dataset phs000021:phg000013 with eight different biological

1https://www.ncbi.nlm.nih.gov/snp/rs2550266#frequency_tab

plausible SNP–SNP interaction patterns, we first reported
here that 9 out the top 10 SNP-SNP interactions in terms
of p-value might represent interactions between protein
coding genes and long non-coding RNA (lncRNA) genes.
These results indicate the importance of interactions of
other bio-molecules (like lncRNA–Protein, lncRNA–RNA,
etc.) in addition to that of the traditional protein–protein
interactions. Then, we showed there was a high proportion of
concurrent genes among the gene–gene interactions predicted
from the top 10 SNP–SNP interaction in terms of p-value.
Therefore, these interactions were replicable under gene-
level analysis and there was a strong enrichment of signals
among these interactions. Finally, 9 SNP–SNP interactions
were successfully replicated in both replication datasets. We
discovered that one of these SNP–SNP interactions can be
interpreted as the interaction between FHIT (protein coding)
and LINC00969 (lncRNA). Both FHIT and LINC00969
were reported to have expression in brain and might be
a new discovery.
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