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Abstract
The renin–angiotensin–aldosterone system and its metabolites play an important role in homeostasis of body, especially the 
cardiovascular system. In this study, we discuss the imbalance of multiple systems during the infection and the importance 
of therapeutic choice, dosing, and laboratory monitoring of cardiac and anti-coagulant therapies in COVID-19 patients. The 
crosstalk between angiotensin, kinin-kallikrein system, as well as inflammatory and coagulation systems plays an essential 
role in COVID-19. Cardiac complications and coagulopathies imply the crosstalks between the mentioned systems. We 
believe that the blockage of bradykinin can be a good option in the management of COVID-19 and CVD in patients and 
that supportive treatment of respiratory and cardiologic complications is needed in COVID-19 patients. Ninety-one percent 
of COVID-19 patients who were admitted to hospital with a prolonged aPTT were positive for lupus anticoagulant, which 
increases the risk of thrombosis and prolonged aPTT. Therefore, the question that is posed at this juncture is whether it is 
safe to use the prophylactic dose of heparin particularly in those with elevated D‐dimer levels. It should be noted that timing 
is of high importance in anti-coagulant therapy; therefore, we should consider the level of D-dimer, fibrinogen, drug-drug 
interactions, and risk factors during thromboprophylaxis administration. Fibrinogen is an independent predictor of resistance 
to heparin and should be considered before thromboprophylaxis. Alteplase and Futhan might be a good choice to assess the 
condition of heparin resistance. Finally, the treatment option, dosing, and laboratory monitoring of anticoagulant therapy 
are critical decisions in COVID-19 patients.
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Introduction

COVID-19 is caused by the single positive stranded RNA 
virus known as severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), which enters into human body via 

the mucosa of respiratory or digestive tracts or eyes using 
cell receptors such as angiotensin-converting enzyme 2 
(ACE2). SARS-CoV-2 mainly penetrates into the cells via 
the interaction of spike protein (S protein) and ACE2. Inter-
estingly, S protein needs processing before its interaction 
process is mediated by proteases such as transmembrane 
protease serine 2 (TMPRSS2), cellular protease furin and 
cathepsin L [1, 2]. Recent studies have indicated that SARS-
CoV-2 uses other cell receptors such as CD26, Ezrin, Neu-
ropilin-1 (NRP-1), and Extracellular matrix metalloprotein-
ase inducer (EMMPRIN)/CD147 for its entry. It has also 
been reported that disintegrin and metalloproteinase 17 
(ADAM17) as a zinc metalloprotease play a catalytic role 
on ACE2, mediate ACE2 processing, and increase viral cell 
entry [3–5]. The main problem of COVID-19 is that the 
binding of SARS-CoV-2 to ACE2 leads to ACE2 downregu-
lation, which increases the production of Ang II but reduces 
angiotensin 1–7, leading, in turn, to lung dysfunction [6, 
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7]. Additionally, ACE2 is an interferon stimulated gene 
(ISG) that is increased during cytokine storm and augments 
viral entry [8]. In another hand, COVID-19 virus disrupts 
renin–angiotensin–aldosterone system (RAAS) and coagula-
tion systems, decreasing the capacity of removing poison-
ous metabolites and increasing the cardiovascular considera-
tions of patients [9–11]. In this comprehensive review, we 
discuss the challenging aspect of COVID-19, namely the 
imbalanced mechanisms such as inflammation, RAAS and 
coagulation as well as implication of cardiac complications. 
We also discuss the benefits of candidate CVD drugs against 
SARS-CoV-2.

COVID‑19 and the imbalance problem

Imbalanced renin–angiotensin aldosterone system 
(RAAS) and therapeutic challenges

Initially, SARS-CoV-2 cell entry and infection depend on 
ACE2/TMPRSS2 co-expression as well as ACE2 expression 
(12). ACE2 is activated and downregulated by S protein and 
is involved in SARS-CoV-2 entry into epithelial cells and 
myocardium [13]. Decreased ACE2 expression induces heart 
injury that reflects the protective effect of cellular ACE2 
[14]. In fact, ACE2 is a double-edged sword and a major 
regulator of blood pressure as well as fluid and electrolyte 
balance. ACE2 is involved in the conversion of Ang I into 
Ang II, which exerts its effects through angiotensin II type 
1 and type 2 receptors (AT1R and AT2R) [15]. Notably, 
AT1R is responsible for the activation of vasoconstrictive 
pathways while AT2R stimulates vasodilation to ensure 
balance. Importantly, overactivation of ACE/Ang II/AT1R 
axis is associated with the pathogenesis of proliferation, 
oxidative stress, inflammation, and fibrosis leading to the 
onset of pathological disorders including lung, renal and 
cardiovascular diseases. On the other hand, ACE2 is known 
to activate the inhibitory arm of RAAS as it converts Ang 
II into angiotensin (1–7), which counteracts the harmful 
actions of Ang II via activation of AT2R and G-coupled 
receptor Mas receptor (MasR) [16, 17]. AngII and AT1R 
interaction increases sodium and water conservation, aldos-
terone release, and myocardial remodeling [18]. However, 
studies have shown that the decrease in plasma Ang II/Ang 
1–7 ratio induces ACE2 function. SARS-CoV-2 not only 
decreases ACE2 expression but also increases Ang II/ANg 
1–7 ratio [19]. Liu et al. revealed that Ang II levels increase 
in COVID-19 patients such that anti-hypertensive AT1R 
blockers (ARBs) can reduce disease severity in the elderly 
[20]. ACE2 converts angiotensin I (Ang I) and II (Ang II) 
to Ang 1–9 and Ang 1–7, although Ang II binds to Ang 
II receptor type 1 (AT1R) and induces inflammation [21]. 
However, Ang 1–7 plays a protective role via binding to 

Mas-1 receptor (Mas-1R) and suppressing the inflamma-
tion via production of anti-inflammatory cytokines [22], and 
elevated levels of AngII might induce a positive feedback 
loop, increasing inflammation, coagulation and thrombosis 
risk [23]. SARS-CoV-2 entry and replication lead to inflam-
matory responses and inflammatory component produc-
tion, as well as RAAS imbalance and change in AngII/Ang 
(1–7)  ratio [24]. Since ACE2 expression is upregulated by 
RAAS inhibitors, viral entry and viral load seem to increase 
by these drugs and worse the situation [19]. However, Con-
versano et al. indicated that these therapeutic approaches 
are not an independent predictor of poor outcome and using 
these types of treatments are harmless [25]. Studies on 
Recombinant Human Angiotensin-converting Enzyme 2 
(rhACE2) injection indicated successful results in clinical 
grade, and it can significantly block SARS-CoV-2 in early 
stages [26] see Fig. 1.

Imbalanced kallikrein system

In addition to its effects on RAAS and ACE inhibi-
tors, ACE-2 has been shown to cause active bradykinin 
hydrolysis and thus increased levels of bradykinin and 
nonproductive coughs as a result of fluid extravasation 
and leukocyte recruitment to the lung. Studies on serum 
level of bradykinin have shown its increase in COVID-
19 [27]. Increased bradykinin level and its metabolites 
enhance inflammation, coagulation and the complement 
system, and these three systems play an important role 
in angioedema, cardiovascular dysfunction and sepsis 
which occur in COVID‐19 patients [28]. Interestingly, 
bradykinin is a major contributor to the innate inflam-
matory response, and it plays an important role in the 
increased level of inflammatory cytokines such as TNF-a 
and IL-1 [29, 30]. Studies on ACE dysfunction indicated 
the increase of metabolites such as Ang-1, Ang (1–9), Ang 
(1–7) and bradykinin. Excessive vasodilation happens as 
a result of Ang (1–7) activation, synthesis of nitric oxide 
and agonism of AT2, B2, MAS receptors as well as accu-
mulated bradykinin [31]. Interestingly, Ang (1–7) and 
Ang (1–9) increase bradykinin levels [32, 33]. Bradykinin 
stimulates renal Na+ and K+ excretion via inhibiting the 
K+ channel (Kir4.1) in kidney and leads to hypokalemia 
[34]. Hypokalemia and hypomagnesemia are two common 
events observed in COVID-19 patients. Therefore, further 
studies are needed for finding prognostic and diagnostic 
molecules to monitor cardiac and cardiovascular dysfunc-
tions in early stages of COVID-19 [35]. Based on recent 
studies, the accumulation of bradykinin is as important as 
Ang-II, and it should be balanced in the body to control 
the harmful effects in COVID-19 patients. Bradykinin is 
the inflammatory product of the coagulation system con-
sisting of factor XII (FXII), plasma prekallikrein (PPK) 
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and high molecular weight kininogen (HK). Therefore, 
it is linked to the intrinsic coagulation system via fac-
tor XI (FXI) [36]. Bradykinin Receptor B1 (BDKRB1) 
plays a major role in the outbreak and maintenance of the 
inflammatory response. Although the kinin-kallikrein sys-
tem crosstalks to RAS, the coagulation system and finally 
the thrombosis lead to organ failure [37]. The interaction 
between kinin-kallikrein and RAAS has a thromboregu-
latory role independent of the contact pathway and the 
decrease in bradykinin increases Mas1R expression. This 
is important in the vascular homeostasis by decreasing 
thrombosis via increasing the production of vasoprotective 
transcription factor Sirtuin 1, inhibiting tissue factor (TF) 
expression, and inhibiting platelet activation [38]. Plasma 
kallikrein plays an essential role in the cleavage of high 
molecular weight kininogen (HMWK) into bradykinin 
and is involved in coagulation, activation of complement 
system, and CVD [39–42]. Several studies on plasma kal-
likrein inhibitors in CVD have indicated promising results 
[43]. Lanadelumab is a monoclonal antibody (mAb) used 
for the treatment of angioedema that can block plasma 
kallikrein formation [44, 45]. Lanadelumab can decrease 

cytokine and coagulation storm and balance complement 
activation, and COVID-19 patients can benefit from this 
medicine besides anti-viral therapy [46].

Imbalanced inflammatory responses and cytokine 
storm

Mortality rates are high among COVID-19 patients when 
they suffer from diseases such as hypertension, diabetes, 
and CVD [47]. Strong evidence suggests that COVID-19 
patients develop a higher risk of arrhythmic events (7.3%) 
and heart palpitations. After acute respiratory distress syn-
drome (ARDS), the prevalence of malignant ventricular 
arrhythmias rose to 44.4% [48]. Recent studies indicate that 
myocardial damage might be the main factor of enhanced 
arrhythmia risk in COVID-19 patients [49, 50]. Cytokine 
storm is the main factor in the development of myocardial 
damage and arrhythmia among COVID-19 patients [51]. 
Increased troponin level is a useful biomarker in targeting 
cardiac myocyte damage particularly in those with severe 
COVID-19 disease, which can be helpful in the manage-
ment of cardiac damage in these patients [52]. COVID-19 

Fig. 1   Importantly, overactivation of ACE/Ang II/AT1R axis is asso-
ciated with the pathogenesis of proliferation, oxidative stress, inflam-
mation and fibrosis leading to the onset of pathological disorders 
including lung, renal and cardiovascular diseases. Increased level 
of bradykinin and its metabolites enhances inflammation, coagu-
lation and the complement system, and these three systems play an 
important role in angioedema, cardiovascular dysfunction and sep-
sis which occur in COVID‐19 patients. Excessive vasodilation hap-
pens as a result of Ang (1–7) activation, synthesis of nitric oxide and 
agonism of AT2, B2, MAS receptors as well as accumulated brady-
kinin. Ang (1–7) and Ang (1–9) increase bradykinin levels. Brady-

kinin stimulates renal Na+ and K+ excretion via inhibiting the K+ 
channel (Kir4.1) in kidney and leads to hypokalemia. Based on recent 
studies, the accumulation of bradykinin is as important as Ang-II, 
and it should be balanced in the body to control the harmful effects 
in COVID-19 patients. Bradykinin is the inflammatory product of 
coagulation system consisting of factor XII (FXII), plasma prekal-
likrein (PPK) and high molecular weight kininogen (HK). Bradykinin 
Receptor B1 (BDKRB1) plays a major role in the outbreak and main-
tenance of the inflammatory response. Although kinin-kallikrein sys-
tem crosstalks to RAS, coagulation system and finally the thrombosis 
leads to organ failure
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is associated with CD4+ and CD8+ T-cell lymphopenia, 
which increases the imbalance of proinflammatory and anti-
inflammatory cytokines [53, 54]. Cytokine storm or cytokine 
release syndrome (CRS) seems to be the main reason of 
lung injury and multiple organ failure in SARS-CoV-2 infec-
tion [55]. Studies on proinflammatory cytokines indicate 
that tumor necrosis factor (TNF) α, interleukin 1β (IL-1β), 
IL-6, L-2, IL-8, IL-17, granulocyte-colony stimulating fac-
tor (G-CSF), interferon gamma-induced protein-10, mono-
cyte chemoattractant protein-1 (MCP-1), and macrophage 
inflammatory proteins 1-α (MIP-1a) significantly increase 
in SARS-CoV-2 patients [56]. Higher plasma levels of IL-2, 
IL-7, IL-10, GCSF, IP-10, MCP-1, MIP-1A, and TNF-α are 
related to cytokine storm and disease severity [57]. Hyper-
secretion of proinflammatory cytokines plays a critical role 
in severe conditions, and thus immunosuppressive drugs 
such as steroids, IL-6 or IL-1 antagonists, Tocilizumab and 
Selinexor might be effective in balancing severe conditions 
and decreasing mortality [58, 59]. Targeting the cytokine 
storm and the imbalanced immune responses can be crucial 
in COVID-19 treatment and decreasing multiorgan dysfunc-
tion [56, 60]. NLRP3 inflammasome might be the major rea-
son of cytokine storm and multi-organ damage in COVID-19 

infection. COVID-19 can directly activate NLRP3 and 
induce IL-1β secretion. Immune response and antiviral 
response are able to eradicate the infection. However, in 
immunological dysfunction cases, hyper-inflammation evoke 
the cytokine storm leading to the lung injury and ARDS 
development. Therefore, targeting NLRP3 inflammasome 
can be an appropriate approach in COVID-19 treatment pro-
tocols [61]. Activation of NLRP3 inflammasome provokes 
an immune response via intracellular caspase, which leads 
to imbalanced proinflammatory cytokine release, humoral 
response, and complement cascade. NLRP3 inflammasome 
is a good drug target in SARS-CoV-2 treatment [62]. See 
Fig. 2.

Imbalanced coagulation system and cardiac 
complications

Several studies have reported thrombosis in SARS-CoV-2 
patients and suggested that the induced infection might be 
associated with a coagulopathy and enhanced risk of throm-
bosis [63]. A recent retrospective analysis of 21 COVID-
19-related mortality indicated that 71.8% of these cases 
had  disseminated  intravascular  coagulation  (DIC), 

Fig. 2   COVID-19 patients face multiple-system imbalances. The 
main imbalances were detected in RAAS, Kallikrein, inflammatory 
and coagulation systems. These imbalances lead to several cardiac 
complications such as: Heart palpitation, arrhythmic events, ven-
tricular arrhythmias (VA), myocardial damage (MD) and myocardial 
infraction (MI). NLRP3 inflammasome might be the major reason 
of cytokine storm and multi-organ damage in COVID-19 infection; 
therefore, targeting NLRP3 inflammasome can be a good approach in 

COVID-19 treatment protocols. Activation of NLRP3 inflammasome 
provokes an immune response via intracellular caspase, which leads 
to imbalanced proinflammatory cytokines release, humoral response, 
and the complement cascade. NLRP3 inflammasome is a good drug 
target in SARS-CoV-2 treatment so Statin can be one of our best 
choices in COVID-19 treatment because it affects NLRP3, Cardiac 
complications and cytokine storm. Additionally, Tocilizumab and 
Selinexor are strong choices in managing cytokine storm
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highlighting the importance of studies on coagulopa-
thy and thrombotic events [23]. Coagulation abnormali-
ties and thromboembolic complications were reported 
in SARS-CoV-2 patients, including increased D-dimer 
levels and DIC [64], deep venous thrombosis (DVT), 
pulmonary embolism (PE) [65], and thrombocytopenia 
[66]. Prothrombin time (PT), international normalized 
ratio (INR), thrombin time (TT), activated partial throm-
boplastin time (aPTT), fibrinogen (FIB), D-Dimer (DD) 
[67] and Von Willebrand factor (VWF) are critical tests in 
monitoring the coagulation system in COVID-19 patients, 
especially in the severe stage and can help us in monitor-
ing the coagulopathy and thrombosis condition [68, 69]. 
Various factors affect the risk of thrombosis in intravas-
cular coagulation, the contact activation system and the 
kinin-kallikrein system, which are major systems in the 
regulation of thrombosis. Additionally, among the anti-
gen presenting cells (APCs), neutrophils release not only 
inflammatory cytokines but also various bioactive mole-
cules activating FXII of the intrinsic pathway and platelets 
(PLTs) and mediating coagulation [70, 71].

Tissue factor

TF activation mediates impaired fibrin removal, dissemi-
nated intravascular coagulation (DIC), fibrin consump-
tion, and decreased platelet counts [72]. A cohort study 
indicated that 71% of patients who eventually died from 
COVID-19 experienced DIC and that thrombotic compli-
cation is an important event in SARS-CoV-2 pandemic 
[73]. Moreover, alternatively spliced TF promotes plaque 
angiogenesis via hypoxia-inducible factor-1α (HIF-1α) 
[74], and conversely, hypoxia might induce TF expression 
(75). HIF-1α increases NLRP3 inflammasome activation 
in lung injury, and early inhibition of NLRP3 activation 
might be an effective approach in ARDS treatment [76]. 
Recent studies indicate that HIF-1α expression might be 
correlated with thrombus formation [77], which can also 
induce TF expression and play an important role in coagu-
lation among pulmonary diseases [78].

In Ebola infection, we face a similar condition of 
cytokine storm and coagulopathy due to plasma mem-
brane surface [79]. Statin is a low cost CVD drug that can 
downregulate NLRP3 and downstream mediators such as 
IL1β in CVD and atherosclerosis patients [80]. Local phy-
sicians in Sierra Leone used statins and ARBs to maintain 
the endothelial barrier integrity and treated approximately 
100 consecutive Ebola patients with atorvastatin and irbe-
sartan [81, 82]. A cohort retrospective study on 13,981 
COVID-19 patients indicated that statin decreases the risk 
of mortality due to its immunomodulatory effects [67]. 
See Figs. 1 and 2.

Complement system

The complement system is a mediator of innate immune 
response. This system is highly activated in the lungs of 
COVID-19 patients. N protein activates mannose-binding 
protein-associated serine protease 2 (MASP-2) and initiates 
the complement cascade via mannose binding lectin (MBL) 
pathway [83]. Complement overactivation leads to diffused 
thrombotic microangiopathy (TMA), organ dysfunction, 
and thrombocytopenia, with C5a playing a main role in car-
diac dysfunction [84–87]. SARS-CoV-2 associated tissue 
injury is related to cytokine storm that affects lung paren-
chymal cells and decreases oxygen uptake. Thrombotic 
events, intravascular coagulation and the activation of the 
complement induced by the virus in lungs as well as other 
organs play an important role in thrombus formation, mul-
tiple organ failure and mortality [88]. Multi-organ damage 
seems to cause cardiac and kidney injury [89]. Besides, the 
complement interacts with TF activity in endothelium [90] 
and C5a induces TF activity on endothelial cells [91]. The 
crosstalk between the complement system and the coagula-
tion system contributes to hemolytic and thrombotic disease, 
and thrombin associated with platelet membrane initiates 
C3 convertase formation, leading to complement sequence. 
Interestingly, the activated complement system on plate-
let surface increases aggregation and serotonin secretion, 
which works as a positive feedback enhancing complement 
system activation [92]. Membrane Attack Complex (MAC) 
activates platelets, enhances binding of coagulation fac-
tors Va and Xa, and augments the release of factor V from 
platelets and von Willebrand factor (VWF) from endothelial 
cells [93]. Noticeably, COVID-19 activates the complement 
via MBL and classic pathway [94], C5a induces TF activity 
on endothelial cells [91], and MAC induces the secretion 
of von Willebrand factor (VWF) from endothelial cells, 
which increases platelet adhesion and triggers the coagula-
tion cascade [95]. In addition, MAC activates platelets and 
enhances coagulation activation. Finally, this sequence of 
events leads to extensive formation of thrombus and multi-
organ dysfunction.

Studies on C5 complement inhibitor and anti-C5 mono-
clonal antibody eculizumab showed effective response in 
reversing both renal and cardiac dysfunction in COVID-19 
patients [96]. Another study on complement C3 inhibitor 
AMY-101 reported that this intervention could control com-
plement-mediated inflammatory damage among COVID-
19 patients [97]. Avdoralimab (Innate Pharma, Marseille, 
France) is an anti-C5aR monoclonal antibody inhibiting C5a 
activity in clinical stage, preventing C5a-mediated myeloid 
cell recruitment and activation and controlling lung inflam-
mation associated with ARDS in COVID-19 patients [98]. 
Recombinant human C1 esterase inhibitor (C1-INH) is a 
specific inhibitor of classical complement pathway and a 
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candidate for clinical trial in COVID-19 patients [99]. Nar-
soplimab is a novel human monoclonal antibody with anti-
coagulant effect that targets MASP-2, inhibits MBL path-
way of the complement and decreases endothelial damage, 
thrombotic events and ARD in COVID-19 patients [100]. 
The balance of complement as a therapeutic approach should 
be considered in COVID-19 treatment (Fig. 2).

Candidate CVD drugs against SARS‑CoV‑2

Combination of ARBs such as sartans (sacubitril/
valsartan) and ACE inhibitor

ARBs such as sartans (sacubitril/valsartan) are potent 
drugs that can inhibit angiotensin-mediated AT1R activa-
tion, upregulate ACE2, and increase Ang 1–7 production 
[101]. Since Ang-II decreases NO and bradykinin levels, 
it enhances the formation of endothelin and is a potent 
vasoconstrictor such that Ang-II receptor blockers such as 
Valsartan, Olmesartan, Losartan, and Enalapril (which con-
sidered as ACE inhibitor) might be effective in controlling 
the infection and should not increase the risk of myocardial 
infraction [102–104]. Based on a study on ACE-knockout 
mice, Ang-II remained unchanged due to 14-fold increase in 
chymase activity [105]. Therefore, ARBs and Ang-II inhibi-
tors seem to be better choices in combination or in compari-
son with ACE inhibitors in SARS-CoV-2 treatment [106]. 
By May 10, 2020, nine trials had been registered on clinical-
trials.gov to demonstrate the therapeutic benefits of ARBs 
for treating COVID-19 infections, two dealing with Ang 1–7 
but none with Ang II [107].

In vitro studies on exogenous Ang II have revealed a 
novel vasopressor agent that can downregulate ACE2 via 
the AT1-ERK/p38 MAP kinase pathway [108]. Based on 
several studies, exogenous Ang II might be a good therapeu-
tic approach in COVID-19 treatment via ACE2 downregula-
tion. Several studies indicate that ACE2 downregulation is 
not favorable for COVID-19 patients and that it causes sev-
eral organ dysfunctions; thus, ACE2 might have protective 
effects in organs and could be a major mechanism leading to 
cardiac and lung injury [109]. ACE2 agonists affect AT1R 
[108, 110]. Ang II binding to AT1R leads to aldosterone 
and vasopressin release from adrenal gland and hypothala-
mus to increase sodium and free water reabsorption in the 
kidney and finally increase mean arterial pressure (MAP) 
and It also increases vascular tone and vasodilatation via 
affecting bradykinin system, which can be an independent 
risk factor for CVD and heart disease [111, 112]. Addition-
ally, inflammatory effects of AngII are mediated via acti-
vation of nuclear factor kappa-B (NF-κB) and its synergic 
effect on the production of several inflammatory cytokines 
such as IL1-β [113, 114]. Also, combination of a neprilysin 

inhibitor (NEPi) and an ARB (sacubitril/valsartan) might be 
effective in SARS-CoV-2 treatment [115]. Neprilysin inhibi-
tor–angiotensin II receptor blocker combination (sacubitril/
valsartan) seems to be a rational combination for adoption 
in SARS-CoV-2 patients. See Fig. 1.

Bradykinin receptor B1, B2 inhibitors 
and bradykinin antagonists

Losartan increases bradykinin levels via blocking AT1R 
[116]. ACE inhibitors rapidly activate mTORC1 via 
bradykinin [117]. Activation of Bradykinin Receptor B1 
(BDKRB1) and B2R on endothelial cells in the lungs of 
SARS-CoV-2 patients makes the lung prone to angioedema, 
and inhibiting BDKB1R and B2R might be effective in 
attenuating acute respiratory distress syndrome (ARDS) as 
well as lung injury among COVID-19 patients [118]. Moreo-
ver, BDKRB1 is mostly expressed by cytokines and immu-
nopathological conditions [119]. Recent studies on targeting 
BDKRB1 have indicated a potent pharmacological target for 
treatment of inflammatory lung disorders, pulmonary hyper-
tension, and CVD [120–122]. Xiaowei Zhou et al. presented 
a novel bradykinin antagonist (RR-18) from the skin gland 
secretions of Hejiang frog as immune defense peptides that 
can be useful in the treatment of chronic inflammation [123] 
(Fig. 2).

Candidate anti‑coagulation drugs 
against SARS‑CoV‑2

Based on a study conducted by Litao Zhang et al. D‐dimer 
levels higher than 2.0 µg/mL (fourfold increase) could effec-
tively predict in‐hospital mortality of COVID-19 patients, 
which means D‐dimer level could be an early biomarker 
to improve the management of the disease [124]. Approxi-
mately 31% of COVID-19 patients in ICU face thrombotic 
complications, highlighting the need for pharmacological 
thrombosis prophylaxis in all COVID-19 patients admitted 
to ICU [2]. Several studies have confirmed that mortality 
might be a function of the thrombosis observed in segmental 
and subsegmental pulmonary arterial vessels. Thus, under-
standing and the management of thrombotic complications 
in COVID-19 patients can be a effective step in the man-
agement of the disease [125]. Low‐molecular weight hepa-
rin (LMWH) is a prophylactic anticoagulant for decreas-
ing mortality in critically ill patients with sepsis‐induced 
hypercoagulation, and it can be useful in viral infections like 
COVID-19 [126]. Although high-dose heparin might be dan-
gerous as a result of the hemorrhagic component of microan-
giopathy, only randomized clinical trials can answer whether 
high-dose heparin promotes the incidence of major bleeding 
(which occurred in some Italian COVID-19 patients). Marco 
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Cattaneo et al. believe that 40 mg Lovenox (enoxaparin) is 
useful for decreasing PE, DVT and thromboprophylaxis of 
COVID-19 patients [127]. Another study on the incident of 
heparin induced thrombocytopenia (HIT), a life-threaten-
ing complication of heparin exposure, indicated that HIT 
increased among COVID-19 patients treated with heparin 
[128]. A recent study conducted by Chen Shi et al. reported 
heparin changes in the percentage of lymphocytes, levels 
of D-dimer and fibrinogen degradation products (FDP) and 
IL-6 levels. Thus, LMWH can improve coagulopathy and 
inflammation via decreasing IL-6 and increasing lymphocyte 
percentage [129]. Systemic treatment-dose anti-coagulant 
decreases mortality in COVID-19, but the risk of bleed-
ing should be considered. According to one study, 29.8% 
of the patients who received treatment-dose anti-coagulant 
were more likely to need invasive mechanical ventilation 
compared to those who received prophylactic dose anti-
coagulant or did not receive 8.1% and PT, aPTT, lactate 
dehydrogenase (LDH), ferritin, C reactive protein (CRP), 
and D-dimer values were higher among individuals who 
received anti-coagulant [130]. COVID-19–associated coagu-
lopathy should be managed by thromboembolic prophylaxis 
in severe COVID-19, and if bleeding does occur, the man-
agement of DIC and bleeding should be considered accord-
ing to the standard guidelines [63]. COVID‐19 patients with 
elevated D-dimer level should receive prophylactic antico-
agulation therapy to decrease the risk of VET and PE. In a 
study on 199 COVID‐19 patients a D‐dimer value of 1 μg/ml 
was associated with an increased hazard ratio of 18·4 mortal-
ity and based on International Society on Thrombosis and 
Haemostasis (ISTH), elevated D‐dimers (arbitrarily defined 
as 3–fourfold increase) should be hospitalized even in the 
absence of other symptoms [131]. Bowles et al. reported that 
91% of COVID-19 patients who were admitted to hospital 
with a prolonged aPTT were positive for lupus anticoagu-
lant, which increases the risk of thrombosis via antiphospho-
lipid syndrome. They also indicated that prolonged aPTT 
should not be a barrier to the use of anti-coagulant in the 
management of DVT and PE in COVID-19 patients [132]. 
Denote timing is very important in anti-coagulant therapy, 
so we should consider these points:

•	 Considering the level of D-dimer (more than 1.0 μg/ml 
predicts the risk of VT) is a precious indicator for heparin 
administration [133].

•	 Thromboprophylaxis should be administered from hos-
pitalization until 7–14 days after discharge (specially 
for patients with risk factors such as, previous venous 
thromboembolism (VTE), active cancer, body mass 
index (BMI) > 30 and etc.) [134].

•	 Intermediate-dose LMWH (i.e., enoxaparin 4000 IU sub-
cutaneously every 12 h) can be considered on patients 
with multiple risk factors for VTE [134].

•	 Drug-drug interactions between anticoagulants, anti-
platelet agents, cardiac drugs, lupus anticoagulant inhibi-
tors, and anti-complement should be considered.

•	 Fibrinogen is an independent predictor of resistance 
to heparin [135], so the levels of fibrinogen should be 
considered to estimate the patient’s resistance to heparin 
before administration of heparin to COVID-19 patients.

•	 COVID-19 patients with a history of a previous stroke 
or CVD need higher doses of coagulants, and the precise 
dose and the anti-coagulant should be clearly defined in 
COVID-19 protocols.

•	 Higher levels of fibrinogen should be considered to 
increase the risk of thrombosis because it increases blood 
viscosity which, in turn, increases the risk of CVD and 
cardiac complications [136], so D-dimer plus fibrinogen 
should be considered for monitoring cardiac complica-
tions and CVD in COVID-19 patients.

•	 Thrombolysis with Alteplase [Tissue plasminogen activa-
tor (tPA)] might be a good choice for heparin resistant 
patients [137], which should be considered in future stud-
ies of COVID-19.

•	 Nafamostat mesylate (Futhan), is a synthetic serine pro-
tease inhibitor which has anticoagulation and antiviral 
effects, and it inhibits the proteolysis of fibrinogen into 
fibrin [138]. This should be considered in future studies 
of COVID-19 especially in heparin resistant individuals. 
During administration of Unfractionated heparin (UFH) 
and low-molecular-weight heparin (LMWH), we should 
consider UFH binding to endothelial cells, platelet factor 
4, and platelets [139]. Therefore, it might cause pharma-
cokinetic and pharmacodynamics complications during 
administration with other medicines in COVID-19.

•	 We need more trails on antiphospholipid antibodies in 
COVID-19, and antagonist of these antibodies might be 
a better choice in the management of thrombosis and 
coagulopathy in COVID-19 patients.

Conclusion and future prospective

Decreased levels of ACE2 during SARS-CoV-2 entry might 
be one of the main reasons of tissue damage because it 
impairs not only the imbalance angiotensin system but also 
Kallikrein–Kinin System, inflammatory system and coagula-
tion. The crosstalk between these systems should be clarified 
in order to manage the disease. Cardiac complications and 
coagulopathies have been reported in COVID-19 patients, 
which implies the importance of the crosstalks between 
the mentioned systems. The important point is related to 
the secret of the initiation of coagulopathies in COVID-19 
infection.

Since RAAS inhibitors upregulate ACE2 expression and 
ARBs inhibit Ang II-AT1R interaction, COVID-19 patients 
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might benefit from the combination of RAAS inhibitors, 
ARBs, and statin. We believe that the blockage of brady-
kinin can be a good option in the management of COVID-19 
and CVD patients, and supportive treatment of respiratory 
and cardiologic complications are needed in COVID-19 
patients. Inhibiting BDKB1R and B2R might be effective in 
decreasing ARDS and lung injury in COVID-19 patients. It 
is worth restating that 91% of COVID-19 patients who were 
admitted to hospital with a prolonged aPTT were positive 
for lupus anticoagulant which increases the risk of throm-
bosis and prolonged aPTT. Heparin is a good choice for the 
management of the thrombosis in COVID-19 patients. In the 
meantime, denote timing is very important in anti-coagulant 
therapy, so we should consider the level of D-dimer, fibrino-
gen, Drug-drug interaction and risk factors such as previous 
venous thromboembolism (VTE), active cancer, body mass 
index (BMI) > 30, etc. during thromboprophylaxis adminis-
tration. Fibrinogen is an independent predictor of resistance 
to heparin, so we should consider this factor before Throm-
boprophylaxis administration. Alteplase, Futhan might be 
a good choice in a heparin resistance condition. Finally, 
our therapeutic choice, dosing, and laboratory monitoring 
of anti-coagulant therapy in COVID-19 patients are critical 
decisions which can be life-saving or life-threatening.
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