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Application of multiple omics 
and network projection 
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for pathogenic mosquito‑borne 
viruses
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Pathogenic mosquito-borne viruses are a serious public health issue in tropical and subtropical 
regions and are increasingly becoming a problem in other climate zones. Drug repositioning is a rapid, 
pharmaco-economic approach that can be used to identify compounds that target these neglected 
tropical diseases. We have applied a computational drug repositioning method to five mosquito-borne 
viral infections: dengue virus (DENV), zika virus (ZIKV), West Nile virus (WNV), Japanese encephalitis 
virus (JEV) and Chikungunya virus (CHIV). We identified signature molecules and pathways for each 
virus infection based on omics analyses, and determined 77 drug candidates and 146 proteins for 
those diseases by using a filtering method. Based on the omics analyses, we analyzed the relationship 
among drugs, target proteins and the five viruses by projecting the signature molecules onto a human 
protein–protein interaction network. We have classified the drug candidates according to the degree 
of target proteins in the protein–protein interaction network for the five infectious diseases.

Pathogenic viruses cause diseases by infecting and replicating in human cells1, and the many varieties of mosquito 
pathogenic viruses combined cause more human suffering than any other organism. Mosquito-borne infections 
are widespread with over 390 million people infected annually2. Compared with other infectious diseases such as 
Ebola, Marburg, Crimea Congo and Lassa, the mortality rate of mosquito-borne infectious diseases is relatively 
low. Nonetheless, more than 50 billion people have died from mosquito-borne diseases3, which include dengue 
virus (DENV), Zika virus (ZIKV), malaria, West Nile virus (WNV), Chikungunya virus (CHIV), yellow fever 
virus (YFV) and the Japanese encephalitis virus (JEV). Infectious diseases such as DENV, ZIKV, WNV, YFV and 
JEV belong to the single genus flavivirus, and cause symptoms ranging from mild fever to more severe symptoms 
including encephalitis and hemorrhagic fever4. CHIV belongs to an arthritogenic alphavirus and causes high 
fever and severe joint pain. Mosquito-borne diseases may be spreading into regions of the world that have not 
recorded cases of such diseases because of the spread of mosquito habitats and the effects of global warming, 
especially changes in temperature and rainfall5. Current trends indicate that mosquito-borne diseases will affect 
greater numbers of people and the number of patients with serious symptoms will increase dramatically6,7. Thus, 
a better understanding of mosquito-borne infections is important for predicting future outbreaks of these patho-
gens. Mosquito-borne diseases are mainly treated symptomatically with only a few effective drugs available. Thus, 
treatment of these primarily tropical diseases has been neglected8 and development of new therapeutic drugs has 
not advanced because of a lack of investment into research. Drug repositioning/repurposing has been a recent 
cost-effective approach to find compounds that show limited side effects and are suitable to treat these rare and/
or neglected tropical diseases9. Such an approach is cost effective for treating diseases with a small number of 
patients (rare diseases) and those populations living predominantly in poverty (e.g., tropics), where no profitable 
market for the development and sales of new drugs exist for pharmaceutical companies.

We have previously developed a multi-omics drug repositioning method to use the large-scale intergradation 
of experimentally measured data aimed at data-driven science10. In our computational approach, repositioning 
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drug candidates for dengue hemorrhagic fever (DHF) syndrome that are used to treat other infectious diseases 
caused by flaviviruses was successful. For mosquito-borne infectious diseases, many research efforts have meas-
ured omics data and made data public using the rapid development of experimental technologies. Our multi-
omics drug repositioning approach for identifying drug candidates to treat infectious diseases is very compatible 
and enables a comprehensive view of biological processes and biological networks that cross different molecular 
layers. We have surveyed a complete set of experimental data in three omics layers of open, accessible and 
high-quality data in pathogenetic mosquito-borne viruses. DENV, ZIKV, WNV and JEV from flaviviruses and 
CHIV from togaviruses were selected. YFV is also an arbovirus of the flavivirus genus. However, YFV was not 
analyzed because expression data for infected (healthy) versus non-infected (control) samples were not available 
at the Gene Expression Omnibus (GEO), and a literature search provided no interactome data. In this report, 
we identified signature genes, target proteins and target pathways for DENV, ZIKV, WNV, CHIV and JEV by 
analyzing published transcriptome, proteome and protein–protein interaction data. We determined approved 
drug candidates against each virus by integrating the results of omics analyses and applying our published 
filtering method10. The drug candidates were grouped by clinical symptoms: hemorrhagic syndrome (DENV), 
neurological complications (ZIKV, WNV and JEV) and inflammatory arthritis (CHIV). Based on the results 
obtained from multi-omics analyses, we aimed to classify the drugs by investigating communication routes of 
the five diseases using a network analysis approach. The analysis projects the signature molecules onto human 
protein–protein interactions to provide an overview of the shared relationships among drugs, diseases and sig-
nature molecules. Here, we first present drug candidates for rare and/or neglected tropical diseases, especially 
mosquito-borne diseases, by analyzing molecular profiling experimentally obtained from multiple omics, and 
then apply a network-based analysis to select drug candidates by exploring the relevance between the drug and 
the disease through protein interactions.

Materials and methods
Approach overview.  Figure 1 outlines the approach used in this study. Omics analysis of DENV, ZIKV, 
WNV, CHIV and JEV was performed using the following methods. Transcriptome analysis was performed by 
extracting gene expression data of patients and viral infected cells from GEO datasets11 to obtain signature genes. 
Signature genes are a set of genes that have an altered expression pattern between normal and infected patients, 
or uninfected and infected cells. Using those genes, Gene Set Enrichment Analysis (GSEA)12 was performed to 
detect disease-specific pathways related to each of the five infections. Literature searches were performed to find 
studies that provide proteomic data. Identified signature proteins were defined by protein expression patterns 
that differed between uninfected and infected cells. Literature surveys were also performed to find protein–pro-
tein interactions (PPIs) between human and viral proteins. A network of PPIs was obtained for interactome 
analysis to identify human proteins that interact with virus proteins associated with DENV, ZIKV, WNV, CHIV 
and JEV. Integrating the transcriptome, protein and interactome analyses enabled identification of common 
signature molecules.

To find drug candidates by the drug repositioning method, connectivity map (CMap) and STITCH were used 
for the signature genes derived from GEO data analysis and for chemicals that interacted with the identified 
signature proteins from the proteomics analysis and identified PPIs between human and viral proteins, respec-
tively. Using our filtering method, drug candidates for the five viral infections were identified based on multiple 
omics analyses. Those disease-related proteins that could be used to control the onset and progression of the five 
infectious diseases were projected onto the protein–protein interaction network of the Human Protein Reference 
Database13, and the drugs were classified according to the degree of target proteins in PPIs for the five diseases.

Datasets for transcriptomic analysis.  The 16 microarray gene expression datasets related to DENV, 
ZIKV, WNV, CHIV and JEV infected cells were selected from the GEO database14 (Supplementary Table S1). To 
compare the effective gene signatures for each infectious disease in microarray differential expression analysis, 
we selected signature genes with fold-change (FC) values, which are more reproducible than those selected 
by statistical significance and could minimize variation due to sample differences15. The rank-based approach 
obtained from FC values for different sources is more comparable and leads to higher prediction accuracy than 
using expression values16. For the single ZIKV, CHIV and JEV datasets, we analyzed 1000 signature genes: the 
500 most upregulated and the 500 most downregulated FC genes. For DENV and WNV with multiple datasets 
available, each fold change value was calculated as a mean of all experiments. The 500 most upregulated and 500 
most downregulated FC genes determined by examining the mean FC values were then analyzed.

Datasets for proteomic analyses.  PubMed (https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/) and Google 
scholar (https://​schol​ar.​google.​com/) were used for searching literature that gave proteomic analyses of cells 
affected by the five viruses. We identified relevant studies using the keywords “proteomics analysis” and “pro-
teome”. Proteins for proteomic analysis were extracted by reading all articles identified from the keyword search 
results. All proteomic datasets are presented in Supplementary Table S2. The number of unique identified sig-
nature proteins were 389 for DENV, 453 for ZIKV, 627 for WNV, 517 for CHIV and 183 for JEV. Supplementary 
Table S2 summarizes the number of up- and downregulated proteins reported in each experiment.

Datasets for interactomic analyses.  Infectious diseases are the result of molecular crosstalk between 
hosts and their pathogens. Literature searches with keywords “protein–protein interaction” and “human and 
virus” were performed to collect interactomic data. Data for interactomic analysis were manually extracted by 
reading the literature selected from these literature searches. This crosstalk mediated by host–pathogen protein 
interactions was collected for the five viruses (Supplementary Table S3).

https://www.ncbi.nlm.nih.gov/pubmed/
https://scholar.google.com/
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Multiple omics analyses.  We determined the signature molecules by multiple omics analyses, selecting 
the intersection of signature gene products by transcriptomic analysis, signature proteins by proteomic analysis 
and human–viral PPIs by interactomic analysis. The GSEA method was used to find statistically significant 
pathways from the Molecular Signatures Database (MsigDB)17 and Pathway Ontology (PWO)18 for differentially 
expressed genes, as presented in a previous study10. A hypergeometric test was applied to significant gene groups 
between infected and normal samples to identify the infection-specific pathways in the MsigDB and PWO with 
p < 0.05. We performed GSEA for the upregulated (overexpressed) molecules with the molecular signatures of 
the canonical pathway (c2.cp.v6.2) and PWO (http://​purl.​bioon​tology.​org/​ontol​ogy/​PW). Upregulated signature 
pathways were selected by combined transcriptomic and proteomic analyses.

Drug repositioning candidates.  The CMap method19 was used with the transcriptomic analysis to iden-
tify any inverse drug-disease relationships. For individual gene expression datasets, the probe list transformed 
from upregulated and downregulated signature genes between infected and normal samples was applied to 
CMap to identify any inverse drug-disease relationships10. CMap compares the gene expression profile of cells 
before and after exposure to compounds and quantitatively assesses changes in transcriptome profiles caused by 
active compounds. Comparisons of transcriptomic profiles between drug response and disease phenotypes can 
reveal underlying pathological processes. In our computational method, the differential gene expression profiles 
between disease and control samples (diseased versus healthy subjects) were used as the main single data layer to 
select drug candidates and is a summary of the effects of the drugs (i.e., genes upregulated in the disease profile 
were downregulated in the drug profile and vice versa). The effect of a drug on gene transcription levels was 
assumed to be opposite to the effect of the disease. The threshold of significance for each drug was set at p < 0.1 
using the permutated results. For multiple datasets, i.e., DENV and WNV, the union of each drug candidate from 
individual gene expression datasets was selected as the drug candidates in the viral infection.

STITCH 5.020 was used to find interactions between chemical compounds and proteins as an interaction 
network. We set the acceptable “combined score” to > 0.7 to ensure a high level of confidence for the interaction10. 
The obtained interaction network accepted only potential drug candidates and extracted the interactions between 

Figure 1.   Schematic showing the process of drug repositioning against the five viruses (DENV, ZIKV, WNV, 
CHIV and JEV). Signature genes, signature proteins and interactions between human and viral proteins were 
selected from GEO datasets, review of the proteome literature and review of the human–viral PPI literature, 
respectively. To find drug candidates, a connectivity map (CMap) was generated for signature genes based on 
GEO data. STITCH was used for selecting drugs that interacted with the identified signature proteins from the 
proteome and human proteins in human–viral PPIs. Using our filtering method, we identified drug candidates 
for the five viral infections based on multiple omics analyses. Those disease-related proteins that control the 
onset and progression of the five viral infectious diseases were projected onto the protein–protein interaction 
network of the HPRD to identify drugs that are effective against the five diseases.

http://purl.bioontology.org/ontology/PW
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chemical compounds and significant proteins and the human proteins involved in human–viral PPIs. Drug can-
didates selected were those that interacted directly with common signature proteins, which was based on omics 
analyses, and were extracted with the proteins participating in signature pathways.

Network analysis.  We have performed a network analysis to explore the relationship between the drug 
candidates and protein interactions for the five infectious diseases. Human proteins identified to interact with 
viral proteins experimentally were extracted. We explored drug candidates that inhibit two classes of PPIs: host–
pathogen and host–host interactions to investigate the connection among the five infections in a human pro-
tein–protein network. In considering host–host interactions, we selected human proteins connected directly to 
those disease-related human proteins from the human protein–protein interaction network, Human Protein 
Reference Database (HPRD release 9)13. HPRD contains binary data for 38,775 interactions and 9,561 human 
proteins. The identified proteins associated with the five viruses were projected onto the HPRD to character-
ize the network properties of the relationship between proteins and diseases, and to explore how combined 
treatment of these diseases could be achieved by drug repositioning. This was accomplished by introducing 
“extended signature proteins”, which considers proteins directly connected to “common signature proteins” 
(union of proteome and interactome). We counted the connectivity of proteins (degree), which is the number 
of binding partner proteins in the HPRD to investigate characteristic hub proteins. In addition, we identified 
“shared proteins”, which are overlapping proteins of the common and extended signature proteins in the five 
infections. Computing the shortest distances among the shared target proteins in the HPRD created a minimum 
network. The network then added bridge proteins that linked shared proteins to the five diseases.

Results and discussion
Signature molecules by multiple omics analyses.  We compared signature genes by transcriptomic 
analysis, signature proteins by proteomic analysis and human-viral PPIs. Transcriptomic analysis identified 1000 
signature genes (500 upregulated and 500 downregulated genes based on FC values) between infected and unin-
fected states for the five viruses. Upregulated genes were used for omics analysis. For proteomics data, up- and 
downregulated proteins were extracted from our literature searches. Upregulated molecules in transcriptomic 
and proteomic analyses were used for further omics analysis. For interactomic data, we used two classes of PPIs: 
human (disease related proteins)–viral and human (disease related proteins)–human interactions, as described 
in the Methods section. The numbers of human proteins in human–viral interactions for DENV, ZIKV, WNV, 
CHIV and JEV were 345, 518, 34, 159 and 26, respectively. The human-infectious diseases PPIs include the two 
classes of PPIs for omics analysis.

For DENV, the 500 signature genes, 106 signature proteins identified by the proteomic analysis and 2672 
human proteins identified as human–DENV PPIs are compared in Fig. 2a. Forty-nine proteins overlapped 
between the signature gene products and human proteins from the human–DENV PPIs, and 24 proteins over-
lapped between the signature proteins and the human proteins from the human–DENV PPI network. The 
intersection of the three sets among transcriptomic, proteomic and interactomic analyses contains a protein 
(HSP90B1). Protein abbreviations are listed in Supplementary Information. Venn diagrams comparing signature 
genes, signature proteins and human proteins in human–viral PPI networks for ZIKV, WNV, CHIV and JEV 
infections are shown in Fig. 2b–e. At the intersection, two proteins (PML, STAT1) for WNV and one protein 
(SDK2) for CHIV were found.

We focused on the “common signature proteins” at the intersections of proteome and interactome analy-
ses. The number of common signature proteins in DENV, ZIKV, WNV, CHIV and JEV was 24, 61, 24, 36 and 
7, respectively. The total number of unique proteins was 146. Figure 2f shows the relationship among the five 
viruses. Only one protein, NPM1 (nucleophosmin), which is a multifunctional chaperone, was shared by three 
viruses among neurological viruses (ZIKV, WNV) and the inflammatory arthritis virus (CHIV). Nucleophosmin 
activates chromatin transcription in an acetylation-dependent manner and is important for restricting virus 
replication in host–virus interactions, especially in ZIKV21, CHIV and WNV infections22,23. One protein (RTN4) 
was common between DENV and ZIKV and three proteins (NCL, RAN and VCL) were common between ZIKV 
and CHIV. Most of the signature molecules were unique to infections. Supplementary Fig. S1 shows a comparison 
of the signature molecules for the five viruses derived from transcriptomic, proteomic and interactomic analyses. 
In Fig. 2f, no common signature proteins from neurological complications (ZIKV, WNV, JEV) were observed 
at the intersections for the three viral diseases. Thus, it may be difficult to identify common signature molecules 
linked to phenotypes by simply selecting the intersection of the three layers of omics analyses.

Signature pathways by multiple omics analyses.  We analyzed the five viral infections in coarse-
grained pathway units by using GSEA with upregulated molecules for the transcriptomic and proteomic data. 
Venn diagrams of pathways for the five viral infections are shown in Fig. 3a–e. In addition to the molecular level, 
in which the gene profile shows the opposite pattern when selecting drug candidates in CMap, we conducted 
a network analysis to determine the activity status of signal transduction pathways and transcription factor 
networks in the diseases. The results of the pathway analysis were used in our filtering method described below.

Using the Venn diagram in Fig. 3f, the pathways that were unique to each viral infection and shared among 
the five viral infections were identified. The approach revealed that it is difficult to find a common upgraded 
pathway for those viruses by coarse-grained pathway analysis. Only the "disease pathway" in PWO was common 
to ZIKV, JEV and DENV for hemorrhagic syndrome. The results of this analysis are used for filtering, as described 
below. Supplementary Fig. S2 shows a comparison of the signature pathways for the five viral infections for 
transcriptomic, proteomic and interactomic analyses. The total number of unique pathways identified was 105.
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Drug candidates by multiple omics analyses.  We identified drug candidates for each infection based 
on omics analyses. From transcriptomic analysis, the 300 most upregulated and the 300 most downregulated 
signature genes for the five diseases obtained from GEO data sets that were compatible with the HG-U133A plat-
form of CMap were used to query the CMap system. The rank matrix of CMap was built by fold change based on 
differential expression profiles. The up- and downregulated genes selected by fold change were used as differen-
tially expressed signature genes for drug repositioning. STITCH 5.0 was used to search for drug candidates that 
interact with the signature proteins from proteomes and human–viral PPIs. Figure 4a–e shows drug candidates 
from multiple omics analyses. For DENV, 588 compounds with statistical significance (p < 0.1) using the CMap 
permutated results were identified as the union of each dataset (GSE50698: 125; GSE23986: 100; GSE51808: 
119; GSE34628: 22; GSE9378: 118; GSE18090: 128; GSE40628: 161; GSE38246: 160; GSE25226: 78; GSE58278: 
67). By searching STITCH for drug candidates based on the proteomic data, we found 293 drug candidates that 
interacted with 106 significant proteins. For drug candidates from the interactomic data, we found 1,641 drug 
candidates in STITCH that interacted with 2672 human proteins identified in the human–viral PPIs. Finally, 58 
drug candidates were identified that overlapped over the analyses of the three layers. For ZIKV, 118 compounds 
were identified using the CMap as GSE98889. Four-hundred and twenty-nine drug candidates interacted with 
255 significant proteins, and STICH identified 1711 drug candidates that interacted with 1940 human proteins in 
PPIs. Eight drug candidates were shared over the analyses of the three layers. CMap detected 171 compounds as 
the union of each dataset (GSE46681: 104; GSE30719: 117) for WNV. Here, 564 drug candidates interacted with 
547 significant proteins and STITCH identified 951 drug candidates that interacted with 334 human proteins 
in PPIs. Thirty-one drug candidates were shared over the analyses of the three layers. For CHIV, 89 compounds 
were identified as GSE49985. Two-hundred and ninety-four drug candidates interacted with 197 significant pro-
teins and 1605 drug candidates were identified by STITCH to interact with 2705 human proteins in PPIs. Finally, 
we identified 12 drug candidates that were shared over the analyses of the three layers. For JEV, 93 compounds 
were identified as GSE57330. Three-hundred and three drug candidates interacted with 116 significant proteins 
and 866 drug candidates interacted with 253 human proteins in PPIs. Ten drug candidates were detected over 
the analyses of the three layers.

Figure 2.   Signature genes and proteins by multiple omics analyses. Venn diagrams show the overlap of 
signature genes and proteins by multiple omics analyses for the five viruses: (a) DENV, (b) ZIKV, (c) WNV, 
(d) CHIV and (e) JEV. The number of signature genes obtained from transcriptomic data with significant 
differences is shown in the blue circle for infections. The number of signature proteins obtained from proteomics 
data is shown in the orange circle. The number of human proteins that interact with viral proteins in human–
virus PPIs is shown in the green circle. (f) Venn diagram of common signature proteins, which represent the 
intersection between proteome and PPIs for the five viral infections. The total number of the unique proteins 
was 146 for the five viral infections.
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Drugs common in up to three infectious diseases were found by selecting drug candidates for each infectious 
disease. Figure 4f shows the drug candidates at the intersection of the three omics analyses for the five diseases. 
Supplementary Fig. S3 compares drug candidates for the five viral infections from transcriptomic, proteomic and 
interactomic analyses. Supplementary Fig. S4 shows the multi-omics analyses for three diseases (ZIKV, WNV and 
JEV) that cause neurological complications. Only one drug was found at the intersection of WNV and JEV. These 
results show that it may be difficult to identify common signature molecules and drugs linked to phenotypes.

Filtered drug candidates for the five viral infections.  Drug candidates for the five infections were 
selected by our filtering method10. In brief, we have filtered and selected drug candidates based on common pro-
teins (union of proteins in Fig. 2), common pathways (union of pathways in Fig. 3) and common drugs (union 
of drugs in Fig. 4) of the three layers. For DENV (Fig. 4a), 56 drugs were identified as the intersection of the drug 
candidates by omics analyses. This process yielded 24 common proteins (union of proteome and PPI in Fig. 2a), 
21 common pathways (union of transcriptome and proteome in Fig. 3a) and 58 drug candidates. Supplementary 
Fig. S5 shows the filtering method process for identifying drugs against DENV. We identified eight potent drugs 
for dengue hemorrhagic fever (DHF) previously10. Seven of the eight drugs against DHF are also found in the 
56 DENV drug candidates. Using the same method described above, four drug candidates against ZIKV infec-
tion, 25 drug candidates against WNV infection, six drug candidates against CHIV infection and eight drug 
candidates against JEV infection were obtained (Supplementary Figs. S6–S9). Supplementary Table S4 lists all 
drug candidates that were identified by omics analyses for the five viruses. Supplementary Fig. S10 shows the 
flow diagram for the union of all results obtained for the five viral infections. A total of 77 unique drug candi-
dates were identified. Supplementary Fig. S11a shows a comparison of the 77 drug candidates for the five viral 
infections. For the neurological diseases, we found 36 unique drug candidates and their virus targets are shown 
in Supplementary Fig. S11b.

We evaluated the computationally identified common drugs with previously reported drugs. A total of 20 
drug candidates were identified to be common to two or three infections. Trichostatin A and vorinostat were 
identified to be common to DENV, CHIV and JEV infections; acetylsalicylic acid, dinoprostone, glibenclamide 
and trifluoperazine were common to DENV and ZIKV; dinoprost, genistein, LY-294002, melatonin, ouabain, 
rosiglitazone, SB-203580, sirolimus and troglitazone were common to DENV and WNV; alvespimycin, orlistat 
and tanespimycin were common to DENV and CHIV; ascorbic acid was common to DENV and JEV; and 
staurosporine was common to WNV and JEV. Seven of the 20 drug candidates that appear to be common for 

Figure 3.   Signature pathways by multiple omics analyses. Venn diagrams show the overlap of the signature 
pathways by GSEA analysis for (a) DENV, (b) ZIKV, (c) WNV, (d) CHIV and (e) JEV. The number of significant 
pathways of the transcriptome and proteome are shown in the blue and orange circles, respectively. (f) Venn 
diagram of the signature pathways, which are intersections derived from the transcriptomic and proteomic 
analyses for the five viral infections.
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two viruses have been reported in experimental drug repositioning studies for one of the viruses. Trichostatin 
A and vorinostat are histone deacetylase (HDAC) inhibitors. Using high concentrations of HDAC inhibitors 
caused a significant reduction in cytokine production in DENV2 infections24. Among HDAC inhibitors, selective 
HDAC6 inhibitors concentration-dependently inhibited JEV-induced cytopathic effects and apoptosis, as well 
as reduce virus yield in human cerebellar medulloblastoma cells25. Genistein treatment significantly reduced 
uptake of h3H5-opsonized DENV in a concentration-dependent manner26. LY-294002 inhibits PI3K activation, 
and greatly enhanced virus-induced cytopathic effects, even at an early stage of infection27. Ouabain is a reducing 
agent that cleaves disulfide linkages between two polypeptide chains that are essential for T cell helper cytokine 
activity28. SB-203580 is a p38 MAPK inhibitor that has been shown to reduce DENV-induced liver injury in a 
mouse model29. Sirolimus, an mTOR pathway inhibitor and a potential inhibitor of CypA, significantly reduced 
yellow fever virus replication in immunofluorescence and viral plaque assays30. Orlistat is a potential broad-
spectrum agent against multiple mosquito transmitted viruses31. Valproic acid was found to reduce significantly 
the production of all cytokines produced in DENV2 infections24. A patient with CHIV fever was treated with 
high doses of intravenous vitamin C over two days, and symptoms resolved after infusions without any side 
effects32. The above results indicate that our multi-omics analyses rationally identified potential drug candidates 
for treating multiple viral infections.

Network analyses by the projection of the human protein–protein interaction network.  In 
the previous sections, we identified 77 drug candidates (Supplementary Table S4) and 146 common signature 
proteins (Fig. 2f) for the five infections using multiple omics analyses. The results showed that identifying com-
mon drugs for the five viral infections was not possible (Fig. 4f, Supplementary Figs. S4c and S11), regardless 
of the clinical outcomes or that these compounds target the same viral family. We then performed a network 
analysis to investigate the drug candidates against the five infectious diseases by exploring the relevance between 
those identified drugs and diseases through protein interactions. The network analysis was used to find how the 
candidate drugs listed are related to the human protein network in the diseases. The signature proteins from the 
five viruses were projected onto the human protein network of the HPRD. Figure 5 shows the drug candidates 
and the common signature proteins presented in a network diagram for the five viruses. The degree of common 

Figure 4.   Drug candidates by multiple omics analyses. The numbers of drug candidates identified by the 
transcriptomic, proteomic and interactomic analyses are shown in blue, orange and green circles, respectively. 
The numbers of drug candidates that overlap between each analysis type are also shown: (a) DENV infection, 
(b) ZIKV infection, (c) WNV infection, (d) CHIV infection and (e) JEV infection. (f) The drug candidates 
of the intersection of the three omics analyses in five viral infections are shown. The numbers of drugs at the 
intersection of the three layers for DENV, ZIKV, WNV, CHIV and JEV are 58, 8, 31, 12 and 10, respectively. The 
total number of unique drugs was 97.
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and extended signature proteins was calculated as the number of connections to proteins based on the human 
PPI network from the HPRD. Beside WNV, the average degree of common proteins for each infection was lower 
than the average degree of extended proteins. The degree of common proteins was found to concentrate at inter-
mediate degree values (i.e., 10 < degree ≤ 150). Supplementary Fig. S12 shows the frequency distribution of the 
degree on the HPRD for common signature proteins from each virus. The median degree of the signature pro-
teins for each virus is moderately higher than that of the overall HPRD degree distribution. The overall HPRD 
has a larger tail, whereas the degree distribution of each virus does not have a tail. This indicates that signature 
proteins that are closely related to infectious diseases do not show characteristics of a high-degree hub protein 
but a moderate-degree hub protein. We also investigated the networks of the extended proteins that are involved 
in human host–host PPIs for each infectious disease. Extended proteins are not connected directly to viral pro-
teins (disease related proteins) but to common proteins that are selected from signature proteins in proteomic 
analysis and disease related proteins in interactomic analysis. The relationship of the drug candidates and the 
extended proteins in a network diagram for the five viruses is shown in Supplementary Fig. S13. The number of 
connectivities among drugs and extended proteins is much greater than among drugs and common proteins for 
the five diseases.

Figure 6 shows Venn diagrams of common and extended signature proteins for the five virus infections. Con-
sidering all degrees of the proteins, 15 shared proteins overlap among the five infections (Fig. 6a). For degrees 
with lower than and equal to 50 proteins (five outer circles in Fig. 5), which indicate less hub-protein properties, 
five shared target proteins, TNPO1, TCERG1, KPNB1, XPO1 and IKBKB, were identified (Fig. 6b). Transpor-
tin-1 (TNPO1) functions in nuclear protein import as a nuclear transport receptor and serves as a receptor for 
nuclear localization signals in cargo substrates. Exportin-1 (XPO1) mediates the nuclear export of cellular pro-
teins bearing a leucine-rich nuclear export signal and RNAs. Viruses can use the classical importin-α/β pathway, 
importin-β directly, the nuclear pore complex, or transport through a PY-nuclear localization signal for nuclear 
import as well as exportin-1 for nuclear export33. Transcription elongation regulator 1 (TCERG1) binds RNA 
polymerase II and inhibits the elongation of transcripts from target promoters. Importin subunit beta-1 (KPNB1) 

Figure 5.   The network shows the relationship among drug candidates, signature proteins and the five viruses. 
The concentric circles show the network of diseases (purple circles), proteins (red and yellow circles) and drugs 
(green circles). The numbers of extended signature proteins (yellow) for DENV, ZIKV, WNV, CHIV and JEV 
are 262, 351, 352, 289 and 99, respectively. The degrees of the proteins calculated from the PPI network in the 
HPRD are divided into 0 to 10, 10 to 20, 20 to 30, 30 to 40, 40 to 50 and 50 or greater. The circularly distributed 
proteins with smaller radii indicate higher degrees. The numbers of common (red) and extended (yellow) 
proteins counting from the outer circle inwards are 32, 34, 40, 46, 48 and 57 for common proteins and 47, 54, 71, 
94, 116 and 190 for extended proteins. The purple edge shows the connection between the disease and common 
proteins. The green edge shows the signature protein-drug candidate interactions.
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functions in nuclear protein import, either in association with an adapter protein, like an importin-alpha subunit, 
which binds to nuclear localization signals in cargo substrates, or by acting as an autonomous nuclear transport 
receptor. Inhibitor of nuclear factor kappa-B kinase subunit beta (IKBKB) is activated by multiple stimuli such 
as inflammatory cytokines, bacterial or viral products, DNA damage or other cellular stresses. For neuropathies, 
36 shared proteins overlap among three infections after taking into consideration all degrees of the proteins (Sup-
plementary Fig. S14a). For degrees with lower than and equal to 50 proteins, 18 shared proteins among three 
diseases were found (Supplementary Fig. S14b). Table 1 summarizes the degree of distribution in the HPRD 
of the 15 shared proteins. Figure 7 shows a two-dimensional matrix of the interactions between the 15 shared 
proteins in the five diseases and the 77 filtered drug candidates. The number of drug candidates that interact 
with a protein increased as the order of a protein increased. Sixty of the 77 filtered drug candidates targeted two 
shared proteins with 130 or more degrees. There is a large number of drug candidates that target high-degree 
proteins. The properties of high-degree proteins facilitate interactions with a wide variety of drugs, indicating 
that interactions with the drug may have low specificity and many side effects.

We investigated the connectivity of the shared proteins dependence on the degree of 15 proteins (Fig. 6a). 
By computing the shortest distances among the shared target proteins in the HPRD, a minimum network was 
created by adding bridge proteins from the HPRD where necessary. The minimum network ensured that shared 
proteins are linked to the five diseases; thus, connecting these proteins created edges among the common and 

Figure 6.   Venn diagrams show the shared numbers of the common and extended signature proteins for the five 
viral infections. Common and extended signature protein numbers with all degrees are shown in (a) and those 
proteins with lower than and equal to 50 degrees are given in (b).

Table 1.   Filtered drug candidates with shared target protein degrees for the five viral infections.

Size of degree Number of shared targets Name of shared target proteins The number of drug candidates

0 < deg. ≤ 10 0 0

10 < deg. ≤ 20 1 TNPO1 5

20 < deg. < = 30 1 TCERG1 2

30 < deg. ≤ 40 0 0

40 < deg. ≤ 50 3 IKBKB,KPNB1,XPO1 23

50 < deg. ≤ 60 1 MDM2 19

60 < deg. ≤ 70 0 0

70 < deg. ≤ 80 3 CSNK2A2,STAT1,SUMO4 27

80 < deg. ≤ 90 0 0

90 < deg. ≤ 100 0 0

100 < deg. ≤ 110 2 STAT3,UBE2I 34

110 < deg. ≤ 120 0 0

120 < deg. ≤ 130 2 CDK1,YWHAB 36

130 < deg. ≤ 140 1 CASP3 58

140 < deg. ≤ 150 0 0

150 < deg 1 CSNK2A1 12
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Figure 7.   Two-dimensional matrix for drug-protein interactions between 77 filtered drug candidates and 15 
shared proteins. Rows and columns represent 77 filtered drug candidates and 15 shared proteins, respectively. 
The proteins in the figure are arranged from the left in ascending order of the degree in the HPRD. Red squares 
indicate interactions between proteins and drug candidates found by STITCH.
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extended proteins in the five diseases. For example, focusing on the five shared proteins (low hub proteins) with 
50 or less degrees in Fig. 6b, we found that the addition of 21 bridge proteins were required to create the network 
among the five proteins. Figure 8a shows the network of common, extended and 21 added proteins. For the largest 
degree of proteins in Table 1, the shared target proteins in the five infections with 130 or more degrees are two 
proteins (high hub proteins), CASP3 and CSNK2A1, which are known hub proteins in PPIs and interact with 
60 drug candidates. Interestingly, the network consists of two extended proteins and common proteins that are 
connected directly to viral proteins (human–viral interactions) in each infection. By comparing the low degree 
of shared proteins in Fig. 8a, the two hub proteins clearly showed crosstalk mediated by host–pathogen proteins. 
The drugs target extended proteins that are proximal to the diseases. Comparison of minimum networks between 
Fig. 8a and b showed that the hub proteins in Fig. 8b are located in a small neighborhood for the five diseases. 
This observation suggests that drugs targeting the shared proteins linked to the five diseases may potentially treat 
multiple infections. Fifty-one of the 60 drug candidates were non-anticancer agents.

We further investigated the 51 drug candidates by examining their interaction with 50 or less degree proteins 
by considering the coverage of low hub (TNPO1, TCERG1, KPNB1, XPO1 and IKBKB) and hub proteins in the 
network analysis. We have classified 17 of the 51 drug candidates (acetylsalicylic acid, alpha-estradiol, alvespimy-
cin, colchicine, copper sulfate, dinoprostone, LY-294002, paracetamol, resveratrol, simvastatin, staurosporine, 
sulfasalazine, sulindac, tanespimycin, tretinoin, trichostatin A, valproic acid). One of 17 drug candidates (tri-
chostatin A) was determined to be a common drug candidate for three infections (DENV, CHIV and JEV) by 
the filtering method using multi-omics analyses. Trichostatin A is a histone deacetylase inhibitor and its activity 
against DENV and JEV infections has been examined24,25. Six of the 17 drug candidates (acetylsalicylic acid, 
alvespimycin, dinoprostone, LY-294002, staurosporine, tanespimycin) were determined to be common drug 
candidates for any two infections. Ten drug candidates (alpha-estradiol, colchicine, copper sulfate, paracetamol, 
resveratrol, simvastatin, sulfasalazine, sulindac, tretinoin, valproic acid) were found to be repositioning drugs 
for one infection. Three of the ten drugs (paracetamol, resveratrol, valproic acid) are potential agents against 
DENV infection. Supplementary Table S4 summarizes the drug candidates identified by multiple omics and 
network analyses of the 15 proteins.

We have identified 77 drug candidates by our filtering method that may be effective against one to three viral 
infections. We constructed a minimum network of PPIs that connected the five diseases. Taking into considera-
tion the degree of the proteins, we computationally selected 17 drugs that targeted low hub and hub proteins on 
the network (Fig. 7). Investigating the relationship between drugs and diseases via PPI indicated that 17 drugs 
may inhibit all diseases through low and high hub proteins. The computationally identified drugs were validated 
by experimental evidence from literature where these drugs have been tested and clinical trial information. This 
method combining multiple omics data with network analysis may be useful in finding compounds against 
diseases where experimental reports are relatively sparse, such as JEV. Limitations associated with this study can 
arise when the number of available data is low and datasets show large variability. Accumulation of high-quality 
data should improve this drug selection method. In addition to the omics data provided here, integration with 
other omics data such as genome-wide association studies (GWAS), metabolomics, genomics, phosphoromics 
and methylomics can be considered in future studies.

Figure 8.   (a) Minimum network with a low degree of the target proteins. The target proteins, which are shared 
proteins TNPO1, TCERG1, IKBKB, KPNB1 and XPO1 with 50 or less degrees, are shown as orange diamonds. 
Common (red ellipses) and extended (yellow diamonds) signature proteins in this network are connected to 
the five viral infections (purple round squares). Twenty-one added proteins are shown as light blue diamonds. 
(b) Minimum network with a high degree of the target proteins. The target proteins, which are shared proteins 
CASP3 and SNK2A1 with greater than 130 degrees, are shown as orange diamonds.
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Conclusion
By combining multiple omics analyses based on experimentally obtained molecular profiling and network 
analysis of human PPIs, we have identified potential drug repositioning candidates for treating mosquito-borne 
DENV, ZIKV, WNV, CHIV and JEV infections. The signature molecules, pathways and the viral–human PPIs 
were determined based on large-scale intergradation of experimentally measured data for five viral infections. 
By applying our filtering methods with signature molecules and pathways, drug candidates to treat each viral 
infection were identified. A total of 77 drug candidates and 146 proteins were reported for the five infections 
using multiple omics analyses.

Network analysis of signature proteins was also performed to characterize the drugs for the five infectious 
diseases using PPI networks. A network-represented relationship among drug candidates, infections and proteins 
was created to study the connectivity of proteins in the HPRD. By projecting proteins onto the HPRD, the degree 
of disease-related proteins was found to be relatively low. This indicates that disease-related proteins with a close 
relationship to viral infections do not present characteristics of a high-degree hub protein but a moderate-degree 
hub protein. Fifteen proteins that were connected to the five infections were targeted by 77 drug candidates. By 
analyzing the degree of those proteins, we have classified 51 drug repositioning candidates that interact with 
hub proteins for the five diseases and 17 out of those 51 candidates also interact with low hub proteins. We com-
pared the computationally identified drugs with previously reported drugs and clinical trial data. Four of these 
drugs, trichostatin A, valproic acid, resveratrol and paracetamol, have been reported as effective treatments for 
flavivirus-induced diseases. This observation illustrates that our computational approach using omics data such 
as public gene expression microarray data, proteomics data and PPIs can identify potential drugs.

The presented computational method should be an effective approach to identify novel drug candidates that 
target multiple, related diseases. The large-scale intergradation of experimentally measured data and network 
analysis makes it possible to draw a comprehensive view of biological processes in multiple diseases. This study 
should aid researchers tackling emerging viral disease outbreaks that are transmitted by mosquitoes.
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