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Background. Diabetic nephropathy (DN) is a common microvascular complication of diabetes and a major cause of end-stage
renal disease, resulting in a substantial socioeconomic burden around the world. Some unknown biomarkers, mechanisms, and
potential novel agents regarding DN are yet to be identified. Methods. GSE30528 and GSE1009 were downloaded as training
datasets to identify differentially expressed genes (DEGs) of DN. Common DEGs were selected for further analysis. Gene
Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DEGs were performed to explore molecular
mechanisms and pathways. Protein-protein interaction (PPI) network of DEGs was used to identify the top 10 hub genes of
DN. Expression profiles of the hub genes were validated in GSE96804 and GSE47183 datasets. The clinical correlation analyses
were conducted to confirm the association between key genes and clinical characteristics in the Nephroseq v5 database. The
Drug Gene Interaction Database was used to predict potential targeted drugs. Results. 345 and 1228 DEGs were identified in
GSE30528 and GSE1009, respectively; and 120 common DEGs were found. The biological process of DEGs was significantly
enriched in kidney development. PI3K-Akt signaling pathway, focal adhesion, complement and coagulation cascades were
significantly enriched KEGG pathways. The identified top10 hub genes were VEGFA, NPHS1, WT1, TJP1, CTGF, FYN,
SYNPO, PODXL, TNNT2, and BMP2. VEGFA, NPHS1, WT1, CTGF, SYNPO, PODXL, and TNNT2 were significantly
downregulated in DN. VEGFA, NPHS1, WT1, CTGF, SYNPO, and PODXL were positively correlated with glomerular
filtration rate. The targeted drugs or molecular compounds were enalapril, sildenafil, and fenofibrate target for VEGFA;
losartan target for NPHS1; halofuginone, deferoxamine, curcumin, and sirolimus target for WT1; and purpurogallin target for
TNNT2. Conclusions. VEGFA, NPHS1, WT1, CTGF, SYNPO, and PODXL are promising biomarkers for diagnosing and
evaluating the progression of DN. The drug-gene interaction analyses provide a list of candidate drugs for the precise
treatment of DN.

1. Introduction

Diabetic nephropathy (DN) is one of the most common
microvascular complications of diabetes [1] that approxi-
mately 30% to 40% of diabetes patients may develop DN
[2]. Currently, the incidence of diabetes mellitus is increas-
ing year by year worldwide [3, 4]. With the rising prevalence
of diabetes mellitus, DN has become the leading cause of
chronic kidney disease (CKD) and end-stage renal disease
(ESRD) in China [5, 6]. Meanwhile, patients with DN have

a higher risk of cardiovascular disease (CVD) [4] which
imposes a heavy health and economic burden on individ-
uals, families, and society. Despite abundant studies and
efforts have been made to understand and manage DN, there
is still a large residual risk for DN patients. Current clinical
practice guidelines still fall short of strategies to halt the pro-
gression of DN [7] since it is a complex metabolic disorder
which involves many mechanisms and pathways.

Therefore, some unknown mechanisms and correspond-
ing potential novel agents are yet to be discovered for the
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better control of DN. In recent years, some microarray data
analyses on DN have been carried out [8, 9] and provide
comprehensive evidence that the genetic background is
involved in the development of DN [10]. Therefore, there
are likely many key genes that can be used as biomarkers
for the identification of DN [11]. Human gene expression
profiling can be useful in providing potential pathophysiolo-
gical mechanisms and identifying promising biomarkers and
potential novel drugs for DN [12]. With the rapid develop-
ment of high throughput sequencing technologies, inte-
grated bioinformatics analysis has emerged as a promising
approach to further explore human gene expression profil-
ing. Thus, with the aim to provide new insights to uncover
potential key genes and pathways associated with DN, we
used the integrated bioinformatics methods to investigate
the human kidney biopsy tissue gene expression profiles.

In the present study, we identified differentially expressed
genes (DEGs) of DN by analyzing two RNA expression pro-
files (training datasets) that were downloaded from the Gene
Expression Omnibus (GEO) database. Subsequently, common
DEGs of training datasets were identified for further analyses.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed to
explore potential molecular mechanisms and pathways of
DN. We also constructed the protein-protein interaction
(PPI) network and identified the top 10 hub genes of DN.
Expression profiles of the hub genes were validated in the
external validation datasets to prove the reliability of our
results. And the clinical correlation analyses were performed
to confirm the clinical significance of the screened key genes.
Finally, we predicted the potential drugs associated with key
genes of DN. It is anticipated that our study will shed light
on the underlying molecular mechanisms and provide several
reliable biological markers for diagnosing andmonitoring DN.
Meanwhile, the results would provide some theoretical basis
for exploring novel targeted agents to delay the progression
of DN or improve the prognosis of DN patients.

2. Materials and Methods

2.1. Microarray Data Resources and Collection. The gene
expression datasets analyzed in this study were obtained
from the National Center of Biotechnology Information
(NCBI) GEO database (https://www.ncbi.nlm.nih.gov/geo).
The keywords “diabetic nephropathy” or “diabetic kidney
disease” were used to search on the GEO database. After a
careful review, two total RNA expression profiling datasets
(GSE30528 and GSE1009) containing renal glomerular tis-
sue samples of DN and normal population were selected as
training datasets, and their series matrix file and platform
annotation information were downloaded for further
analyses.

2.2. Identification of DEGs. The downloaded platform and
series matrix files were converted using the R software (ver-
sion 4.1.1). The ID corresponding to the probe name was
converted into an international standard name for genes
(gene symbol). Identification of DEGs between DN and nor-
mal controls was performed using the limma package in the

Bioconductor package (http://www.bioconductor.org/).
Genes with an adjusted P value of < 0.05 and the log2 fold
change (FC) value ≥ 1 or ≤−1 (jlog 2 FCj ≥ 1) were consid-
ered as DEGs. In addition, Volcano plots for DEGs were cre-
ated via ggplot2 package (version 2.2.1). Venn plots were
used to intersect the two datasets (GSE30528 and
GSE1009) to obtain the common DEGs.

2.3. GO and KEGG Pathway Enrichment Analyses of DEGs.
To get a better understanding of the function of DEGs,
DAVID (https://david.ncifcrf.gov/) and R software were
used to conduct KEGG pathway enrichment analyses of
common DEGs. GO analyses consisting of biological process
(BP), cellular component (CC), and molecular function
(MF) were also performed. The top 5 statistically significant
enriched BP, CC, and MF terms and all enriched KEGG
pathways were recorded.

2.4. Construction of PPI Network and Identification of Hub
Genes. PPI network was established via the online tool
STRING (http://string-db.org/) by importing the common
DEGs of GSE30528 and GSE1009, and analytic results were
downloaded with a confidence score > 0:40. Subsequently,
the PPI network was visualized by Cytoscape software (ver-
sion 3.6.0). CytoHubba, a plugin in Cytoscape, was used to
calculate the degree of each protein node, and the top ten
genes were identified as hub genes.

2.5. Expression Profiles of Hub Genes in External Validation
Datasets. To further prove the reliability of our results, we
compared the expression levels of the identified hub genes
of DN in RNA expression profiling datasets (GSE96804
and GSE47183) from GEO database for external validation.
The samples of these two datasets were glomeruli from DN
patients and the normal portion of tumor nephrectomies
(control group). Unpaired Student’s t-tests were used to
compare normally distributed data with homogeneous vari-
ance between two groups while nonnormally distributed
data were compared by Mann–Whitney U test. All tests
were two-tailed, a P value < 0.05 was considered as statisti-
cally significant. All data were analyzed and graphed by
GraphPad Prism version 9.0.

2.6. Association between the Hub Genes and Clinical
Characteristics. Nephroseq v5 online database (http://v5
.nephroseq.org) was used to validate the correlation between
the expression level of hub genes and clinical indicators. The
correlation analysis was conducted by Pearson’s correlation
coefficients. P < 0:05was considered as statistically significant.

2.7. Identification of the Potential Drugs. The Drug Gene
Interaction Database (DGIDB) [13] online database
(https://www.dgidb.org) was used to predict the potential
targeted drugs that interacted with the verified hub genes,
and then the Cytoscape software was used to construct
drug-gene interaction network.
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3. Results

3.1. Evaluation and Characteristics of the Data. The platform
for GSE30528 is GPL571 platform ([HG-U133A_2] Affyme-
trix Human Genome U133A 2.0 Array) which includes 13
healthy control’s and 9 DN patients’ renal glomeruli
samples. The platform for GSE1009 is GPL8300 platform
([HG_U95Av2] Affymetrix Human Genome U95 Version
2 Array) which includes 3 healthy control’s and 3 DN
patients’ renal glomeruli samples. Figure 1 shows the flow-
chart of our study.

3.2. Identification of DEGs in DN. Two gene expression
profiles (GSE30528 and GSE1009) were analyzed in this
study. A total of 345 DEGs were identified from GSE30528
based on the defined criteria, 99 were upregulated genes
and 246 were downregulated genes in the DN group, and
these DEGs are shown in the volcano plots (Figure 2(a)).
1228 DEGs were screened from GSE1009, including 579
upregulated genes and 649 downregulated genes in the DN
group (Figure 2(b)).

3.3. Screening for the Common DGEs. Common DGEs were
analyzed by comparing GSE30528-DEGs with GSE1009-
DEGs. 120 common DEGs were identified, including 9 com-
mon upregulated DEGs (CCL19, FCER1A, IL7R, LDB2,
MRC1, SERPINF1, TDO2, TRBC1, and TSPAN1); 82 com-
mon downregulated DEGs such as BCAR3, CTGF, DPP6,
NPHS1, PODXL, PLA2R1, SYNPO, TGFBR3, TNNT2,
VEGFA, WT1, ZNF185, and ZNF423; and 29 changed
DEGs (Figure 3).

3.4. Enrichment Analysis of Common DEGs. To identify
relevant pathways and functions of common DEGs, GO
functional enrichment analysis and KEGG pathway enrich-
ment analysis were performed for these 120 common DEGs.

The results of the GO enrichment analysis (Figure 4)
indicated that common DEGs were significantly enriched
in kidney development, renal system development, urogeni-
tal system development, nephron development, and neph-
ron epithelium development in BP. For CC terms, DEGs
were significantly enriched in cell leading edge, membrane
raft, membrane microdomain, lamellipodium, and tight
junction. For MF, DEGs were significantly enriched in actin
binding, glycosaminoglycan binding, sulfur compound
binding, actin filament binding, and heparin binding. As
revealed from the KEGG enrichment analysis, the signaling
pathways were mainly enriched in the PI3K-Akt signaling
pathway, focal adhesion, complement and coagulation
cascades, Rap1 signaling pathway, regulation of actin cyto-
skeleton, AGE-RAGE signaling pathway in diabetic compli-
cations, and calcium signaling pathway (Figure 5).

3.5. PPI Network Construction and Hub Gene Identification.
The120 common DEGs were uploaded to the STRING
online database to acquire the information on PPI networks.
A total of 118 nodes and 133 edges were covered in the
network. The top10 hub genes were screened by Cytoscape;
they were VEGFA, NPHS1, WT1, TJP1, CTGF, FYN,
SYNPO, PODXL, TNNT2, and BMP2 (Figure 6).

3.6. Expression Profiles of Hub Genes in External Validation
Datasets. We analyzed the expression profiles of the hub
genes in GSE96804 which including 41 samples of DN and
20 samples of control group and GSE47183 which include
7 DN and 3 control samples. All of the hub genes can be
analyzed in validation datasets. The results in GSE96804
and GSE47183 showed that there was no significant differ-
ence in the expression level of TJP1, FYN, and BMP2
between DN and control group. For the reason that the
expression level of TJP1 and BMP2 was also inconsistent
in GSE1009 and GSE30528, the significance of TJP1 and
BMP2 in DN cannot be verified. Although the expression
level of FYN in DN group was significantly downregulated
in GSE1009 and GSE30528, there was no significant differ-
ence of FYN level in GSE96804 and GSE47183 datasets.
So, the FYN expression profile cannot be verified in external
validation datasets. Except for these three genes, all the other
hub genes can be verified in external validation datasets and
consistent with the results of training datasets that VEGFA,
NPHS1, WT1, CTGF, SYNPO, PODXL, and TNNT2 were
significantly downregulated in the DN renal glomeruli tis-
sues compared with control samples (Figure 7).

3.7. Validation of Association between Verified Hub Genes
and Clinical Characteristics. The association between the
verified 7 hub genes (VEGFA, NPHS1, WT1, CTGF,
SYNPO, PODXL, and TNNT2) and renal function (glomer-
ular filtration rate: GFR) was performed by Pearson’s corre-
lation analysis. Except that the expression level of TNNT2 in
DN patients was not recorded in Nephroseq database, the
expression level of VEGFA and NPHS1 mRNA in glomeruli
of DN was positively correlated with GFR. And the expres-
sion level of WT1, CTGF, SYNPO, and PODXL was posi-
tively correlated with GFR in DN and the control group.
The expression of VEGFA, NPHS1, WT1, CTGF, SYNPO,
and PODXL decreased with the decrease of GFR (Figure 8).

3.8. Identification of the Potential Drugs. VEGFA, NPHS1,
WT1, CTGF, SYNPO, PODXL, and TNNT2 were verified
DEGs both in the training datasets (GSE30528 and
GSE1009) and external validation datasets (GSE96804 and
GSE47183). Therefore, these seven genes were searched in
the DGIDB database to identify targeted drugs. As shown
in the drug-gene interaction network (Figure 9), drugs such
as enalapril, ranibizumab, pegaptanib sodium, bevasiranib,
aflibercept, risuteganib, and brolucizumab could regulate
the expression of VEGFA. Losartan could regulate the
expression of NPHS1. Dimethyl sulfoxide, halofuginone,
deferoxamine, and curcumin could regulate the expression
of WT1. Pamrevlumab, acridine, ramipril, enalapril, vitamin
E, and 2-methoxyestradiol could regulate the expression of
CTGF. Purpurogallin, pyrogallol red, and chembl1601846
could regulate the expression of TNNT2.

4. Discussion

DN is characterized by glomerulosclerosis, thickening of the
glomerular basement membrane, podocyte loss, and tubu-
lointerstitial fibrosis, which ultimately result in progressive
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albuminuria and reduction in GFR [14]. This hints that glo-
merular lesions play a key role in the development of DN
and the biopsy of renal tissue is the gold standard for diag-

nosing DN [15]. Therefore, biomarkers from renal tissue
are of great significance for the diagnosis and evaluation of
DN. Hence, we analyzed human gene expression profiles

Data collection
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Hub genes
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Expression profiles validation

Clinical association validation
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GSE96804 and GSE47183
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External validation datasets

Figure 1: Flowchart of the study. GSE30528 and GSE1009 were defined as training datasets to screen DEGs, and the intersection was taken
as common DEGs to perform functional enrichment analysis. The common DEGs were used to construct PPI network and identify the top
10 hub genes of DN. GSE96804 and GSE47183 were defined as external validation datasets to verify the gene expression profiles of the
screened hub genes. The clinical correlation analysis and drug-gene interaction analysis were performed to validate the clinical
significance and potential targeted drugs of hub genes associated with DN.
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Figure 2: Volcano plots of DEGs in the DN group vs. normal control. (a) GSE30528, (b) GSE1009. Each symbol represents a different gene.
The black dots represent the genes expressed without significant differences. The red color of the symbols represents upregulated genes,
whereas points in green represent downregulated genes.
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from four renal glomeruli samples including two training
datasets (GSE30528 and GSE1009) and two external valida-
tion datasets (GSE96804 and GSE47183). In our study, 120
common DEGs were identified in GSE30528 and GSE1009.
GO and KEGG enrichment analyses were performed to
explore the molecular mechanisms and signaling pathways
of DN. The results revealed that the biological process of
kidney development and urogenital system development
was chiefly involved in the development of DN. The results
of molecular functions showed that these DEGs may target
actin binding, glycosaminoglycan binding, sulfur compound
binding, and heparin binding to promote the progression of
DN. And the KEGG enrichment analysis proved that these
genes may affect DN through the PI3K-Akt signaling path-
way, focal adhesion, complement and coagulation cascades,
Rap1 signaling pathway, and regulation of actin cytoskeleton
signaling pathways.

In order to further clarify the interaction relationship
between these DEGs, we constructed the PPI network and
identified the most important 10 hub genes including
VEGFA, NPHS1, WT1, TJP1, CTGF, FYN, SYNPO,
PODXL, TNNT2, and BMP2. Among these 10 hub genes,
VEGFA, NPHS1, WT1, CTGF, SYNPO, PODXL, and
TNNT2 were significantly downregulated in the DN renal
glomeruli tissues compared with control samples, and the
results could be verified by external validation datasets.
Therefore, the reliability of downregulation of VEGFA,
NPHS1, WT1, CTGF, SYNPO, PODXL, and TNNT2 may
mediate the progression of DN can be verified at the molec-
ular biological level. GFR is a well-recognized clinical indica-
tor for evaluating renal function because the declining
kidney function is typically assessed by a decline of GFR in
clinical practice [16]. The clinical evidence from Nephroseq
database showed that VEGFA, NPHS1, WT1, CTGF,
SYNPO, and PODXL were positively correlated with GFR.
Therefore, the credibility of VEGFA, NPHS1, WT1, CTGF,
SYNPO, and PODXL as biomarkers for diagnosing and pre-
dicting the progression of DN can be proved at the clinical

level. We can conclude that VEGFA, NPHS1, WT1, CTGF,
SYNPO, and PODXL are not only reliable biomarkers for
the diagnosis of DN but also predictive factors for the pro-
gression and prognosis of DN. Integrating these biomarkers
and mechanisms with target drugs may accelerate the devel-
opment of novel efficient drugs and treatment strategies.
Therefore, we constructed the drug-gene interaction net-
work by DGIDB online platform.

VEGFA encodes vascular endothelial growth factor A,
and it is a member of platelet-derived growth factor super-
family [17]. VEGFA is highly expressed by glomerular podo-
cytes and plays an important role in glomerular endothelial
cell migration, differentiation, and survival [18]. Due to this,
VEGFA can regulate glomerular structure and function
which influence the outcome of DN. Therefore, proper
VEGFA level is of great significance for maintaining normal
glomerular function. Although some studies have found that
there is a higher VEGFA level in diabetes, suggesting that the
elevated VEGFA levels are pathogenic markers for diabetes
[19]. However, VEGFA knock out diabetic mice has adverse
consequences characterized by global sclerosis and death
[18] which illustrate the opinion that the upregulation of
VEGFA in diabetic kidneys may protect the microvascula-
ture from injury and reduction of VEGFA in diabetes may
be harmful. Another study directly provides evidence that
the application of VEGF inhibitors could lead to glomerular
injury [20]. A pharmaceutical experiment also proves that
metformin increases the production of VEGFA in podocytes
to reduce proteinuria through hypoxia-inducible factor-2α-
VEGFA signaling pathway [21]. And a network pharmacol-
ogy research shows that Huangqi Gegen decoction whose
clinical efficacy has been widely confirmed [22] can bind
with VEGFA to play the role of anti-inflammatory, antia-
poptosis, antioxidation, and autophagy effects to improve
renal function, thus delaying the development of DN [23].
All of these researches prove that VEGFA is beneficial to
the establishment and maintenance of glomerular structure
and function and provide a novel molecular mechanism
for protecting renal function. Consistent with these studies,
our research also demonstrated that VEGFA was signifi-
cantly downregulated in the DN group. Therefore, we hold
the opinion that elevated VEGFA may act as a compensatory
protective mechanism in the progression of DN. But with
the progress of disease, the expression level of VEGFA
decreases dramatically, and decreased VEGFA indicates a
seriously damaged endothelial system. We could believe that
VEGFA plays a pivotal protective role in the pathogenesis of
DN, and downregulated VEGFA is a reliable biomarker for
DN [20]. To predict the potential effective therapy for DN
associated with VEGFA, we applied the DGIDB database
to determine therapeutic agents that might reverse the
abnormally downregulated expression of VEGFA in DN.
By checking drugs one-by-one in the network, we found that
enalapril [24], sildenafil [25], and fenofibrate [26] positively
regulate VEGFA. Enalapril is a commonly used drug to
lower blood pressure and protect kidney function, fenofi-
brate is known as an important lipid-lowering drug, and sil-
denafil is an effective vasodilator. Since enalapril, sildenafil,
and fenofibrate could target VEGFA and increase the
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expression levels of VEGFA, application of these drugs may
reverse the abnormally downregulated VEGFA, thereby
delaying the deterioration of renal function and providing
new therapeutic targets for DN.

NPHS1 is primarily expressed in renal tissues and
encodes nephrin protein [27] which is a key protein for the
structural integrity and function of podocytes [28]. There-
fore, NPHS1 is of great significance for maintaining glomer-

ular filtration barrier in the kidney. Our study demonstrated
that NPHS1 was significantly downregulated in the DN
renal glomeruli tissues and positively correlated with GFR.
Meanwhile, GO analysis showed that nephron development
associated biological process was significantly enriched in
DN. We can elucidate that the downregulation of NPHS1
may be involved in the occurrence and development of DN
through destroying the integrity of glomerular filtration

BP
CC

M
F

0.050 0.075 0.100 0.125 0.150

Nephron epithelium development
Nephron development

Urogenital system development
Renal system development

Kidney development

Tight junction
Lamellipodium

Membrane microdomain
Membrane raft

Cell leading edge

Heparin binding
Actin filament binding

Sulfur compound binding
Glycosaminoglycan binding

Actin binding

Gene ratio

Count
6
9

12

15

0.03

0.02

0.01

p.adjust

Figure 4: GO enrichment analysis of common DEGs. The x-axis label represents the gene ratio (the number of genes enriched in one GO
term divided by the total number of genes used for enrichment analysis), and the y-axis label represents GO terms. The color of the node is
displayed in a gradient from red to blue according to the ascending order of the adjusted P value.

Calcium signaling pathway

AGE−RAGE signaling pathway
in diabetic complications

Regulation of actin cytoskeleton

Rap1 signaling pathway

Complement and coagulation
cascades

Focal adhesion

PI3K−Akt signaling pathway

0.0 2.5 5.0 7.5 10.0

0.100

0.075

0.050

0.025

p.adjust

Gene number

Figure 5: KEGG pathway enrichment analysis of common DEGs. The x-axis label represents the gene number, and the y-axis label
represents signaling pathways. The color of the bar is displayed in a gradient from red to blue according to the ascending order of the
adjusted P value.

6 Disease Markers



barrier. Therefore, reversal of the downregulated NPHS1
may protect renal podocytes to maintain the glomerular fil-
tration barrier. In the drug-gene network analyses, we found
that the target drug for NPHS1 was losartan, and this evi-
dence was derived from an experimental study which proved
that angiotensin II may cause a significant reduction of
NPHS1 and losartan could restore angiotensin II-induced
podocyte injury through Wnt/β-catenin axis [29]. A pro-
spective multicenter randomized controlled trial (RCT)
research also proved that NPHS1 variation is associated with
the efficacy of losartan [30]. Therefore, the result that losar-
tan can positively regulate the downregulated NPHS1 in DN
patients may provide new evidence and mechanism for the
usage of losartan in the treatment of DN.

Wilms’ Tumor 1 (WT1) is mainly expressed in glomeru-
lar podocytes [31]. Therefore, WT1 plays a pivotal role in

the formation of glomeruli and the normal function of
podocytes [32]. Previous studies have proved that WT1
could ameliorate podocyte injury thus reducing urinary
protein and serum creatinine and increasing GFR [33] via
repression of the EZH2/β-catenin pathway in DN [34].
Our study further proved that WT1 was significantly down-
regulated in DN and positively correlated with GFR. There-
fore, we could speculate the decreased protective effects of
WT1 participant in the occurrence and progression of DN.
Correspondingly, the reversion of the downregulated WT1
may delay the progression of DN. We found that halofugi-
none, deferoxamine, curcumin, and sirolimus had interac-
tions with WT1 although the regulatory directions between
them are yet unknown. But previous studies indicate that
halofuginone could prevent extracellular matrix deposition
and decrease oxidative stress [35], deferoxamine could
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suppress glomerular oxidative stress [36], and curcumin
could alleviate podocyte epithelial-mesenchymal transition
(EMT) [37], thereby suppressing the progression of DN.
Sirolimus could reduce proteinuria and alleviate the early
DN podocyte injury by inhibiting the activity of mTORC1
[38]. Therefore, halofuginone, deferoxamine, curcumin,
and sirolimus are worthy of further exploration as potential
therapeutic drug target for WT1 in the treatment of DN. It is
noteworthy that there are various functions of WT1 [31]. So,
the aberrations of WT1 are associated with different patho-
logical variants of kidney diseases. Therefore, our findings
are only generalizable to DN but not to other types of
diseases.

A previous study has revealed that downregulation of
connective tissue growth factor (CTGF), VEGFA, and
WT1 was all related to a reduction of podocytes in DN
[39]. Although our results also showed that CTGF was sig-
nificantly downregulated in the DN group, there are many
other studies show that overexpression of CTGF involved
in the podocytes injury [40], and EMT in DN mice and

CTGF antibody or inhibitors may protect podocytes from
these injuries [41] and ameliorate DN [42, 43]. Therefore,
the role of CTGF in the pathogenesis of DN requires to be
further explored. Meanwhile, the application of CTGF-
targeted drugs in the treatment of DN also needs further
confirmation.

TNNT2 also known as troponin T2 is a subtype of the
cardiac troponin family which plays a key role in the con-
traction of striated muscles [44]. Although it is generally
believed that TNNT2 exists in cardiac muscle, the results
of RNA expression profiles from two training datasets and
two validation datasets all showed that TNNT2 was also
expressed in human glomerular specimens and involved
in the development of DN. Due to the fact that the loss
of TNNT2 may lead to heart rhythm disorder and impaired
cardiovascular function [45], so the downregulation of
TNNT2 may symbolize the decline of cardiac function in
DN patients. Therefore, downregulated TNNT2 is not only
a symbol of deterioration of renal function but also repre-
sents the decline of cardiac function in DN patients. Hence,
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maintaining the normal level of TNNT2 may be helpful to
delay the deterioration of renal function and improve the
cardiac function in patients with DN. Purpurogallin, pyro-
gallol red, and chembl1601846 molecular compounds may
target TNNT2 to achieve the above effects. Previous studies
have proved that purpurogallin may play anti-inflammatory
activities through inhibiting lipopolysaccharide- (LPS-)
induced monocyte adhesion and migration and reducing

the release of inflammatory mediators such as nuclear fac-
tor-κB and tumor necrosis factor-α [46, 47]. Meanwhile,
purpurogallin also has effects of antioxidant, antiplatelet,
and antithrombotic activities [48], and it is a powerful pro-
tector of kidney [49] and an effective cardioprotector [50].
Combined with these effects of purpurogallin and our
results from drug-gene interaction analyses, we think that
purpurogallin may target TNNT2 to play a renal and
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cardioprotective effect for DN patients. Pyrogallol red and
chembl1601846 were all chemical reagents, and their bio-
logical functions have not been sufficiently elucidated.
Although information from the DGIDB database showed
that pyrogallol red and chembl1601846 could target
TNNT2, studies are still needed to confirm their biological
functions and pharmacological effects. Furthermore, the
efficiency of drugs or molecular compounds targeted to
the key genes above still requires to be further validated
by in vitro/vivo experiments and large-scale prospective
cohort studies. Our in silico studies provide a possible clue.
However, the present study exhibits some limitations. First,
these solely in silico results require further validation by
in vitro/vivo experimental studies. Second, we cannot know
the specific CKD stage of the participants in these datasets.
Therefore, the dynamic changes of these hub genes in the
whole disease course need to be confirmed by clinical lon-
gitudinal cohort studies. Hence, collection of kidney speci-
mens and more detailed clinical data from DN patients in
a large cohort study is needed in the future to further vali-
date our present findings. Meanwhile, high quality RCT
researches are needed to confirm the effectiveness of these
potential therapeutic drugs for DN.

Despite these limitations, we conclude that the present
study provided a comprehensive bioinformatics analysis of
DEGs and identified 10 hub genes that might be related to
the progression of DN. We also revealed that key genes
VEGFA, NPHS1, WT1, CTGF, SYNPO, PODXL, and
TNNT2 were significantly downregulated in DN patients.
VEGFA, NPHS1, WT1, CTGF, SYNPO, and PODXL were
associated with the development and progression of DN at

the molecular and clinical level. Various drugs provide new
therapeutic targets for DN that enalapril, sildenafil, and
fenofibrate may positively regulate VEGFA; and losartan
positively regulates NPHS1. Halofuginone, deferoxamine,
curcumin, and sirolimus are potential therapeutic drugs
targeting WT1 in the treatment of DN. Purpurogallin may
targetTNNT2 to delay the deterioration of renal function
and improve the cardiac function in DN patients. To sum
up, our study provides some promising biomarkers, mecha-
nisms, and novel potential therapeutic targets for the scien-
tific diagnosis and precise treatment of DN.

5. Conclusions

Our study provides new insights into the molecular mecha-
nisms and targeted drugs of DN. VEGFA, NPHS1, WT1,
CTGF, SYNPO, and PODXL are promising biomarkers for
diagnosing and evaluating the progression of DN. The
drug-gene interaction analyses provide a list of potential
candidate drugs for the precise treatment of DN.

Data Availability

The readers can access the data through GEO database.
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