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Abnormal data detection 
of guidance angle based 
on SMP‑SVDD for seeker
Chao Liang1,2*, Dedong Cui2, Zhengang Yan2, Xiangyu Zhang2, Qiang Luo2, Jiang Hu3 & 
Xuan He2

The accuracy of the pitch angle deviation directly affects the guidance accuracy of the laser seeker. 
During the guidance process, the abnormal pitch angle deviation data will be produced when the 
seeker is affected by interference sources. In this paper, a new abnormal data detection method based 
on Smooth Multi-Kernel Polarization Support Vector Data Description (SMP-SVDD) is proposed. In 
the proposed method, the polarization value is used to determine the weight of the multi-kernel 
combination coefficient to obtain the multi-kernel polarization function, in which the particle swarm 
optimization is used to find the optimal kernels for higher detection accuracy. Besides, by using 
smoothing mechanism, the constrained quadratic programming problem is translated to be smooth 
and differentiable. Then, this problem can be solved by the conjugate gradient method, which could 
reduce the computational complexity. In experimental section, abundant simulation experiments 
were designed and the experimental results verify that the proposed SMP-SVDD method could 
achieve higher detection accuracy and low computational cost compared with different detection 
methods in different guidance stages.

In the actual guidance process, the laser seeker faces various interference factors, such as laser high repetition 
frequency interference1 and laser deception interference2,3. These interference factors will produce abnormal 
data about the pitch angle deviation in laser guidance data. High-frequency jamming can force the jamming 
signal into the time wave gate of seeker by generating a high-frequency laser signal, thus flooding the real signal 
and generating jamming data4–6. Jamming sends out a signal that is consistent with the indication signal by 
measuring the parameter information, such as the wavelength, frequency, and azimuth of the indicating laser, 
and enters the wave gate of the seeker to generate jamming data7. During the flight of the missile, the function 
of laser seeker is to measure the angle information between missile and target and the accuracy of the angle 
will directly affect the final hit accuracy of the missile8. When the laser seeker is disturbed, the abnormal seeker 
angle measurement data can reduce the guidance accuracy of the missile9. Eliminating the abnormal data from 
the angle measurement information of the seeker is of great significance to improve the guidance accuracy and 
anti-jamming ability of the missile10.

The elimination of interference can be regarded as the problem of outlier detection, where normal data and 
abnormal data can be classified to achieve the purpose of anti-interference. The abnormal interference data of 
laser seeker guidance can be processed by detection and classification methods. The abnormal interference data 
of laser seeker guidance can be processed by detection and classification. At present, there are many abnormal 
data detection methods, such as convolutional neural networks (CNN)11,12, discriminant analysis methods13, 
clustering methods14, support vector machine methods15, cascade model-aware generative (CMAG)16, Tradaboost 
methods17, generalized least squares methods18, MLP(multi-layer perceptron)19, probability methods20, local 
outlier factor21, and so on. Yuen et al.20 adopted a probability method for outlier detection and quantified the 
outlier probability of data points, considering not only the optimal values of parameters and residuals, but also 
the uncertainty of data. However, this method needs to give a threshold probability to judge whether the data is 
abnormal or not. Liu et al.21 proposed an outlier detection method based on local information, which combines 
the traditional local outlier detection method LOF with the outlier factor of uncertain information. Paola et al.22 
proposed an adaptive distributed Bayesian method to detect outliers in data collected by wireless sensors and 
also considered the external constraints of these target data. However, this method needs a probability density 
distribution model with uncertain data, which is difficult for seeker guidance angle data. Li et al.23 proposed 
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an outlier detection method based on structural scores to process high-dimensional data, which can reflect the 
characteristics of high-dimensional data. However, because outliers are judged by calculating the included angle 
of vectors and sorting the structure, this method may have a higher false detection rate for outliers with a small 
Euclidean distance from normal data. Yuan et al.24 introduced fuzzy rough set (FRSs) to deal with the problem 
of anomaly detection and classification of mixed attribute data, generalized the outlier detection model by FRS, 
and constructed a generalized outlier detection model based on fuzzy rough granules. However, this method has 
high time and space complexity and needs further optimization. Abid et al.25 adopted a density-based method 
to detect clusters with arbitrary shapes and outliers. However, the method based on density clustering is not 
suitable for data with uneven density of sample set and large cluster spacing. Support vector machine (SVM) 
has been introduced to solve the outlier detection problem because of its advantages in binary classification. The 
support vector data description SVDD is a single classification method of support vector machine, which does 
not need any distribution assumptions for target data, can map the original data to high-dimensional feature 
space, establish the smallest hypersphere containing the given data, and can detect outliers26. However, SVDD 
algorithm has high complexity, and it is difficult to select kernel functions and kernel parameters27.

In the actual guidance process, the pitch angle deviation data of the laser seeker in different guidance stages 
varies greatly nonlinearly, which makes it difficult to assume distribution. Besides, due to the limited hardware 
resources of the missile and the complexity of the algorithm, the above methods cannot meet the requirements 
of abnormal data detection of the laser seeker. Therefore, this paper proposes a smooth multi-kernel polariza-
tion support vector data description (SMP-SVDD) method to classify and detect the pitch angle deviation data. 
Compared with single-kernel kernel function, multi-kernel function can adapt to data with different nonlinear 
characteristics and improve the detection accuracy of the algorithm. However, because the SVDD algorithm 
needs to solve quadratic programming problems, the complexity of the algorithm is high, and multi-kernel will 
also increase the complexity of the algorithm to a certain extent, thus these factors will increase the resource 
consumption of the onboard system. Therefore, the proposed method also introduces the smoothing function 
to reduce the complexity of the algorithm, by transforming the constrained quadratic programming problem 
into an unconstrained differentiable optimization problem which can be solved by conjugate gradient method. 
However, because the nonlinear characteristics of data in different stages are quite different, this method adopts 
a multi-stage method to construct the detection model, and adopts the particle swarm optimization method to 
determine the optimal kernel function and kernel parameters in each stage. Experiments show that this method 
is effective in dealing with outliers of the seeker pitch angle deviation data.

The rest of this paper is organized as follows. In the second part, the theoretical calculation and analysis 
of smooth multi-kernel polarization support vector data description algorithm are given, including classical 
SVDD algorithm, multi-core polarization SVDD algorithm, smooth multi-kernel polarization SVDD algorithm, 
optimal selection of kernel parameters and algorithm complexity analysis. In the third part, through simulation 
experiments, we verify the detection performance of the proposed method both on detection accuracy and 
computational cost. Finally, a conclusion of this work is given.

Smooth multi‑kernel polarization support vector data description
Support vector data description (SVDD).  The basic idea of the support vector data description is to 
map the normal data to the high-dimensional feature space, construct a minimum hypersphere to describe the 
data, contain all the normal data, and eliminate the outliers from the outliers26. The goal of SVDD is to find a 
minimum radius to distinguish outliers form normal data.

Take the pitch angle deviation data of the laser seeker as the training sample {θi , i = 1, . . .m} , θi contains the 
normal pitch angle deviation data and the disturbed data, and these data are marked. We described the data set, 
the simplest model is to use a hypersphere to simulate the distribution area of the positive sample.

SVDD is the non-linear transformation � mapping of the training sample data θi to find the smallest volume 
hypersphere � = (α,R) that surrounds all or most of the positive samples, where α represents the hypersphere 
center and R represents the hypersphere radius. Mathematically, it can be expressed as the following formula:

The center α of the hypersphere can be expressed as a Lagrangian multiplier27:

By constructing a Lagrange function, the original problem can be transformed into the following problem:

where K(θi · θj) = ��(θi),�(θj)� is the kernel function.

(1)
min
R,α,ξ

F(R,α, ξ) = R2 + C

n
∑

i=1

ξi

s.t. ��(θi)− α�2 ≤ R2 + ξi , ξi > 0.

(2)α =

n
∑

i=1

αi�(θi).

(3)

max
∑

i

αiK(θi · θi)−
∑

i,j

αiαjK(θi · θj)

s.t.
∑

i

αi = 1, 0 ≤ αi ≤ C,
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By solving the linear constrained quadratic optimization problem mentioned above, αi can be obtained. Only 
when αi > 0 , the sample point θi of the seeker pitch angle deviation data affects the center of the hypersphere, and 
the corresponding sample point is called the support vector. The radius of the hypersphere can be expressed as

The distance from the test data sample θ
′

i to the center of the hypersphere is expressed as

where θk ∈ SVs , SVs is the support vector set. If 
∥

∥

∥
θ
′

i − α

∥

∥

∥

2
≤ R2 , then θ

′

i is the pitch angle deviation data without 
interference; otherwise, it is the interference data.

Multi‑kernel polarization SVDD (MP‑SVDD).  The pitch angle deviation data of the laser seeker will 
show different nonlinear characteristics in different stages. Therefore, when using the SVDD model, compared 
with a single-kernel function, multi-kernel function has a stronger classification ability and better flexibility for 
data in different guidance stages. However, in the process of multi-kernel combination, numerous combination 
weight parameters will be artificially introduced, which will make it difficult to find the best parameters, and it is 
easy to have a dimension disaster and local extremum problems when searching for the best parameters.

Polarization can reflect the similarity between a kernel function and an ideal kernel matrix. The same kind 
of data is close to each other, while different kinds of data are far away from each other, and the combination 
relationship between different kernels can be determined28,29. If there is a clear correspondence between the 
nuclear data points and the labeled values, the classification process will become easier. Suppose that the train-
ing data set is {x(i), y(i), i = 1, ...M} , y is the labeled data, y(i) ∈ {−1,+1} , the polarization nucleus is defined as

The greater the contribution rate of the kernel function to the correct classification of the sample, the greater 
the corresponding K (i)

v  value would be. Therefore, in the multi-kernel learning process, the nuclear polarization 
value can be used to determine the weight of the combination coefficient. The specific expression for determin-
ing the weight coefficient is as follows:

In this work, we chose the following basic kernel functions: Gaussian kernel function, Laplace kernel function, 
and exponential kernel function. We can combine the following polynuclear polarization functions as follows:

Among them, KG,KL,KE are the Gaussian kernel function, Laplace kernel function, and exponential kernel 
function. KG,KL,KE are the combined multi-kernel polarization function. Using a multi-kernel polarization kernel 
function in SVDD, the following dual optimization form is obtained:

Among them, Km - p is a multi-kernel polarized kernel function, including four types of kernel functions: 
KGL,KGE,KLE , and KGLE.

Smooth MP‑SVDD.  Because MP-SVDD is still an optimization problem in the form of quadratic program-
ming, it cannot be directly converted into an unconstrained differentiable function for optimization. This leads 
to high algorithm complexity in the process of seeker angle data training, and the training time will increase 
geometrically with the increase of data. Inspired by the smoothing function, the MP-SVDD model is smoothed 
and transformed into a differentiable unconstrained optimization problem, and the conjugate gradient method 
is used to find the optimal solution.

The smooth function can be obtained by integrating the sigmoid function30.

(4)R2 = K(θk · θi)− 2
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KGL = �G · KG + �L · KL
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Let L(α) = Kmp(θi · θi)− 2
∑

i αiKmp(θi · θj)+
∑

j,k αjαkKmp(θj · θk) , then the aforementioned constrained 
quadratic programming optimization problem can be transformed into a differentiable Fτ function:

The partial derivative of the R and α variables in the formula can be obtained as follows:

Compared with the constrained quadratic programming problem, the conjugate gradient method mentioned 
above avoids the complicated operations, such as solving linear matrix equations, by which the complexity of 
the algorithm can be reduced.

Optimal selection of nuclear parameters.  The pitch angle deviation data of the seeker has different 
nonlinear characteristics at different stages, and the classification accuracy of pitch angle deviation data is differ-
ent with different kernel function parameters and different linear combinations. Therefore, the particle swarm 
optimization algorithm is adopted in this paper, and different kernel function parameters are adopted for differ-
ent guidance stages to obtain the optimal multi-kernel function and penalty factor.

(10)pτ (x) = x +
1

α
ln(1+ e−τx).

(11)Fτ (R,α) = R2 + C

n
∑
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pτ
(
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Particle Swarm Optimization (PSO) is a heuristic evolutionary computation technique, which initializes a 
group of particles and iterates to find the optimal solution. Particle Swarm Optimization is widely used in target 
optimization31,32, neural network training33,34, and so on. The PSO method defines a fitness function according to 
the objective function, and every particle is updated by speed and position in the iterative a process of optimiza-
tion. Every particle will determine a local optimal solution ipbest, and the optimal solution found by the whole 
population is called global optimal solution gbest. The PSO algorithm adaptively updates the speed and position 
information of particles based on the good past experience.

The process of PSO algorithm to optimize the SMP-SVDD model is shown in Algorithm 2. Among them, ω 
is the inertia weight, which is used to measure the search ability of the particle swarm optimization algorithm, c1 
is the individual learning factor, and c2 is the group learning factor. As shown in Fig. 1, the parameters in SMP-
SVDD are optimized by PSO algorithm.

Complexity analysis.  Assuming that there are N data in the whole guidance phase, the time complexity 
of the classical SVDD algorithm27 is O(N3) , and that of the SA-SVDD algorithm is O(N2) . In the SMP-SVDD 
model, the time complexity of the polarization kernel function Kv =

1
M2

∑M
i=1

∑M
j=1 kv(x

(i), x(j))y(i)y(j) is O(N2) 
after the multi-kernel polarization function is calculated, the smoothing process is performed, and the conjugate 
gradient is used to solve the problem, in which the most complicated operation is 

∑

j,k αjαkKmp(θj · θk) and the 
complexity is O(N2) . Therefore, the computational complexity of SMP-SVDD is O(N2).

However, the characteristics of pitch angle deviation data are quite different in each guidance stage. If the 
data of the whole guidance stage is trained at one time, it will not only be difficult to ensure the accuracy of data 
detection, but the computational complexity will also increase geometrically because of the increase in data 
volume in the whole process. If the entire guidance process is divided into n guidance stages according to the 
characteristics of different stages, the data volume of each stage is 

{

N
n1
, Nn2 , ...,

N
ni
, ... Nnn

}

 . Because the time com-
plexity and the data volume are quadratic, T(N) >

∑n
i=1 T

(

N
ni

)

 , where T(·) is the calculation operation of the 
algorithm time.

Simulation experiments
Evaluation indexes.  In this paper, the accuracy rate, recall rate (TPR), false positive rate (FPR), true nega-
tive rate (TNR), and false negative rate (FNR) are used to evaluate the detection performance of the model. The 
higher the accuracy and recall rate, the better the performance of the model. The statistical result of sample clas-
sification is shown in Table 1.

The calculation formulas of evaluation indexes are as follows:

(15)


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Experimental results of comparing algorithms.  In this section, the experiments simulate the laser 
guided missile attacking the ground target. The whole trajectory simulation range is 8 km. When the seeker is 
5 km away from the target, it starts to guide. When it is 3 to 5 km away from the target, it is the initial guidance 
stage, wherein the seeker is in the state of searching for the target and tracking it, the intermediate guidance pro-
cess is 1.5 to 3 km away from the target, and the final guidance stage is 0 to 1.5 km away. Trajectory simulation is 
conducted under the conditions of no interference and laser decoy interference (4 to 2.5 km with interference), 
and the pitch angle deviation data set during laser seeker guidance is obtained. The specific conditions of the data 
set are shown in Table 2. In this paper, MATLAB 2018b is used to run on PC and the CPU is an AMD Ryzen 7 
5800H 3.2GHz with 16GB RAM.

According to the experimental dataset obtained from ballistic simulation, we used SVDD, SA-SVDD, and 
SMP-SVDD to detect the outliers of pitch angle deviation data in the whole guidance process. Through setting 
optimization parameters, the particle population size is 60, the maximum number of iterations is 1000, the 
range of penalty factor is [0 1], the range of kernel parameters of Gaussian kernel function is [0.1 10], the range 
of kernel parameters of Laplace kernel function is [0.1 10], and the range of kernel parameters of exponential 
kernel function is [0.1 10]. The comparison results can be obtained through optimization, as shown in Table 3

When compared to SVDD and SA-SVDD, the SMP-SVDD model used in this paper has higher accuracy in 
data classification and detection, and the highest detection accuracy is obtained when the KGLE kernel function 
is used. Comparing the TPR and TNR indicators, the detection accuracy of SMP-SVDD is improved, and the 
false detection rate is reduced. This shows that after the multi-kernel polarization method is used to process 

Figure 1.   Flow chart of the proposed method in this paper.

Table 1.   Classification of samples.

Actual situation

Testing result

Positive class Negative class

Positive class TP (real positive) FN (false negative)

Negative class FP (false positive) TN (true negative)
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the kernel function, the algorithm model has adapted to the linear and non-linear changes of the data during 
the entire guidance process, and the classification ability and detection accuracy of the model can be improved.

Experimental results of different kernel functions.  According to the data in different stages, the 
SMP-SVDD model is used for detection, and particle swarm optimization is used to find the optimal parameters 
of different polarization kernel functions in different guidance stages, as shown in Table 4. We can obtain the 
optimal kernel selection of each stage, and the classification result diagram of training data and support vector 
through the optimal polarization kernel function SVDD of each stage is shown in Fig. 2. Because the nonlinear 
characteristics of data will significantly change in different guidance stages, the outlier interference points of data 
in different guidance stages are detected and classified in this paper.

Table 2.   Experimental data set.

Guidance phase Normal data Abnormal data

Initial stage 343 172

Intermediate stage 269 132

Final stage 328 61

Overall process 949 346

Table 3.   Comparison of outlier detection indexes of pitch angle deviation in the whole guidance stage. 
Significant values are in bold.

Model Kernel function TPR (%) TNR (%) FPR (%) FNR (%) Accuracy (%)

SVDD

Gauss 93.72 80.34 19.66 6.28 90.67

Laplacian 92.37 85.96 14.04 7.63 91.37

Exponential 93.12 83.15 16.85 6.88 90.28

SA-SVDD

Gauss 91.52 78.44 21.56 8.48 90.34

Laplacian 91.35 83.56 16.44 8.65 90.21

Exponential 90.22 80.35 19.65 9.78 89.89

SMP-SVDD

KGL 99.68 82.30 17.70 0.32 94.91

KGE 99.79 83.15 16.85 0.21 95.22

KLE 99.04 85.39 14.61 0.96 95.29

KGLE 97.77 93.26 6.74 2.23 96.53

Table 4.   Optimal detection results of SMP-SVDD using different polarization kernel functions at different 
stages. Significant values are in bold.

Guidance phase
Polynuclear polarization 
function

Optimal kernel parameter Number of support 
vectors Accuracy of detection (%)Gauss Laplace Index

Initial stage

KGL 0.51 0.32 – 95 92.04

KGE 0.62 – 0.54 99 93.20

KLE – 0.81 0.83 98 96.70

KGLE 0.71 0.52 0.61 92 94.76

Intermediate stage

KGL 0.75 0.43 – 30 98.00

KGE 0.41 – 0.42 36 96.76

KLE – 0.52 0.82 32 97.76

KGLE 0.50 0.52 0.78 27 98.75

Final stage

KGL 0.51 0.54 – 35 99.09

KGE 0.60 – 0.80 37 99.49

KLE – 0.59 0.81 30 95.12

KGLE 0.50 0.51 0.79 39 98.97

Whole stage

KGL 3.70 3.71 – 40 94.91

KGE 3.00 – 0.50 31 95.22

KLE – 2.90 1.90 180 95.29

KGLE 0.52 2.70 1.90 120 96.53
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According to the results above, when using the SMP-SVDD model to detect outlier data points in the initial 
stage of guidance, the KLE polarization multi-kernel function can be used to obtain the highest detection accuracy 
of 96.70%. In the intermediate stage of guidance, the highest detection accuracy of 98.75% can be obtained by 
using the KGLE kernel. In the final stage of guidance, the highest detection accuracy of 99.49% can be obtained 
by using the KGE polarization multi-kernel function. By contrast, if the same multi-kernel polarization kernel 
function is used for the detection of outlier interference points in the entire stage, the detection accuracy is lower 
than that of the multi-kernel function used in stages. Compared with the detection in three different stages using 
different multi-kernel polarization functions, the detection accuracy of the whole stage is reduced by 2.26%, 
4.31%, and 5.05%, respectively, compared with the optimized staged accuracy. Therefore, in different stages of 
guidance, using different polarization multi-kernel functions can achieve higher detection accuracy.

Experimental results about time cost.  According to the guidance angle data of laser seeker in the whole 
guidance stage and different guidance stages, under the hardware and software environment described in this 
section, the time of single sample training of SVDD, SA-SVDD and SMP-SVDD is compared to verify the time 
complexity of different algorithms.

As shown in Table 5, from the comparison of the results, the training time of SMP-SVDD is lower than 
that of the SVDD algorithm because the SMP-SVDD uses a conjugate gradient method to solve the minimum 
value, which reduces the complexity of the algorithm. Compared with SA-SVDD, SMP-SVDD uses multi-kernel 
function, in which its training time is slightly higher than the SA-SVDD algorithm. However, if the multi-stage 
training method is adopted, the data of different stages of guidance will be trained separately, which will not only 
improve the detection rate, but may also reduce the overall training time.

Figure 2.   Optimal classification results of outlier detection in different guidance stages. (a) Outlier detection in 
the initial stage of guidance, (b) outlier detection in the intermediate stage of guidance, (c) Outlier detection in 
the final stage of guidance, (d) Outlier detection in the whole stage of guidance.
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Conclusion
In this paper, a SMP-SVDD method is proposed to detect the abnormal data of seeker interference and the 
particle swarm optimization algorithm is used to get the best kernel parameters. (1) Compared with SVDD and 
SA-SVDD, SMP-SVDD has better detection accuracy and higher detection accuracy. (2) The smoothing function 
is introduced to transform the constrained quadratic programming problem into a differentiable unconstrained 
problem and the conjugate gradient solution can reduce the complexity of the algorithm. Compared with SA-
SVDD, the detection accuracy is improved and the calculation efficiency is slightly reduced, but the difference 
is not large. (3) Various polarization multi-kernel functions can be used in different guidance stages. Compared 
with using a polarization multi-kernel function in the whole guidance stage, this processing mode has better 
detection and classification performance and it improves the overall data training efficiency. The improvement 
in the detection performance of the seeker’s interference anomaly data meant that seekers will have higher intel-
ligent processing abilities and anti-interference performance. In the future, we will conduct further in-depth 
research on the detection and recognition of interference data in view of the improvement of the seeker’s anti-
interference performance.

Received: 21 October 2021; Accepted: 10 December 2021

References
	 1.	 Zhang, S., Liu, Z., Wang, S. & Zhao, Q. Research on modeling and simulation of high repetition laser jamming laser guidance 

weapon. Infrared Laser Eng. 45, 0306008 (2016).
	 2.	 Luo, W., Yang, H., Dai, D. & Tao, M. Research of laser angle deception jamming to multi-targets of laser guidance. Laser Infrared. 

49, 1461–1466 (2019).
	 3.	 Liang, W., Zhao, H., Yin, R., Li, H. & Chen, Q. Study of time delay characteristic of HITL simulation system for laser angle decep-

tion jamming. Acta Armamentarii. 39, 1178–1185 (2018).
	 4.	 Zhao, Q., Liu, Z., Wang, S. & Zhang, S. Jamming effect of high repetition laser on laser guidance’s decoding. Infrared Laser Eng. 

44, 1438–1443 (2015).
	 5.	 Qiu, X., Liu, Z. & Wang, S. Research on effective probability of high-repetition interference in semi-active laser guided weapon 

system. Infrared Laser Eng. 48, 1005004 (2019).
	 6.	 Liu, Z., Qiu, X., Wang, S. & Wang, Z. Influence of laser seeker detection performance on high repetition rate interference laser. 

Chin. J. Lasers 46, 1101001 (2019).
	 7.	 Han, S., Li, W., He, B. & Zhu, C. Operational effectiveness of a laser angle deception jamming system. Electron. Opt. Control. 26, 

83–87 (2019).
	 8.	 Han, D., Deng, Y. & Zhang, J. Calibration of seeker angle-measuring error with block three-order polynomial. Acta Armamentarii. 

40, 2042–2049 (2019).
	 9.	 Qiu, X., Wang, S., Liu, Z. & Xu, W. Modeling research on angle measurement accuracy of four-quadrant detector of laser seeker. 

Infrared Laser Eng. 49, 20190453 (2020).
	10.	 Qiu, X., Liu, Z. & Wang, S. Effects of angular tracking error of laser seeker on precise laser guidance. J. Xi’an Jiaotong Univ. 54, 

124–130 (2020).
	11.	 Salamon, J. & Bello, J. P. Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE 

Signal Process. Lett. 24, 279–283 (2017).
	12.	 Yoo, Y. J., Kim, H. I. & Choi, S. I. Robust classification of largely corrupted electronic nose data using deep neural networks. IEEE 

Sens. J. 21, 5052–5059 (2021).
	13.	 Ng, M. K., Liao, L. Z. & Zhang, L. On sparse linear discriminant analysis algorithm for high-dimensional data classification. Numer. 

Linear Algebra Appl. 18, 223–235 (2015).
	14.	 Wei, H., Chen, L., Ruan, K., Li, L. & Chen, L. Low-rank tensor regularized fuzzy clustering for multiview data. IEEE Trans. Fuzzy 

Syst. 28, 3087–3099 (2020).
	15.	 Jimenez-Castano, C., Alvarez-Meza, A. & Orozco-Gutierrez, A. Enhanced automatic twin support vector machine for imbalanced 

data classification. Pattern Recognit. 107, 107442 (2020).
	16.	 Han, K., Li, Y. & Xia, B. A cascade model-aware generative adversarial example detection method. Tsinghua Sci. Technol. 26, 

800–812 (2021).
	17.	 Wang, W. et al. Abnormal detection technology of industrial control system based on transfer learning. Appl. Math. Comput. 412, 

126539 (2022).

Table 5.   Comparison of training time of different methods.

Algorithm Processing mode Number of detected data Training time (s)

SVDD

Whole stage 1295 4.103

Multi-stage processing

Initial stage 515 0.619

Intermediate stage 401 0.391

Final stage 389 0.339

SA-SVDD

Whole stage 1295 0.318

Multi-stage processing

Initial stage 515 0.125

Intermediate stage 401 0.101

Final stage 389 0.095

SMP-SVDD

Whole stage 1295 0.326

Multi-stage processing

Initial stage 515 0.131

Intermediate stage 401 0.114

Final stage 389 0.107



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1509  | https://doi.org/10.1038/s41598-022-05565-5

www.nature.com/scientificreports/

	18.	 Yang, S., Yuan, Z. & Li, W. Error data analytics on RSS range-based localization. Big Data Mining Anal. 3, 155–170 (2020).
	19.	 Guezzaz, A., Asimi, Y., Azrour, M. & Asimi, A. Mathematical validation of proposed machine learning classifier for heterogeneous 

traffic and anomaly detection. Big Data Mining Anal. 4, 18–24 (2021).
	20.	 Yuen, K. V. & Mu, H. Q. A novel probabilistic method for robust parametric identification and outlier detection. Probab. Eng. 

Mech. 30, 48–59 (2012).
	21.	 Liu, J. & Deng, H. Outlier detection on uncertain data based on local information. Knowl. Based Syst. 51, 60–71 (2013).
	22.	 Paola, A. D., Gaglio, S., Re, G. L., Milazzo, F. & Ortolani, M. Adaptive distributed outlier detection for WSNs. IEEE Trans. Cybern. 

45, 902–913 (2015).
	23.	 Li, X., Lv, J. & Yi, Z. Outlier detection using structural scores in a high-dimensional space. IEEE Trans. Cybern. 50, 2302–2310 

(2020).
	24.	 Yuan, Z., Chen, H., Li, T., Sang, B. & Wang, S. Outlier detection based on fuzzy rough granules in mixed attribute data. IEEE Trans. 

Cybern. 50, 2302–2310 (2020).
	25.	 Abid, A., Khediri, S. E. & Kachouri, A. Improved approaches for density-based outlier detection in wireless sensor networks. 

Computing 103, 2275–2292 (2021).
	26.	 Tax, D. M. & Duin, R. P. Support vector data description. Mach. Learn. 54, 45–66 (2004).
	27.	 Zheng, S. Smoothly approximated support vector domain description. Pattern Recognit. 49, 55–64 (2016).
	28.	 Baram, Y. Learning by kernel polarization. Neural Comput. 17, 1264–1275 (2005).
	29.	 Wang, T., Huang, H., Tian, S. & Deng, D. Learning general Gaussian kernels by optimizing kernel polarization. Chin. J. Electron. 

18, 265–269 (2009).
	30.	 Lee, Y. J. & Mangasarian, O. L. SSVM: A smooth support vector machine for classification. Comput. Optim. Appl. 20, 147–162 

(2001).
	31.	 Deng, W., Xu, J., Zhao, H. & Song, Y. A novel gate resource allocation method using improved PSO-based QEA. IEEE Trans. Intell. 

Transport. Syst. 1–9 (2020).
	32.	 Ge, Q. et al. Industrial power load forecasting method based on reinforcement learning and PSO-LSSVM. IEEE Trans. Cybern. 

1–13 (2020).
	33.	 Ma, T., Wang, C., Wang, J., Cheng, J. & Chen, X. Particles-warm optimization of ensemble neural networks with negative correla-

tion learning for forecasting short-term wind speed of wind farms in western China. Inf. Sci. 505, 157–182 (2019).
	34.	 Kan, X. et al. A novel IoT network intrusion detection approach based on adaptive particle swarm optimization convolutional 

neural network. Inf. Sci. 568, 147–162 (2021).

Acknowledgements
Authors thank Xiangrong Zhang and Puhua Chen for their valuable contributions.

Author contributions
C.L. and X.Z. contributed to the conception of the study; C.L., D.C. and Z.Y. performed the experiment; C.L. and 
P.C. contributed significantly to analysis and manuscript preparation; C.L. and X.Z. performed the data analyses 
and wrote the manuscript; Q.L., J.H. and X.H. helped perform the analysis with constructive discussions.

Funding
This paper is a part research accomplishment of the project “National Defense Basic Scientific Research Program 
of China (CN)”, which is supported by State administration of science, Technology and Industry for National 
Defense (PRC). Fund number: JCKY2017208A005.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Abnormal data detection of guidance angle based on SMP-SVDD for seeker
	Smooth multi-kernel polarization support vector data description
	Support vector data description (SVDD). 
	Multi-kernel polarization SVDD (MP-SVDD). 
	Smooth MP-SVDD. 
	Optimal selection of nuclear parameters. 
	Complexity analysis. 

	Simulation experiments
	Evaluation indexes. 
	Experimental results of comparing algorithms. 
	Experimental results of different kernel functions. 
	Experimental results about time cost. 

	Conclusion
	References
	Acknowledgements


