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Route towards Localization for 
Quantum Anomalous Hall Systems 
with Chern Number 2
Zhi-Gang Song1,2, Yan-Yang Zhang1,2, Jun-Tao Song3 & Shu-Shen Li1,2

The quantum anomalous Hall system with Chern number 2 can be destroyed by sufficiently strong 
disorder. During its process towards localization, it was found that the electronic states will be directly 
localized to an Anderson insulator (with Chern number 0), without an intermediate Hall plateau with 
Chern number 1. Here we investigate the topological origin of this phenomenon, by calculating the 
band structures and Chern numbers for disordered supercells. We find that on the route towards 
localization, there exists a hidden state with Chern number 1, but it is too short and too fluctuating to 
be practically observable. This intermediate state cannot be stabilized even after some “smart design” 
of the model and this should be a universal phenomena for insulators with high Chern numbers. By 
performing numerical scaling of conductances, we also plot the renormalization group flows for this 
transition, with Chern number 1 state as an unstable fixed point. This is distinct from known results, and 
can be tested by experiments and further theoretical analysis.

As well as integer quantum Hall effect (QHE) under a magnetic field1, the quantum anomalous Hall effect 
(QAHE) without an external magnetic field2 is characterized by nonzero Chern number, a topological invariant 
associated with occupied bands3,4. This nonzero Chern number C gives rise to edge states in the bulk gap, which 
carry the remarkably perfect quantization of the Hall conductance σxy =  C (in units of e

h

2
 hereafter). Inspired by 

the investigations of topological insulators5–9, QAHEs in concrete materials have been theoretically proposed10–17 
and been experimentally observed18–22.

Although robust against weak disorder, topological phases will be localized into Anderson insulators ulti-
mately, by sufficiently strong disorder23–26. Microscopically speaking, this can be viewed as a disorder induced 
topological phase transition, i.e., change of the topological invariant (1 →  0) due to a band touching, i.e., gap 
closing and re-opening25,26.

Topological phases with different Chern numbers are topologically distinct from each other. Each of them 
corresponds to a stable fixed point in the sense of renormalization group (RG)27, which offers another explanation 
for their robustness. Numerical calculations for a QHE with a high Chern number C >  1 show that, with the 
increasing of disorder strength, the Hall conductance σxy =  C vanishes to 0 persistently without showing any 
intermediate Hall plateaus with Chern numbers − , − , ,C C1 2 123–25, which are also associated with stable 
fixed points and therefore should be robust. The quantum Hall state with C >  1 is ascribed to contributions from 
individual occupied Landau levels with C =  1. Disorder makes the Landau levels broaden. After adjacent Landau 
levels are broadened enough to touch each other, their Chern numbers change from ± 1 to 0, which results in 
trivial localized bands. By following each eigenchannel for mesoscopic samples when increasing disorder adia-
batically, it was found that the edge channels are destroyed and closed one by one successively28. However, during 
this process, the coexistence of these perfect and imperfect edge channels makes the Hall conductance (the sum-
mation of transmissions from all channels) unquantized. Therefore, after disorder ensemble average, any interme-
diate topological state with only a fraction of the Landau levels surviving cannot stably manifests itself23,25.

Lattice models for QAHE with a single valence band carrying a high Chern number C >  1 were proposed 
recently29–31. The localization process with increasing disorder strength for a two-band model with C =  2 was 
investigated by transport calculations32. It was found that its Hall conductance still decays from 2 persistently to 

1SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 China. 2Synergetic 
Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, 
Hefei, Anhui 230026, China. 3Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal 
University, Hebei 050024, China. Correspondence and requests for materials should be addressed to Y.-Y.Z. (email: 
yanyang@semi.ac.cn)

received: 06 October 2015

Accepted: 02 December 2015

Published: 08 January 2016

OPEN

mailto:yanyang@semi.ac.cn


www.nature.com/scientificreports/

2Scientific RepoRts | 6:19018 | DOI: 10.1038/srep19018

0 without a plateau 1. Now since one single band carries C =  2, the above picture of simultaneous breakdowns for 
all Landau levels (each carrying C =  1) for QHE25 does not apply. Without special symmetry protection, the band 
touching induced by a single parameter (disorder strength here) is linearly shaped and only changes the Chern 
number by 125,33,34. Therefore, the topological origin of above phenomenon seems to be confusing. Does this 
correspond to a topological phase transition from two band-touching points happening simultaneously, or from 
a single band-touching point changing the Chern number by 2?

In this manuscript, based on the language of disordered supercells4,25,26,35,36, we investigate the topological ori-
gin of the localization process for QAHE with Chern number 2 →  0. We find that, with the increasing of disorder 
strength W, this transition corresponds to two successive band-touchings which happen at different disorder 
strengths W1 and W2, and at different positions k1 and k2 in the Brillouin zone (BZ). The intermediate C =  1 
window (W1, W2) is small and highly configuration dependent, which makes it hardly observable after disorder 
averaging and size scaling. This vulnerability of intermediate C =  1 state cannot be improved even if we generalize 
the original model to make the gap at one valley much smaller than at other valleys (thus with the expectation that 
the band-touching at the smallest gap should be much earlier). Finally, based on finite-size scaling of mesoscopic 
conductances, we summarize the results into a diagram of RG flows, which can be tested by experiments37,38 or 
field theoretical analysis27.

Results and Discussions
We use a generalized version of the two-band model recently proposed30,32. This is a spinless model defined on a 
square lattice with two orbitals at each site. Setting the lattice constant a =  1, the Hamiltonian in k space reads32

σ σ σ( ) = + +

( ) = , ( ) = ,

( ) = + + + ( + ), ( )

H d d d
d t k d t k
d m t k t k t k k

k
k k
k
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x y
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where σi are Pauli matrices in the orbital space. After realizing the Hamiltonian on the square lattice, one can see 
that m is the staggered potential on two orbitals, and ti (i ≠ 2) are the nearest hoppings between different sites. The 
next nearest hopping t2 just exists along one direction, e.g. along two-dimensional crystallographic orientation 
[11], which is essential for realizing Chern number 230,32. Hereafter, t1 =  1 will be used as the energy unit. In the 
BZ, model (1) has four Dirac points (or valleys) at = (± , ± )π π

, , ,D1 2 3 4 2 2
 and associated masses (or gaps) Δ i are 

2((m −  2t2) ±  4t3) and 2(m +  2t2), respectively.
The Hall conductance is related to the totol Chern number of all occupied bands as σ = ∑ cxy

e
h n n
2

. The Chern 
number associated with the n-th band is defined in two-dimensional k-space:
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where F is the Berry curvature, and ( )kn  is the normalized wave function of the n-th Bloch band such that 
( ) ( ) = ( ) ( )k kH k n E k nn . For our model with Hamiltonian (1), the Chern number associated with the valance 

band is straightforwardly determined by the model parameters as30

= ( − + ) + ( − − ) − ( + ) − ( + ) . ( )C m t t m t t m t m t1
2
[sgn 2 4 sgn 2 4 sgn 2 sgn 2 ] 32 3 2 3 2 2

The effect of disorder is included in the real space representation by adding a random potential term Ui to 
each site i, with Ui uniformly distributed in the interval (− W/2, W/2), where W is the disorder strength. The Hall 
conductance of a disordered sample can be simulated by using the standard method of non-equilibrium Green’s 
functions39. On the other hand, disorder breaks the translation symmetry of the original lattice and makes the 
original k space badly defined for Chern number in equation (2). Nevertheless, for a disordered sample with 
size Lx ×  Ly, if twisted boundary conditions exp (ikxLx) and exp (ikyLy) are introduced in both directions, the 
definitions of k =  (kx, ky) and Chern number can be restored4,35. This is not surprising since this is equivalent 
to constructing a superlattice with this Lx ×  Ly sample as the supercell26,36. Physically reliable results for “really” 
disordered systems will be recovered after disorder ensemble averaging and size scaling L →  ∞. See Methods for 
details of these calculations.

We first reproduce the main results of previous transport calculations32. Figure 1(a) is the band structure 
for a quasi-one dimensional ribbon, where two pairs of edge states from C =  2 can be seen. Although there are 
essentially 4 massive Dirac points for the two-dimensional band structure, only 2 of them are distinguishable 
here due to the cutting orientation of producing the quasi-one dimenional ribbon. In Fig. 1(b), we display the the 
averaged two-terminal conductance G (= σxy when C ≠ 0) as a function of disorder strength W. The conductance 
of the C =  2 state is perfectly quantized regardless of finite disorder, until W ~ 6. Afterwards, as found previously, 
the conductance decays from 2 towards 0 persistently, without any plateau at the C =  1 state (the dashed line)32.

In order to reveal the topological origin of the above transport results, we resort to the calculations of band 
structures and Chern numbers by using the disordered supercell method introduced in Methods. Random poten-
tial Ui =  W · ui are assigned to each site i of a supercell with Lx ×  Ly sites, where ui are random numbers uniformly 
distributed within the unit interval (− 0.5, 0.5), and W is the disorder strength. Hereafter, {Ui} =  W · ui from a 
fixed configuration of {ui} but only differed by the factor W will still be called one disorder configuration (or one 
sample). Applying twisted boundary conditions to this disordered supercell, we can investigate the adiabatic 
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changes of band structures and Chern numbers with the increasing of the single parameter W, for a fixed disorder 
configuration {ui}.

Let’s first focus on the microscopic evolution of one typical disorder configuration. To find possible band 
touching, we define the band gap Δ  as the minimal difference between conduction and valence bands Ec(v)(k) 
(with the same k) in the BZ,

∆ ≡ ( ) − ( ) , ( )∈
k kE Emin { } 4k

c v
BZ

with the associated point kmin as the minimal gap point. A band touching corresponds to Δ  =  0. At the clean limit, 
kmin is just one of the Dirac points Di. In Fig. 2(a), we plot the band gap Δ  (red line), the Berry curvature F at the 
minimal gap point kmin (green line) and the Chern number C of the valance band (grey bar) as functions of disor-
der strength W, around the transition region. It is interesting to notice that for a definite configuration, there are 
two subsequent topological transitions at W1 ~ 7.2 and W2 ~ 7.7, with band touchings (Δ  =  0), and with Chern 
numbers 2 →  1, then 1 →  0, respectively. In Fig. 2(b), we plot the track of the minimal gap point kmin in the BZ as 

Figure 1. (a) The band structure of the ribbon in clean limit with width Ly =  100. (b) Two-terminal 
conductance as a function of disorder strength, which is averaged over 500 disorder configurations with sample 
size Lx =  Ly =  100. The model parameters as follows: t1 =  1.0, t2 =  1.0, t3 =  0.5, m =  − 1.0, and EF =  0.1.

Figure 2. (a) Three quantities as functions of disorder strength W for a definite disorder configuration: the 
band gap Δ  (red line), the Berry curvature F (blue line) and the Chern number C of the valence band (grey 
bar). (b) The location of minimal gap point kmin (red circles) as a function of disorder strength W for the same 
disorder configuration. The cyan lines indicate their projections on the kx −  ky plane. (c) The band gap Δ  (red 
line) and the Chern number C below the gap (grey bar) as functions of disorder strength for 8 different disorder 
configurations. The intermediate windows (W1, W2) with C =  1 are marked by green arrows.
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a function of disorder strength W. Approaching the first topological transition W1 ~ 7.2 from below, kmin begins 
to digress from Dirac point ( )= ,π πD1 2 2

. Soon after this, kmin appears around another Dirac point 
= (− , − )π πD3 2 2

, and the second topological transition W1 ~ 7.7 happens around here. Such large transfer of the 
minimal gap point is not surprising since the topological phase collapses at strong disorder, which has remarkably 
changed the original valley shapes in the clean limit.

After confirming the existence of an intermediate C =  1 state for a definite disorder configuration, we have to 
answer why it cannot be observed in the transport calculations in Fig. 1(b). In Fig. 2(c), we show the gaps Δ  (red 
curve) and Chern numbers C (grey bar) as functions of W for 8 different disorder configurations, each with an 
intermediate C =  1 state between W1 and W2 (the green arrows). The first observation is that these C =  1 windows 
are rather narrow, i.e., − W W W2 1 1 (Note the leftmost of the W-axis is 6 instead of 0). Another important 
observation is that such windows (W1, W2) with C =  1 are quite configuration dependent, with their locations and 
lengths fluctuating remarkably from configuration to configuration. There is not a stable common window with 
Chern number C =  1 for all different configurations. Furthermore, we have checked that, this absence of a stable 
common window for C =  1 does not get better at all, with the increasing of sample size L. In short, although there 
exists an intermediate window of C =  1 for each definite configuration, this window is too vulnerable to survive 
after disorder averaging and size scaling, and thus is physically unobservable. This is the first important finding in 
this manuscript.

The two subsequent band touchings at W1 and W2 are too close to make up a stable state with C =  1 within 
(W1, W2). One may blame this to the almost identical gap sizes at two Dirac points in the clean limit of the model 
(See Fig. 1(a)). This tempts us to modify the model to make the gap at one Dirac point, say, Δ 1 much smaller 
than those at other Dirac points. This can be realized for model (1) by setting parameters as depicted in Fig. 3. 
Then, under perturbation from rather weaker disorder36, we expect the first band touching W1 to occur around 
this Dirac point Δ 1 with the narrowest gap, much earlier than W2 occurring around another Dirac point. Thus a 
wider window (W1, W2) could be expected and this could be beneficial for stabilizing the C =  1 even after disorder 
averaging.

In Fig. 3(a), the band structure for a ribbon is plotted. The gap at D1 is 0.24, only 4% of that at D2. The 
two-terminal conductance as a function of increasing disorder is plotted in Fig. 3(b). Compared to Fig. 1(b), 
the C =  2 plateau starts to collapse earlier at W ~ 4, which can be attributed to the small gap at the clean limit. 
However, a stable plateau of C =  1 is still absent.

We repeat the calculations of disordered supercells to reveal the underlying topological nature. In order to see 
the evolutions of different massive Dirac points, local gaps at 4 Dirac points Di are simply defined as

∆ ≡ ( ) − ( ). ( )E D E D 5i c i v i

Without disorder, Δ 1 is just the band gap Δ , which is defined at the narrowest point in the gap. In Fig. 4, we plot 
the developments of Δ i (solid lines), as well as Δ  (red dotted line) when increasing disorder strength W for a 
typical disorder configuration. The Chern number (grey bar) is also plotted as a reference. In clean limit W =  0, 
as we set, Δ 1 (green line) [which is equal to Δ  (red dotted line)] is much smaller than other 3 local gaps. With the 
increasing of W, those 3 large gaps decrease. Contrary to what we are expecting, the smallest gap Δ 1 is increasing 
to prevent itself from an early band touching at weak disorder. After W ~ 3.6, Δ  does not follow Δ 1 (nor any other 
Δ i) any more, which means the minimal gap point has drifted away from the Dirac points. This, as discussed 
above, is a consequence of remarkable destroy of the original shape of the band structure from strong disorder. 
In other words, the elaborately designed band structure with extremely small local gap at one Dirac point Δ 1 has 
been smeared out completely by disorder, before the first band touching occurs. Then, as happened in Fig. 2, there 
will be two subsequent and close band touchings, which fluctuate so seriously that the C =  1 state between them 

Figure 3. The same with Fig. 1 but with model parameters as t1 = 1.0, t2 = 1.0, t3 = −0.72, m = −1.0, 
and EF = 0.1. (a) The band structure of the ribbon in clean limit. (b) The disorder averaged two-terminal 
conductance as a function of disorder strength.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:19018 | DOI: 10.1038/srep19018

is unobservable after disorder averaging and size scaling. In one word, in the BZ, states around all 4 Dirac points 
seem to “feel” each other and tend to evolve cooperatively under disorder. This reflects the fact that the Chern 
number C and its transition are global properties of the band4–6, especially in the presence of disorder, i.e., without 
constraints from most spacial symmetries. We conjecture that for Chern insulators with high Chern numbers 
C >  1, either QHEs with multiple Landau levels or QAHEs with a single valence band, this route towards locali-
zation under disorder with Chern number C →  0 is universal, independent of the concrete details of the materials 
in the clean limit.

It is interesting to revisit this route towards localization, by observing the evolution of the distribution of the 
Hall conductance. In Fig. 5, we present the statistical histogram of σxy at a definite Fermi energy and sample size, 
for different disorder strength W. We will see that they also reflects the physical pictures described above. For 
W =  6 when σxy starts to decrease from 2, Fig. 5(a) shows that a small portion (around 10%) of samples have expe-
rienced a topological transition 2 →  1. For a larger W as illustrated in Fig. 5(b), besides two peaks at σxy =  1, 2, 
a considerable amount of samples with non-quantized σxy appear. They originate from partly filled subbands 

Figure 4. With model parameters same as in Fig. 3, the developments of quantities for a typical disorder 
configuration as functions of disorder strength W: the local gaps at 4 Dirac points Δi (solid lines), the 
minimal band gap Δ (red dotted line) and the Chern number C (grey bar). Note that after W >  3.6, the 
minimal band gap will not be located at any of the Dirac points any more.

Figure 5. Distributions of σxy for 10000 disorder configurations with supercell size 20 × 20, for different 
disorder strengths W. The Fermi energy is fixed at EF =  − 0.053, near the gap centre of the clean limit. Other 
model parameters are same with Fig. 1.
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randomly distributed around the Fermi energy, which are induced by strong disorder. Such a broad distribution 
gives rise to a non-quantized σxy with a large statistical variation. When W =  10 [Fig. 5(c)], most C =  2 states have 
collapsed. However, there is a prominent and sharp peak at C =  1. This means that EF =  − 0.053 here is within the 
(small but finite) gaps of these samples with C =  1 below them; Or in other words, W =  10 here is within the C =  1 
windows (W1, W2) [e.g., those marked by green arrows in Fig. 2(c)] of these samples. Nevertheless, as stated ear-
lier, there is no common window with C =  1 for all (or most) samples. For the rest samples (more than 80%), their 
σxy are still widely distributed, making a stable and observable σxy =  1 state impossible. Figure 5(a–c) reaffirm the 
“hidden” nature of the intermediate C =  1 state: it is existent but overwhelmed by strong statistical fluctuations, 
and thus hardly observable. This is contrary to the case of topological Anderson insulator40. In that case, although 
also with dense disorder induced in-gap states, the topological invariant still has a probability of almost 100% to 
be 1, in a finite range of energy and disorder strength, giving rise to an observable quantized conductance plateau 
with tiny fluctuations36. At the end of this transition, as shown in Fig. 5(d), most samples have crossed the second 
topological transition W2 towards trivial localization with C =  0.

Finally let’s put this localization process into an RG flow diagram by numerical scaling. RG analysis can pro-
vide vivid and deep understanding of phase transitions. Besides, recent experimental progresses have made RG 
flows for QAHEs directly observable37,38. The sample size driven (σxy, σxx) flows are plotted in Fig. 6, correspond-
ing to the localization process in Fig. 1. Similar to the RG diagram in the transition with C =  1 →  037,41,42, most 
flow arrows reside on a semi-ellipse. On two ends of the semi-ellipse, scaling flows are attracted to two stable fixed 
points (σxy, σxx) =  (C, 0), corresponding to the C =  2 (C =  0) state before (after) the disorder induced transition, 
respectively. On the other hand, the intermediate state C =  1 is located on the uppermost of this semi-ellipse, with 
the maximum longitudinal conductance σ1 =  0.79 ~ π/4. Around this point, some scaling flows are running away, 
and some are randomly oriented. The latter behavior can be attributed to the statistical precision limited by the 
number of disorder configurations we can achieve, but also reflects the unstable nature of this point. Thus it’s 
reasonable to conclude that this point (1, σ1) is a saddle type unstable fixed point, like the role that ( )σ, ⁎1

2
 plays in 

the transition with Chern number 1 →  027,41,42. In brief, we show that the state C =  1 does not always correspond 
to a stable fixed point in the sense of RG. Furthermore, the associated maximum longitudinal conductance 
σ1 =  0.79 ~ π/4, which is twice as that found in the localization process with Chern number C =  1 →  0 state41. 
These features make Fig. 6 distinct from known RG knowledge for Chern insulators so far. This can be tested by 
further theoretical analysis and experiments.

In summary, by investigating the band structures and Chern numbers of disordered supercells, we illustrate 
the route towards localization for QAHE with C =  2. With the increase of disorder strength, there are two succes-
sive topological transitions for each disorder configuration, but the intermediate C =  1 is remarkably short and 
fluctuating, therefore cannot survive after disorder averaging and size scaling. This picture is also supported by 
statistical distributions and RG flows of the conductances.

Methods
At zero temperature, the two-terminal conductance of a finite sample can be expressed by Green’s functions as39

= Γ Γ , ( )G e
h

G GTr[ ] 6S
r

D
a

2

Figure 6. The renormalization group flows extracted from finite size scaling for square sampleswith Fermi 
energies EF ∈ (−1, 1) and disorder strengths as shown. The arrows are pointing along sample sizes 
Lx =  10 →  15 →  20. Other model parameters are same with Fig. 1, and each point is an average over 10000 
disorder configurations (50000 configurations for W =  8, 9, 10). The dashed line is the semi-ellipse with the 
semi-major (semi-minor) axis a =  1 (b =  σ1), where σ ≡ π

1 4
. The C =  1 state corresponds to point (1, σ1).
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where Gr/a is the retarded/advanced Green’s function, and Γ = (Σ − Σ )( ) ( ) ( )iS D S D
r

S D
a  with Σ ( )

/
S D
r a  being retarded/

advanced self energies due to the source (drain) lead, respectively. For a quantum (anomalous) Hall state (C ≠ 0), 
this two-terminal conductance is just the Hall conductance, G =  σxy 39. The transport results in Figs 1(b) and 3(b) 
were calculated by this method. However, for topologically trivial state, e.g., a state close to localization, this sim-
ple two-terminal G may not rigorously equal to σxy since it will contain bulk transports. Another method of cal-
culating σxy will be introduced below.

Numerical methods are necessary for treating disordered supercells with large size Lx ×  Ly. However, the 
numerical calculation of topological quantities is a tricky task: Special care must be taken to ensure the gauge 
invariance in the numerical processes. We adopt a method of discretizing equation (2) as43

∑π= ( ).
( )

Fc
i

k1
2 7n

l
l

here l runs over all lattices over the discretized BZ. On this discretized BZ, the Berry curvature ( )F kl  is a lattice 
field defined on each small plaquette as ( ) = ( ) ( + ) ( + ) ( )

− −^ ^F U U U Uk k k k kln 1 2l l l l l1 2 1
1

2
1, where 

( ) ≡µ
µ

µ

( ) ( + )

( ) ( + )





U kl
n k n k
n k n k

l l

l l
, and 1̂ and 2̂ are unit vectors of of the discretized BZ43.

For the purpose of plotting RG flows, both the longitudinal conductance σxx and the Hall conductance σxy of 
the disordered sample are needed. A simulation of six-terminal Hall bar by using non-equilibrium Green’s func-
tions like equation (6) 39 will be numerically expensive. Instead, we adopt the methods which were successful for 
plotting RG flows41. The Hall conductance σxy is calculated by a numerical integration of Berry curvature under 
the Fermi energy EF using equation (7). For a given EF, σxy may not be quantized if some subbands are partly filled. 
The longitudinal conductance σxx (also in units of e

h

2
) is calculated as the Thouless conductance44,45

σ πρ( ) = ( )
∂
∂ ( )=

E E E
k 8

xx n n
n

x k

2

2
0x

with twisted (periodic) boundary condition in x (y) direction respectively, where ρ is the density of states, and 
En(k) is the n-th subband. The conductances in Figs 5 and 6 were calculated by these methods.
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