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Thyroid hormone is critical during the development of vertebrates and affects the function
of many organs and tissues, especially the intestine. Triiodothyronine (T3) is the active form
and can bind to thyroid hormone nuclear receptors (TRs) to play a vital role in the
development of vertebrates. The resistance to thyroid hormone a, as seen in patients, has
been mimicked by the ThraE403X mutation. To investigate the mechanisms underlying the
effect of TRa1 on intestinal development, the present study employed proteomic analysis
to identify differentially expressed proteins (DEPs) in the distal ileum between homozygous
ThraE403X/E403X and wild-type Thra+/+ mice. A total of 1,189 DEPs were identified,
including 603 upregulated and 586 downregulated proteins. Proteomic analysis
revealed that the DEPs were highly enriched in the metabolic process, the
developmental process, the transporter of the nutrients, and the intestinal immune
system-related pathway. Of these DEPs, 20 proteins were validated by parallel reaction
monitoring analysis. Our intestinal proteomic results provide promising candidates for
future studies, as they suggest novel mechanisms by which TRa1 may influence intestinal
development, such as the transport of intestinal nutrients and the establishment of innate
and adaptive immune barriers of the intestine.

Keywords: thyroid hormone receptor, intestine, proteomic analysis, bioinformatic, parallel reaction
monitoring analysis
INTRODUCTION

Thyroid hormone (TH) production is a tightly regulated process controlled by a classic negative
feedback loop involving the hypothalamus, the pituitary gland, and the thyroid, which has led to the
common name hypothalamus–pituitary–thyroid axis. Thyroxine (T4) and triiodothyronine (T3) are
synthesized and secreted by thyroid gland follicular cells. T3, as the active metabolite of the thyroid
hormone, is known to be important for the normal development and life of adult vertebrates,
especially during the regulatory period of post-embryonic birth (1–3). T3 exerts its effects via
thyroid hormone receptors (TRs), which are members of the nuclear hormone receptor protein
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superfamily (4, 5) and are known as T3-modulated transcription
factors (6). T3 can activate or inhibit T3 target genes by regulating
the activity of TRs (6, 7). In mammals, the diversity of TR
proteins is encoded by the two genes THRA and THRB (6, 8)
through the use of different promoters and/or alternative splicing
(9, 10). There are four isoforms encoded by each of the TRa
locus (TRa1, TRa2, TRDa1, and TRDa2) (11–13) and the TRb
locus (TRb1, TRb2, TRb3, and TRDb3) (13–15).

In the past few decades, researchers have found that the
intestine is one of the target organs of TH action (16, 17). First,
TH was reported to be one of the essential regulators of
gastrointestinal development during the progression of
amphibian metamorphosis (18). Then, mouse studies reported
that mutations in TRa resulted in intestinal defects, such as
shorter villi, reduced apoptosis of the villi, reduced cell
proliferation of the crypts, and decreased sucrase, lactase, and
aminopeptidase enzymatic activities of the intestine (1, 19, 20).
Recently, our group established a new TRamutant mouse model
(ThraE403X/E403X mouse), and we observed that the length of the
small and large intestine was significantly shorter, the number of
epithelial cells was reduced, and the length of the villi and the
depth of the crypts were significantly decreased in 3-week-old
ThraE403X/E403X mice compared to Thra+/+ mice (21). These
findings indicated that TRa1 plays an important role in
intestinal development, which could be associated with the
short lifespan and impaired postnatal development of
ThraE403X/E403X mice.

In the present study, our aim was to further elucidate the
molecular mechanisms underlying the effects of TRa1 on
intestinal development. To this end, intestinal proteomics and
bioinformatics analyses were adopted to identify differentially
expressed proteins (DEPs) in the distal ileum between
homozygous ThraE403X/E403X (Hom) and wild-type Thra+/+

(Wt) mice.
MATERIALS AND METHODS

Animal Maintenance and
Sample Preparation
Three-week-old male Wt and Hom mice were used in our
experiment, which were obtained by crossing heterozygous
(ThraE403X/+) mice. The mice were housed in a specific
pathogen-free environment at 22 ± 2°C with an automatic 12-
h light–dark cycle and free access to food and water. The mice
were anesthetized with 1.2 ml/kg of 3% pentobarbital sodium by
intraperitoneal injection, and the intestine was dissected along
the Treitz ligament, separating the small intestine. The intestines
were dissected longitudinally and washed thoroughly with 4°C
precooled saline. One centimeter of the distal ileum was placed in
a cryopreservation collection tube placed in dry ice during
collection and then stored in liquid nitrogen until further
protein extraction protocols. Five samples from each genotype
(ThraE403X/E403X mice, n = 5; Thra+/+ mice, n = 5) were utilized
for the proteomic analysis. All animal experiments were
Frontiers in Endocrinology | www.frontiersin.org 2
approved by the animal experimentation ethics committee of
the China Medical University.

Protein Extraction and Digestion
The process of protein extraction and digestion was performed
according to a previously published method (22). The samples
were homogenized in liquid nitrogen and thoroughly ground
into powder. Then, the cell powder was further homogenized by
ultrasonication with lysis buffer containing 1% SDS and 1%
protease inhibitor on ice. Then, the samples were gently mixed at
room temperature, followed by centrifugation at 12,000 × g for
10 min at 4°C. The supernatant was transferred to a new tube,
and the protein concentration was determined with the BCA
protein assay kit (Thermo Fisher Scientific, Rockford, IL, USA)
according to the manufacturer’s instructions and measured three
times with a Multiscan Ascent photometer (Thermo Fisher
Scientific, Rockford, IL, USA) at a wavelength of 570 nm.

For protein digestion, equal amounts of sample protein were
used, and precooled acetone was used to precipitate the proteins.
Then, the proteins were centrifuged at 4,500 × g for 15 min, and
the supernatant was discarded and washed twice with cooling
acetone. Then, the protein solution was reduced with 5 mM
dithiothreitol for 30 min at 56°C and alkylated with 11 mM
iodoacetamide for 15 min at room temperature in darkness. The
protein solution was diluted by adding 200 mM TEAB. After
ultrasonication by the sonicator, trypsin (Thermo Scientific,
USA) was used at a 1:50 trypsin-to-protein mass ratio for
digestion overnight at 37°C and a 1:100 trypsin-to-protein
mass ratio for a second 4-h digestion.

TMT Labeling and HPLC Fractionation
The peptides were desalted using a Strata X C18 SPE column
(Phenomenex, USA) and vacuum freeze-dried. The peptides
were dissolved in 0.5 M TEAB and labeled with the TMT kit/
iTRAQ kit (Thermo Fisher Scientific) according to the
manufacturer’s instructions. Then, the TMT/iTRAQ reagent
was reconstituted in acetonitrile, the peptides were mixed and
incubated for 2 h, and the samples were pooled and vacuum
freeze-dried. The peptides were eluted using high-pH reverse-
phase HPLC using a Thermo Betasil C18 column (particle size,
5.0 mm; 250 mm × 10.0 mm i.d.; Thermo Fisher Scientific,
Waltham, MA, USA). Briefly, the peptides were combined into
six fractions and dried by vacuum centrifugation.

LC–MS/MS Analysis
High-resolution mass spectrometry was performed using a Q-
exactive mass spectrometer coupled with an EASY-nLC 1000
liquid chromatograph instrument (Thermo Fisher Scientific).
The column was inserted in a HPLC Accela instrument
(constituted by an autosampler and a 600 pump) and coupled
to a Q-exactive mass spectrometer (Thermo Fisher Scientific) for
high-resolution mass spectrometry. Mobile phase A was 0.1%
formic acid + 2% acetonitrile in water. Mobile phase B was 0.1%
formic acid + 2% acetonitrile in water. A gradient of 40 min was
run with 9 to 26% solvent B, 40–54 min was run with 26 to 35%
solvent B, 54–57 min was run with 35–80% solvent B, and 57-60
April 2022 | Volume 13 | Article 773516
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min was run with 80% solvent B with a flow rate of 500.00 nl/
min. After separation by HPLC, the peptides were ionized by
nanospray ionization (NSI) and analyzed by a Q-exactive
instrument (Thermo Fisher Scientific). Mass spectrometric
detection was carried out on a Q Exactive Orbitrap MS
(Thermo Fisher Scientific) equipped with an NSI source
operated in positive-ion mode. The spray voltage parameter
was set to 2.2 Kv, and the MS data were acquired at the
following parameters: MS1 spectra were collected in the range
of 400 to 1,500 m/z at 70,000 resolution. MS2 spectra were
collected at a fixed 100 m/z at 35,000 resolution. For data-
dependent acquisition-MS, the top 20 precursor ions were
selected for fragmentation with stepped normalized collision
energies of 28%. With an automatic gain control (AGC) target
of 5 × 10E4 and a maximum injection time of 50 ms, the dynamic
exclusion time was set to 30 s.

Database Search and Quantitative
Calculation of Protein
The MS/MS data were recorded and analyzed using Maxquant
software, version 1.5.2.8 (Thermo Fisher Scientific). The
obtained peptide sequences were searched against the UniProt
Mus_musculus_10090 (17,032 sequences) database
concatenated with a reverse decoy database. The false
discovery rate was adjusted to <0.01.

The raw LC–MS datasets were first searched against the
database and converted into matrices containing the reporter
intensity of peptides across samples. The relative quantitative
value of each protein was then calculated based on these
intensity values by the following steps: first, the intensities of
peptides (I) across all samples were centralized and transformed
into their values of relative quantification (U) in each sample. The
formula is as follows: i denotes the sample, and j denotes the
peptide.Uij = Iij/mean (Ij); second, to adjust the systematic bias of
the identified peptide amount among different samples in the
process of mass spectrometry detection, the relative quantitative
value of the peptide needed to be corrected by the median value as
follows: NRij = Uij/median (Ui); and third, the relative
quantitative value of a protein (R) was calculated by the
intensity median of its corresponding unique peptides. The
formula is listed as follows: Rik = median (NRij, j∈k), where k
denotes the protein and j denotes the unique peptides belonging to
the protein.

Bioinformatic Analysis
Fold change >1.30 or <0.77 and p <0.05 were set as the significant
thresholds for the DEPs. The DEPs were annotated into three
categories based on gene ontology (GO) terms, including biological
processes, cellular components, and molecular functions.

The protein pathway was annotated via the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database.
Enrichment analysis was conducted for the KEGG pathway.

Parallel Reaction Monitoring Analysis
To verify the results of the proteomics analyses, 20 DEPs were
selected and measured by parallel reaction monitoring analysis
(PRM). PRM is a targeted proteomics technology based on high-
Frontiers in Endocrinology | www.frontiersin.org 3
resolution and high-precision mass spectrometry, which can
selectively detect target proteins and target peptides, thus
achieving the absolute quantification of target proteins/
peptides (23). The protein isolation and trypsinization
procedures were conducted as detailed above. The tryptic
peptides were dissolved in 0.1% formic acid (solvent A) and
directly loaded onto a homemade reversed-phase analytical
column. The gradient was comprised of an increase from 6 to
23% solvent B (0.1% formic acid in 98% acetonitrile) over 38
min, 23 to 35% in 14 min, climbing to 80% in 4 min, and then
holding at 80% for the last 4 min, all at a constant flow rate of 700
nl/min on an EASY-nLC 1000 UPLC system. The peptides were
subjected to an NSI source, followed by tandem mass
spectrometry (MS/MS) in Q ExactiveTM Plus (Thermo)
coupled online to the UPLC. The electrospray voltage applied
was 2.0 kV. The m/z scan range was 350 to 1,000 for full scan,
and intact peptides were detected in the Orbitrap at a resolution
of 35,000. Peptides were then selected for MS/MS using NCE
setting 27, and the fragments were detected in the Orbitrap at a
resolution of 17,500. We used a data-independent procedure that
alternated between 1 MS scan and 20 MS/MS scans. AGC was set
at 3E6 for full MS and 1E5 for MS/MS. The maximum IT was set
at 20 ms for full MS and auto for MS/MS. The isolation window
for MS/MS was set at 2.0 m/z.

The PRM data were processed using Skyline (v.3.6). For the
peptide settings, trypsin [KR/P] was used as the enzyme, and the
maximum missed cleavage was set as 2. The peptide length was
set as 8–25, variable modification was set as carbamidomethyl on
Cys and oxidation on Met, and the maximum variable
modification was set as 3. The transition settings were as
follows: precursor charges were set as 2 and 3, ion charges
were set as 1 and 2, and ion types were set as b, y, and p. The
product ions were set from ion 3 to the last ion; the ion match
tolerance was set as 0.02 Da.

Statistical Analysis
After filtration, data were subjected to univariate and
multivariate analysis to calculate the fold changes between the
Thra+/+ and ThraE403X/E403X mice samples. Statistical
significance was determined using Fisher’s exact test with
Benjamini–Hochberg’s corrected P-value <0.05. Hierarchical
clustering analysis was conducted for the DEPs, based on the
significant enrichments, using the “heatmap.2” function from the
“gplots” R package. The proteomic analysis in our research was
supported by Jingjie PTM BioLabs (Hangzhou, China).
RESULTS

Quantitative Proteins
Five mice from each genotype were initially selected
(ThraE403X/E403X mice, n = 5; Thra+/+ mice, n = 5). However,
the biological repeat analysis showed that one Wt mouse was not
reproducible with the other samples in the Wt genotype group,
so the data from this sample were removed from the Wt group,
leaving four biological replicates in the wild genotype and five
April 2022 | Volume 13 | Article 773516
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biological replicates in the Hom genotype group for proteomic
analysis. In total, 247,627 secondary spectrograms were obtained
by mass spectrometry analysis. The number of available effective
spectrograms was 67,318, and the utilization rate of the
spectrograms was 27.2%. A total of 38,475 peptides were
identified by spectrogram analysis, among which 37,221 were
specific peptide segments. A total of 5,874 proteins were
identified, of which 5,010 were quantifiable (Figure 1).
Frontiers in Endocrinology | www.frontiersin.org 4
DEP Analysis
As shown in Figure 2, compared to Thra+/+mice, 1,189 DEPs
were identified in the ThraE403X/E403X mice, including 603
upregulated proteins and 586 downregulated proteins.

Functional Enrichment Analysis
of the DEPs
In order to find out whether the DEPs have a significant
enrichment trend in specific functional categories, we next
conducted functional enrichment analysis of the DEPs based
upon the gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) reference databases. Notably, the DEPs
were significantly enriched for several relevant GO terms,
including metabolic process, developmental process, and
transporter activity (Figure 3). The top 20 enriched KEGG
pathways are shown in Figure 4. Among them, several nutrient
metabolism-related pathways were enriched, such as fatty acid
degradation (mmu00071), fatty acid metabolism (mmu0121), fat
digestion and absorption (mmu04975), starch and sucrose
metabolism (mmu00500), and protein digestion and absorption
(mmu04974). Furthermore, the antigen processing and
presentation (mmu04612) and intestinal immune network for
IgA production (mmu04672) pathways were enriched, and most
of the DEPs related to these two pathways were downregulated.

Hierarchical Cluster Analysis
According to the degree of the fold change, the DEPs were
divided into four groups: severely downregulated (Q1; FC
≤0.667), mildly downregulated (Q2; 0.667 < FC ≤0.769), mildly
upregulated (Q3; 1.3 < FC ≤1.5), and severely upregulated (Q4;
FC>1.5) (Figure 5A). Some severely downregulated DEPs were
enriched for the antigen processing and presentation and
FIGURE 1 | Overview of the mass spectrometry results. Bar plot
summarizing the detected peptides and proteins in Wt Thra+/+ (n = 4) and
Hom ThraE403X/E403X (n = 5) mice.
A B

FIGURE 2 | Identification of differentially expressed proteins (DEPs) between ThraE403X/E403X and Thra+/+ mice. (A) The total number of upregulated and
downregulated DEPs. The fold change (FC) >1.30 and p-value <0.05 were set as the significant thresholds for the upregulated DEPs. FC <0.77 and p-value <0.05
were set as the significant thresholds for the downregulated DEPs. (B) Volcano plot of the identified DEPs between ThraE403X/E403X (n = 5) and Thra+/+ (n = 4) mice.
The x-axis shows the log2 fold change of each protein, and the y-axis shows the p-value of the significant difference test after log10 logarithmic conversion. The red
dots denote upregulated DEPs, the blue dots denote downregulated DEPs, and the gray dots denote unchanged proteins.
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intestinal immune network for IgA production pathways
(Figure 5B). In the protein domain cluster analysis, some
severely downregulated DEPs were enriched for major
histocompatibility complex class II (MHC class II), major
histocompatibility complex class I (MHC class I), and caspase-
like domain (Figure 5C). In the GO cluster analysis, some
Frontiers in Endocrinology | www.frontiersin.org 5
severely downregulated DEPs were enriched for MHC class II,
MHC class I, and immune response GO terms (Figures 5D–F).

PRM Validation
In order to verify our proteomic results, the protein levels of
some genes reported to be regulated by T3 and the proteins that
A B

FIGURE 3 | Gene ontology (GO) analysis for the identified differentially expressed proteins (DEPs). The DEPs were annotated into three categories based on GO
terms, including biological processes, cellular components, and molecular functions. (A) GO enrichment analysis of the upregulated DEPs. (B) GO enrichment
analysis of the downregulated DEPs.
A B

FIGURE 4 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the differentially expressed proteins (DEPs). Bubble diagrams
displaying the top 20 KEGG pathways for which upregulated (A) and downregulated (B) DEPs were significantly enriched, respectively. The y-axis shows the IDs
and the names of the enriched pathways, and the x-axis shows the converted log2 fold enrichment. The size of the bubbles indicates the number of DEPs in
each pathway.
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were enriched for GO terms or KEGG pathways were selected for
parallel reaction monitoring (PRM) analysis. Validation by PRM
analysis revealed that 20 proteins were significantly dysregulated
in the Hommice compared toWt mice (Table 1). These proteins
included caspase-3 (Casp3), caspase-7 (Casp7), and receptor-
interacting serine/threonine-protein kinase 3 (Ripk3) for the
apoptosis; proliferation marker protein Ki-67 (Mki67),
regucalcin (Rgn), and adenosine deaminase (Ada) for cell
Frontiers in Endocrinology | www.frontiersin.org 6
proliferation; glyceraldehyde-3-phosphate dehydrogenase
(Gapdh), glucose transporter type 2, liver (Glut-2), sodium/
potassium-transporting ATPase subunit beta-1 (Atp1b1),
inactive pancreatic lipase-related protein 1 (Pnliprp1),
peroxisomal acyl-coenzyme A oxidase 1 (Acox1), pancreatic
triacylglycerol lipase (Pnlip), and large neutral amino acid
transporter small subunit 4 (Lat4) for nutrient metabolism; H-
2 class II histocompatibility antigen, A beta chain (H2-Ab1),
A B C

D E F

FIGURE 5 | Hierarchical cluster analysis for the differentially expressed proteins (DEPs). (A) Fold change >1.30 or <0.77 and p <0.05 were set as the significant
thresholds for the DEPs. According to the degree of fold change (FC), the DEPs were divided into four groups from Q1 to Q4. The different colors indicate the
different Q categories: Q1 (FC ≤0.667, severely downregulated), Q2 (0.667 < FC ≤0.769, mildly downregulated), Q3 (1.3 < FC ≤1.5, mildly upregulated), and Q4
(FC>1.5, severely upregulated). (B) The distribution of Q categories in the Kyoto Encyclopedia of Genes and Genomes pathways. (C) The distribution of Q categories
for the analysis of the protein domain. (D) The distribution of Q categories for the analysis of the biological process. (E) The distribution of Q categories for the
analysis of the cellular component. (F) The distribution of Q categories for the analysis of the molecular function. The red color indicates stronger enrichment. The
blue color indicates weaker enrichment.
April 2022 | Volume 13 | Article 773516
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antigen peptide transporter 2 (Tap2), and Tapasin (Tapbp) for
antigen processing and presentation; and polymeric
immunoglobulin receptor (Pigr) for the intestinal immune
network for IgA production. The PRM results showed that
these candidate DEPs exhibited similar trends to those
observed in the proteomic analysis, confirming the reliability of
the proteomic data (Figure 6 and Table 1).
DISCUSSION

The small intestine of mammals undergoes a process of intestinal
remodeling during lactation to ensure that the intestine can
adapt to the transition from milk to a solid diet (24). Wen L et al.
and Choi J et al. reported that T3 and TRa have indispensable
roles during the intestinal remodeling of amphibian
metamorphosis (25, 26). Thra-/- and Thra-/-Thrb-/- (TR double
knockout) mutations in Xenopus tropicalis were shown to result
in reduced larval epithelial cell apoptosis and reduced adult stem
cell formation/proliferation during metamorphosis (27, 28).
Similarly, cell proliferation in the crypt was found to be
reduced in both Thra knockout mice and Pax8-/- mice (19, 20,
29). Recently, Yunbo Shi et al. reported that cell proliferation in
the crypt and apoptosis on the villus were reduced in the adult
intestine of ThraPV/+ mice, and they speculated that the
Frontiers in Endocrinology | www.frontiersin.org 7
decreased cell proliferation in the crypt could lead to less
epithelial cell death on the villus (1, 30).

Consistent with these findings, our intestinal proteomics
analysis and GO analysis revealed a significant enrichment for
the GO term developmental process, while the caspase-like
domain was markedly enriched in the protein domain cluster
analysis. Casp3, Casp7, and Ripk3, which are involved in the
positive regulation of apoptotic processes (31–33), were
downregulated. Ada, which inhibits epithelial cell apoptosis at
the villous tips (34), was upregulated. Mki67 is a known marker
of cell proliferation, and Mki67 was proven to be a T3 positively
regulated gene (35–37). Stat1, which is an important
transcription factor, is involved in the regulation of cell
proliferation (38). Both Mki67 and Stat1 were downregulated
in the Hom mice, whereas Rgn, which negatively regulates cell
proliferation, was upregulated (39). We speculate that these
factors associated with cell proliferation and apoptosis could
explain the dysplasia of the villi and the crypts of ThraE403X/E403X

mice, but the underlying mechanism needs further investigation.
The small intestine is an important place for the digestion and

absorption of nutrients, such as sugars, lipids, and proteins. A
previous study reported that sucrase, lactase, and aminopeptidase
enzymatic activities were decreased in purified the brush border
membrane of the intestine of Thra-/- mice (24). Decreased lactase
activity was also observed in the intestine of Pax8-/- mice (29).
TABLE 1 | Parallel reaction monitoring (PRM) analysis of 20 candidate proteins.

Protein
ID

Protein name Gene
name

Peptide sequence Hom/Wt ratio
(PRM)

Hom/Wt ratio
(TMT)

Regulated
type

P97864 Caspase-7 Casp7 VPTYLYR DLTAHFR 0.43 0.66 Down
Q9CPT0 Apoptosis facilitator Bcl-2-like protein 14 Bcl2l14 AQGPQGPFPVER TITDLFLR 0.43 0.65 Down
P70677 Caspase-3 OS=Mus musculus Casp3 SVDSGIYLDSSYK SGTDVDAANLR 0.22 0.36 Down
Q9QZL0 Receptor-interacting serine/threonine-protein

kinase 3
Ripk3 LHLEEPSGPVPGK

GTTPGPVFTETPGPHPQR
0.20 0.51 Down

E9PVX6 Proliferation marker protein Ki-67 Mki67 SSGSTPVTAASSPK
LPSSSPPLEPTDTSVTSR

0.29 0.76 Down

P42225 Signal transducer and activator of transcription 1 Stat1 DQQPGTFLLR ELSAVTFPDIIR 0.24 0.56 Down
P14246 Solute carrier family 2, facilitated glucose

transporter member 2
Slc2a2 HVLGVPLDDR VSVIQLFTDANYR 0.67 0.74 Down

P16858 Glyceraldehyde-3-phosphate dehydrogenase Gapdh IVSNASCTTNCLAPLAK
LISWYDNEYGYSNR

0.58 0.73 Down

P14094 Sodium/potassium-transporting ATPase subunit
beta-1

Atp1b1 VAPPGLTQIPQIQK
YNPNVLPVQCTGK

0.50 0.69 Down

Q9R0H0 Peroxisomal acyl-coenzyme A oxidase 1 Acox1 TQEFILNSPTVTSIK
AFTTWTANAGIEECR

0.44 0.68 Down

Pnlip Pancreatic triacylglycerol lipase Pnlip TTYTQATQNVR
ITGLDPAEPYFQGTPEEVR

0.05 0.25 Down

Q8CGA3 Large neutral amino acids transporter small
subunit 4

Slc43a2 FSWLGFDHK 0.42 0.67 Down

P14483 H-2 class II histocompatibility antigen, A beta
chain

H2-Ab1 AELDTVCR
TEALNHHNTLVCSVTDFYPAK

0.41 0.65 Down

P36371 Antigen peptide transporter 2 Tap2 VEFQDVSFSYPR LVEHDQLR 0.31 0.61 Down
O70570 Polymeric immunoglobulin receptor Pigr NVDLQVLAPEPELLYK

GVTGGSVAIACPYNPK
0.34 0.54 Down

Q9R233 Tapasin Tapbp VYHSSLPASGR ATAASLTIPR 0.20 0.48 Down
Q64374 Regucalcin Rgn TTSCCFGGK DGLNAEGLLR 3.21 2.93 Up
P03958 Adenosine deaminase Ada ANYSLNTDDPLIFK LNINAAK 1.81 1.98 Up
Q9DCG6 Phenazine biosynthesis-like domain-containing

protein 1
Pbld1 LQPTDSFTQSSR

GEPGGQTAPYDFYSR
2.83 2.13 Up

Q5BKQ4 Inactive pancreatic lipase-related protein 1 Pnliprp1 GSQTTYTQAANNVR
NALSQIVDIDGIWSGTR

16.17 4.74 Up
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These results suggest that TRa mutations or thyroid hormone
deficiency could affect the metabolism of proteins and carbohydrates.

In the present study, several processes related to nutrient
metabolism, such as fatty acid degradation (mmu00071), fatty
acid metabolism (mmu0121), fat digestion and absorption
(mmu04975), starch and sucrose metabolism (mmu00500), and
protein digestion and absorption (mmu04974), were found to be
enriched. Glyceraldehyde-3-phosphate dehydrogenase (Gapdh),
which is negatively regulated by T3, was downregulated in the
homozygous mice and plays a role in glycolysis (40, 41). Glucose
Frontiers in Endocrinology | www.frontiersin.org 8
transporter type 2 (Glut-2), which is mainly expressed in the
intestine and participates in the transcellular transport of glucose
in the intestine, was downregulated. It has also been reported that
Glut-2 plays an important role inmaintaining glucose homeostasis
and the development of the pancreas (42). Sodium/potassium-
transporting ATPase subunit beta-1(Atp1b1) is a sodium and
potassium pump that provides a concentration gradient for the
glucose transporters to absorb glucose from the intestinal lumen
into the blood (43, 44). Its downregulation may affect the
absorption of glucose in the intestine. For lipid metabolism, the
FIGURE 6 | Validation by parallel reaction monitoring analysis. The absolute quantification levels of 20 differentially expressed proteins were evaluated in Thra+/+ (n =
4) and ThraE403X/E403X mice (n = 5). Data are presented as mean ± SEM. Statistical analysis was performed by Student’s t-test. *P < 0.05; **P < 0.01; ***P < 0.001.
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triglyceride lipase inhibitor Pnliprp1 was significantly upregulated,
suggesting a decreased efficiency of triglyceride digestion and
absorption in the ThraE403X/E403X mice (45). Furthermore,
Acox1 and Pnlip, which are associated with long fatty acid
catabolism and cholesterol absorption (46, 47), were
downregulated in the ThraE403X/E403X mice. For amino acid
metabolism, the large neutral amino acid transporter small
subunit 4 (Lat4) was significantly downregulated. Lat4 is mainly
present in the crypts and plays an important role in amino acid
(AA) transport across the cellular barrier in intestinal
development (48–50). We speculate that these proteins associated
with the absorption of nutrients could be associated with the
impaired postnatal development of the ThraE403X/E403X mice.

The intestine is the largest lymphoid tissue in the body. A
striking feature of the intestinal innate immune system is its ability
to generate large amounts of noninflammatory immunoglobulin
A (IgA) antibodies, which serve as the first line of host defense
against intestinal pathogens (51). Our proteomic results showed
that most of the DEPs related to antigen processing and
presentation and the intestinal immune network for IgA
production pathways were downregulated. Some representative
proteins were quantified and validated by PRM. H2-Ab1 plays an
important role in the presentation of MHC class II molecular
antigens (52–54). Tap2 is a transporter associated with antigen
processing (TAP) and acts as a molecular scaffold essential for
peptide-MHC class I assembly and antigen presentation in
complex with Tap1. Either Tap2 mutation or Tap2 deficiency
(Tap2-/-) shows severely reduced expression of human lymphocyte
antigen class I proteins on the cell surface, which affects the
process by which antigen-presenting cells present antigens to
CD8 T and NK cells (55, 56). Tapbp ensures the proper
assembly of MHC class I molecules by interacting with TAP,
and its function is conserved in both human and mouse cells (57).
Pigr binds polymeric IgA at the basolateral surface of epithelial
cells and is then transported across the cell to be secreted at the
apical surface. Secreted IgA promotes immune exclusion by
entrapping dietary antigens and microorganisms in the mucus
and functions as a neutralizer of toxins and pathogenic microbes
(58). The reduced levels of proteins related to intestinal IgA
production and antigen presentation process suggest that the
innate and adaptive immune barriers in the intestine could be
impaired in ThraE403X/E403X mice.

In conclusion, our intestinal proteomic data indicate that TRa1
may play an important role in intestinal development. Except for
the association with cell proliferation and apoptosis along the
crypt–villus axis, which have been reported by previous studies,
our intestinal proteomic results provide promising candidates for
future studies as they suggest novel mechanisms by which TRa1
may influence intestinal development, such as the transport of
Frontiers in Endocrinology | www.frontiersin.org 9
intestinal nutrients and the establishment of innate and adaptive
immune barriers of the intestine.
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