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ABSTRACT Cefazolin, an active in vitro agent against Escherichia coli, is used to treat urinary
and biliary tract infections. Cefazolin is used widely as an antibiotic, and the increase in the
emergence of cefazolin-resistant E. coli in many countries is a major concern. We inves-
tigated the changes in the susceptibility of E. coli clinical isolates to cefazolin following
exposure. A total of 88.9% (16/18 strains) of the strains acquired resistance to cefazolin.
All strains with an MIC to cefazolin of 2 mg/mL became resistant. The expression of chro-
mosomal ampC (c-ampC) increased up to 209.1-fold in the resistant strains. Moreover, 11
of the 16 E. coli strains (68.8%) that acquired cefazolin resistance maintained the resistant
phenotype after subculture in cefazolin-free medium. Therefore, the acquisition and main-
tenance of cefazolin resistance in E. coli strains were associated with the overexpression
of c-ampC. Mutations in the c-ampC attenuator regions are likely to be maintained and
are one of the key factors contributing to the increase in the number of cefazolin-resistant
E. coli worldwide.

IMPORTANCE This study is the first to demonstrate that mutations in the chromosomal-
ampC attenuator region are responsible for the emergence of cefazolin resistance in
Escherichia coli strains. The resistance was maintained even after culturing E. coli without
cefazolin. This study highlights one of the key factors contributing to the increase in the
number of cefazolin-resistant E. coli strains, which can pose a considerable challenge for
treating common infections, such as urinary tract infections.
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Cefazolin is a first-generation cephalosporin with bactericidal activity against Escherichia
coli, Streptococcus spp., Klebsiella spp., and Proteus mirabilis in addition to staphylococci.

It is used commonly as a prophylactic antibiotic for the prevention of surgical site infections
according to the Centers for Disease Control and Prevention (1) and World Health Organization
(WHO) guidelines (2). The WHO recommends cefazolin as a high-quality, inexpensive, and em-
pirical first-line medication (3, 4). Therefore, cefazolin is used widely as an antibacterial drug in
clinical settings for the treatment of infective endocarditis, joint infections, and skin infections
caused by Gram-positive bacteria, such as methicillin-sensitive Staphylococcus aureus.

Antimicrobial de-escalation is recommended in the antimicrobial stewardship guidelines
(5) to combat the emergence of antimicrobial resistance strains. Cefazolin is used commonly
as a therapeutic antibiotic for infectious diseases caused by staphylococci; however, its use
has been expanded to treat E. coli infections. The expansion has led to a worldwide increase
in the number of cefazolin-resistant E. coli strains, reported at 12.1% to 34% in the United
States (6, 7), 15.2% to 22.3% in Australia (8, 9), 63.6% in China (10), 39.5% in Taiwan (11), and
38.7% in Japan (12). E. coli is one of the most common causes of nosocomial and commu-
nity-acquired bacterial infections, including urinary tract infections, enteric infections, and
systemic infections along with more severe infections, such as bacteremia (13, 14). However,
the precise mechanism underlying the increase in the number of cefazolin-resistant E. coli
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strains remains unclear. A known antibacterial drug resistance mechanism is through the
production of AmpC b-lactamases, encoded by ampC b-lactamase on chromosomes and/
or plasmids; E. coli possesses a chromosomal ampC gene (c-ampC) (15). In this study, we
investigated the mechanism underlying the acquisition and maintenance of resistance in
E. coli following cefazolin exposure.

Differences in the MIC between cefazolin-exposure and cefazolin-free subcultures.
Eighteen cefazolin-susceptible E. coli strains (MIC, #2 mg/mL) were selected from 43 non-
duplicate clinical isolates. E. coli ATCC 25922 was used as the reference strain. Cefazolin
MICs were determined using the broth microdilution method according to the Clinical and
Laboratory Standards Institute guidelines and breakpoints (16).

Strains surviving at the sub-MIC were collected and then inoculated into a new 4 to
1/4 MIC cefazolin series in diluted Mueller-Hinton broth (MHB); this series was repeated
10 times. Among the 18 tested strains, 16 (88.9%) acquired resistance (MIC, $8 mg/mL)
after 216 h of exposure. All E. coli clinical strains with an initial cefazolin MIC of 2 mg/
mL (group A) acquired resistance, whereas 9 of the 11 strains (81.8%) with an initial
cefazolin MIC of 1 mg/mL (group B) became resistant (Fig. 1a).

Among the 16 strains that acquired cefazolin resistance, 11 (68.8%) maintained the
resistant phenotype after 10 repeated subcultures in cefazolin-free MHB. The resistance
maintenance rates in groups A and B were 71.4% (5/7 strains) and 54.5% (6/11 strains),

FIG 1 Resistance rates in Escherichia coli isolates and the E. coli ATCC 25922 strain following culture
in cefazolin-containing (a) and cefazolin-free medium (b). The MIC resistance breakpoints of cefazolin
are $8 mg/mL, according to the Clinical and Laboratory Standards Institute guidelines. The cefazolin MICs in
group A and B wild-type strains (i.e., prior to cefazolin exposure) were 2 mg/mL and 1 mg/mL, respectively.
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respectively (Fig. 1b). Five strains (C-11, C-33, C-40, C-10, and C-12) showed particularly high
resistance (MIC,$32mg/mL) after repeated subculture in cefazolin-free medium (Table 1).

In this study, 41.2% of the cefazolin-sensitive strains had an MIC of 2 mg/mL, which
is much higher than the 18% reported by Turnidge et al. in 2011 (17), suggesting that
the MICs of cefazolin-sensitive E. coli are increasing. In this study, 71.4% strains became
resistant within 3 days, highlighting the need to pay attention to E. coli cefazolin-sensi-
tive strains with an MIC of 2mg/mL.

AmpC production. To explore the link between AmpC production and acquisition
of cefazolin resistance, real-time reverse transcription-quantitative PCR (RT-qPCR) was per-
formed targeting the ampC gene. Total RNA was isolated from cefazolin-exposed and cefa-
zolin-free subcultured E. coli strains using TRI Reagent LS (Molecular Research Center, Inc.,
Cincinnati, OH), according to the manufacturer’s instructions. Expression of the c-ampC
gene and the reference gene glyceraldehyde 3-phosphate dehydrogenase A (gapA) was
assessed by RT-qPCR using the iTaq universal SYBR green one-step kit (Bio-Rad, CA). The
relative expression of c-ampCmRNA was calculated as the fold change based on the mean
normalized expression of c-ampC mRNA in the reference strain E. coli ATCC 25922 as 1.0.
The following PCR primers were used: ampC forward primer 59-TCAAACCAGACGGCTTC
ACA-39 and reverse primer 59-GTCTGTATGCCAACTCCAGTATCG-39, and gapA forward primer
59-GGCCAGGACATCGTTTCCAA-39 and reverse primer 59-TCGATGATGCCGAAGTTATCG
TT-39 (18).

Following cefazolin exposure, the c-ampC mRNA expression was upregulated by 209.1-
fold (Table 1), which is above the threshold of a 4.8-fold increase that indicates cefazolin
resistance. Similarly, Paltansing et al. reported a 6.1- to 163.3-fold increase in c-ampC expres-
sion in clinical E. coli isolates that were resistant to cefoxitin and cefuroxime (19).

The c-ampCmRNA expression increased by 4.8- to 7.8-fold in group A strains that acquired
resistance following the third cefazolin exposure; however, the strains with cefazolin MICs
of $128 mg/mL showed a 134.7- to 209.1-fold increase in c-ampC mRNA expression. The
exposure of E. coli to the sub-MIC of cefazolin for 3 days or longer led to increased c-ampC
expression.

Mutation detection in the AmpC promoter/attenuator regions. Mutations in the
c-ampC promoter/attenuator regions were detected via DNA sequencing at Eurofins
Genomics K.K. using the primers AB1 59-GATCGTTCTGCCGCTGTG-39 and ampC2 59-GGGC
AGCAAATGTGGAGCAA-39 (20). A total of 28 mutations were identified in the 18 isolates af-
ter cefazolin exposure, and at least 1 or more nucleotide changes were identified in each
strain (Table 1). A total of 75% (12/16 strains) of the strains that acquired resistance had
mutations at positions 117, 122, 124, 126, 127, 132, and 137 in the attenuator region
(ranging from117 to137). Strains C-22 and C-40 (with cefazolin MICs of$128mg/mL) had
the following mutations: C!T at122, T!G at126, A!T at127, and G!A at132. Strain
C-33 had the following mutations: C!T at 117, C!T at 122, G!A at 132, and G!A at
137. Furthermore, 81.8% (9/11) of the strains that maintained cefazolin resistance following
subculture in the cefazolin-free condition harbored one to three mutations at positions
117, 122, 124, 132, and 137. The other two strains had the following mutations in the
promoter regions: strain C-4 had C!T mutation at position 242 and strain C-27 had muta-
tions T!C at288, G!A at282, and T!C at21.

Mutations in the c-ampC attenuator regions reduce the transcriptional efficiency of RNA
polymerase (15, 21), destabilize the stem-loop structure, and increase c-ampC gene transcrip-
tion, resulting in the overproduction of AmpC b-lactamases (21–23). The mutations in the c-
ampC attenuator region could be involved in maintaining cefazolin resistance in E. coli.

E. coli harboring extended-spectrum b-lactamase genes (9) and producing AmpC
b-lactamase (21) are resistant to cefazolin. p-ampC genes, including CMY, ACC, ACT, FOX,
MOX, and DHA, are involved in acquired antimicrobial resistance (18). p-ampC genes, such
as CMY-2, are derived from Citrobacter freundii (24), whereas the tet(X) gene, involved in the
tetracycline resistance in E. coli, originated from Flavobacteriaceae (25). Resistance genes,
including ampC could be transmitted from other bacteria to E. coli through plasmids. In this
study, the acquisition and maintenance of resistance were attributed to increased c-ampC
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production. The clinical isolates harbored the c-ampC gene; therefore, it is necessary to
restrict cefazolin use.

In summary, 2 days of cefazolin administration should be sufficient in cases of cefazolin-
susceptible E. coli infections. Subsequent cefazolin administration should be assessed using
routine monitoring of cefazolin MIC values.
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