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Abstract

Spring migration phenology is shifting towards earlier dates as a response to climate change

in many bird species. However, the patterns of change might not be the same for all species,

populations, sex and age classes. In particular, patterns of change could differ between spe-

cies with different ecology. We analyzed 18 years of standardized bird capture data at a

spring stopover site on the island of Ponza, Italy, to determine species-specific rates of phe-

nological change for 30 species following the crossing of the Mediterranean Sea. The

advancement of spring passage was more pronounced in species wintering in Northern

Africa (i.e. short-distance migrants) and in the Sahel zone. Only males from species winter-

ing further South in the forests of central Africa advanced their passage, with no effect on

the overall peak date of passage of the species. The migration window on Ponza broadened

in many species, suggesting that early migrants within a species are advancing their migra-

tion more than late migrants. These data suggest that the cues available to the birds to

adjust departure might be changing at different rates depending on wintering location and

habitat, or that early migrants of different species might be responding differently to chang-

ing conditions along the route. However, more data on departure time from the wintering

areas are required to understand the mechanisms underlying such phenological changes.

Introduction

Migration phenology in birds and other animals has been shifting in recent years, along with

overall climate change [1–4]. This is a global phenomenon observed in all continents where

enough long-term data are available [5–9]. In the Palaearctic-African bird migration system,

most studies documented an advance in spring migration and arrival at the breeding grounds
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[10, 11] though changes in autumn migration have been observed as well [12, 13]. Both short-

and long-distance migrants are affected [14–16] and changes are usually related to changes in

the North Atlantic Oscillation Index (NAOI) and temperatures along the route [14, 17–27].

The pattern of phenology shift is complex, and species, populations, sexes and age classes are

affected differently [28–36]. Timing effects might be more pronounced in certain areas than in

others [32, 33, 37, 38], and in some cases they might have opposite trajectories [39], possibly

underlining weather effects along the route [40]. In some cases, the early phases of migration

are affected more strongly than the late ones [23, 39, 41, 42]. It is still debated whether phenol-

ogy shifts are driven by microevolutionary changes or by phenotypic plasticity [10, 11, 43, 44],

though the latter mechanism has recently received increasing support [45].

Some of the methods used for detecting switches in phenology have been object of debate

[46, 47]. Studies using first arrival dates might overestimate changes, and several authors

advised to use median and percentile passage dates to better describe the phenomenon [16, 48,

49]. The latter approach provides tools to understand and monitor in more detail the process

of phenology shifts in spring migration, which is likely linked to climate change. Conditions in

the African wintering grounds are changing, e.g. the Sahel zone is becoming greener (as pre-

dicted by [50, 51], and described in [52]), while stopover areas in Northern Africa are becom-

ing drier ([53–55], but see [56]). This might be due to the recent trend towards a positive

NAOI in the last years (https://www.ncdc.noaa.gov/teleconnections/nao/, last accessed on July

2nd, 2020). These environmental data suggest that species wintering in the Sahel and actively

using stopover sites in Northern Africa might be more affected than others in their timing of

passage, which should be reflected in an earlier arrival in Southern Europe.

Here, we aimed at identifying recent changes in migration phenology of migrants that cross

the Mediterranean Sea, with a particular focus on within-species comparison between early

and late migrants and on differences between species with different wintering areas. To this

aim, we analyzed a large dataset of captures of migratory birds (nearly 220 000 individuals,

mostly passerines) on spring migration from a small Italian island, where large numbers of

individuals of several species are stopping over after crossing the Mediterranean Sea [57]. We

calculated peak passage date and the dates of start and end of the main migration period for

every year of the study, totaling 18 years, in 30 species of bird migrants. We determined the

trends of change in these parameters for every species and tested for general patterns within

groups of species based on their wintering range.

Study site and methods

Study site and ringing operations

This study was conducted on Ponza, a small island in the Tyrrhenian Sea (9.87 km2) located

about 50 km off Italy (40˚55’ N, 12˚58’ E), where spring bird migration has been monitored

since 2002 (www.inanellamentoponza.it). Ponza attracts large numbers of African-European

migratory landbirds during spring migration as it is located along one of the main Mediterra-

nean migratory routes, with daily peaks of over 1500 individual birds ringed occurring several

times during the study period. Birds were caught using mist-nets from March (or April in

some years) to May (exact start and end dates are shown in S1 Table). Ringing was conducted

under permit from the Regione Lazio (Determinazione Dirigenziale B0332/06; B0084/09;

A12042/11; G00575/15; and G00668/18). No ethical permit is required for standard capture

and ringing. Ringing was conducted daily except for days with heavy rain or strong winds

(>15 knots). These conditions occurred on<1% of the total ringing days over the entire study

period. The mist-nets were checked hourly from dawn until one hour after dusk. The average

total length of mist nets deployed was 227 m. We kept the net brand (Lavorazione Reti
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Bonardi, Monte Isola BS, Italy, http://www.vbonardi.it/) and model (2.4 m height, 16 mm

mesh size) constant throughout the entire study period. The birds were ringed, aged and sexed

according to the available literature [58, 59]. We analyzed 18 years (2002–2019) of capture

data standardized by daily effort (Catch Per Unit of Effort, hereafter CPUE). For this analysis,

we used data of the 30 most abundant species in number of individuals during the study period

(Table 1). We divided the species in three groups based on their main wintering area, referring

to [60, 61] for a description of their wintering areas. We divided them into species wintering

mainly in North Africa (North of the Sahara Desert), the Sahel zone (dry scrubland just South

of the Sahara Desert), and tropical Africa (Guinea savanna and tropical forests).

Analysis of passage timing

To define the peak date of passage and the time window encompassing the main migration

period (hereafter referred as migration window), we used a 7-days Moving Average (MA) of

Table 1. Summary of the study species captured on the island of Ponza between 2002 and 2019 and used in the analysis.

Species Total individuals captured Average individuals per year [min, max] Median passage (Julian day) Wintering area

Acrocephalus arundinaceus 410 23 [4, 58] 124.2 Tropical

Acrocephalus schoenobaenus 1162 65 [17, 236] 127.1 Sahel

Anthus trivialis 2193 122 [19, 202] 108.4 Tropical

Erithacus rubecula 13044 725 [1, 2599] 86.5 North Africa

Ficedula albicollis 1548 86 [1, 279] 112.7 Tropical

Ficedula hypoleuca 10312 573 [65, 914] 115.8 Tropical

Hippolais icterina 6608 367 [45, 583] 109.4 Tropical

Hirundo rustica 507 28 [1, 67] 105.3 Tropical

Jynx torquilla 676 38 [17, 72] 121.0 Sahel

Lanius senator 1811 101 [11, 214] 105.3 Sahel

Luscinia megarhynchos 736 41 [13, 114] 120.7 Tropical

Merops apiaster 8654 481 [46, 1052] 130.4 Tropical

Muscicapa striata 18871 1048 [216, 2922] 134.3 Sahel

Oenanthe hispanica 127 7 [0, 25] 105.7 Sahel

Oenanthe oenanthe 2097 117 [21, 212] 105.7 Sahel

Oriolus oriolus 1404 78 [19, 182] 123.4 Tropical

Phoenicurus ochruros 1972 110 [0, 397] 83.1 North Africa

Phoenicurus phoenicurus 5474 304 [45, 726] 110.4 Sahel

Phylloscopus collybita 3809 212 [1, 589] 86.9 North Africa

Phylloscopus sibilatrix 14784 821 [159, 1430] 116.4 Tropical

Phylloscopus trochilus 12673 704 [83, 1321] 110.0 Sahel

Saxicola rubetra 16980 943 [455, 1647] 119.5 Tropical

Saxicola torquatus 564 31 [0, 147] 74.9 North Africa

Streptopelia turtur 564 31 [16, 49] 123.0 Sahel

Sylvia atricapilla 2303 128 [4, 574] 98.4 North Africa

Sylvia borin 49713 2762 [581, 5967] 130.2 Tropical

Sylvia cantillans 8019 446 [29, 1089] 97.2 Sahel

Sylvia communis 30496 1694 [500, 3594] 121.3 Sahel

Turdus philomelos 1828 102 [0, 477] 82.8 North Africa

Upupa epops 458 25 [1, 64] 91.9 Sahel

Total number of birds captured, yearly average with minima and maxima in brackets, median passage date expressed as Julian date (1 = January 1st), and main wintering area

are indicated.

https://doi.org/10.1371/journal.pone.0239489.t001
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the daily CPUE values for each species (see S1 Fig for a visual representation of the general pat-

terns). For every year of the study and for each species separately, peak date of passage was

defined as the day with the highest MA of migrating birds. The start and end of the main

migration period were defined from the tail ends of the timing distribution as the dates when

MA was below 10% of the peak value. In years when the ringing season started after the onset

of the migration period (i.e. with smoothed data for the first day above 10% of peak MA) and/

or ended before the end of the migration period (i.e. with smoothed data for the last day above

10% of peak MA) for any species, the tails of the distributions, and therefore the start or the

end of the migration period, were not defined for that year and species. The width of the

migration window was defined as the difference in days between the start and the end of the

main migration period. Statistical analysis for changes in timing were made based on the

annual values of start, peak and end of the main migration period, when available. Species-

years where the total number of captures was lower than 5 were excluded from the analysis.

This method is insensitive to the shape of the probability distribution of daily migration values

and is therefore preferred over methods that rely on a pre-defined probability distribution (e.g.

a normal distribution), and allows to identify migration peaks without relying on quantile

measurements such as the median, which is not reliable in case of a truncated sample. S1 Fig

shows that there is a nearby perfect overlap between the observed data and the fitted data

using the MA method.

We analyzed changes in timing of the annual values of start, peak and end of the main

migration period separately for every species using linear regressions. The slope of this regres-

sion indicates the average yearly change in date of passage on Ponza. Negative slopes indicate

an advance in passage, while positive slopes indicate a delay. We compared the changes in pas-

sage dates of the three wintering groups (North Africa, Sahel, and Tropical Africa) using linear

mixed effects models (LMM) with respectively start, peak, end of migration period, and migra-

tion window as response variables, and wintering group, year, and the interaction between

wintering group and year as fixed effects, while species was used as a random effect. A signifi-

cant interaction indicates different slopes of passage date over the years in the different groups.

To test for pairwise differences, we first estimated the marginal means of the linear trends

between wintering group and year using the emtrends function of package emmeans in R [62].

We then used the cld function of package multcomp [63] to compare these means pairwise

among groups. This function groups the different levels of a variable (in our case the wintering

groups) according to a set p-level, which is 0.05 by default. To estimate the p-level of non-sig-

nificant pairwise comparisons we therefore had to change the p-level for grouping, thus result-

ing in p-values that are within a range rather than being exact (see Results). For the

comparison of the start of the migration period and the migration window, we excluded the

species wintering in North Africa, since for most of them the date of start of passage was not

estimated.

Sex could be determined based on morphology in 11 species (1 from North Africa, 4 from

the Sahel, and 6 from Tropical Africa). In these species, in addition to the analysis described

above, we performed separate linear regressions for each sex in every species. We then com-

pared species wintering in the Sahel and in Tropical Africa (we excluded the only species from

North Africa for this analysis) in the slopes of the peak date of passage separately for males and

females, using LMMs with peak date of passage as a response variable, year, wintering group,

and the interaction term of year and wintering group as fixed effects, and species as random

effect. Again, a significant interaction term would imply a different slope in the change over

the years, and we compared groups using the same procedure as described above. We also

compared males and females within each wintering group in a similar fashion, this time using
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sex, year, and the interaction of sex and year as fixed effects. All analyses were performed using

R 4.0.0 (www.r-project.org).

Results

The slopes of change in passage dates for each species are shown in Table 2 and visualized in

S2 Fig. During the study period, peak date of passage was advanced significantly in 5 of the 30

species used in our analysis (3 from the North African wintering group, 2 from the Sahel

group), with additional two species with an advance that was close to significance (both from

the Sahel group). The range of yearly advance in peak date of passage (for significant trends

only) was between 1.0 and 1.4 days per year.

The start of the main migration period was significantly advanced in 6 species (3 from the

Sahel group, 3 from the Tropical group), and close to significance in one additional species

(from the Tropical group). Note that the start of the migration period was not determined in

any of the species in the North African group due to fact that their passage almost invariably

began before the start of the capture season on Ponza. The range of yearly advance in the start

of migration was between 0.7 and 1.7 days per year.

There was a significant advance of the end of the migration period by 1.6 days per year in

one species from the Sahel group, and a significant delay in the end of migration by 0.5 days

per year in one species from the Tropical group. One species from the Sahel group had a close

to significant delay in the end of the migration period.

The migration window was significantly broadened in two species (one from the Sahel and

one from the Tropical group), while the broadening of the migration window was close to sig-

nificance in one additional species from the Tropical group. In one species from the Sahel

group, the migration window was almost significantly narrower.

The marginal mean slopes of the peak date of passage change per year were significantly dif-

ferent from zero in two of the wintering groups (North Africa: -0.8 ± 0.2 days per year,

p< 0.001; Sahel: -0.5 ± 0.1 days per year, p< 0.001), while this was not the case for the Tropi-

cal group (-0.1 ± 0.1 days per year, p = 0.433) (Fig 1). The slopes of the North Africa and the

Tropical groups differed significantly from each other (cld comparison: p< 0.05), while the

difference between the Sahel and the Tropical groups was marginally non-significant (0.05< p

< 0.06). The slope of the Sahel group and of the North Africa group did not differ from each

other (0.20< p< 0.25). The overall effect of year across species on the peak passage was signif-

icant in the LMM (t = -4.283).

Peak date of passage was advanced overall in males (LMM: t = -3.081, Fig 2) but the slopes

did not differ between Sahel and Tropical wintering birds (LMM; t = 1.149). The marginal

mean slope of peak date of passage for males of the Sahel group was significantly different

from zero (-0.7 ± 0.2 days per year, p = 0.002) and marginally non-significant in males of the

Tropical group (-0.3 ± 0.2 days per year, p = 0.061). In females, there was both an overall effect

of year on peak date of passage (LMM: t = -2.609, Fig 2) and on the interaction between year

and wintering group (LMM; t = 2.382). The marginal mean slope of peak date of passage for

females of the Sahel group was significantly different from zero (-0.6 ± 0.2 days per year,

p = 0.010) and non-significant in females of the Tropical group (0.1 ± 0.2 days per year,

p = 0.559).

When comparing sexes within the Sahel wintering group, there was no difference in slope

between males and females (LMM: t = -0.253), while the slopes were different between sexes in

the Tropical wintering group (LMM; t = -2.050). At the species level, peak date of passage was

advanced significantly in both males and females of two species in the Sahel wintering group

(Table 3).
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Both the Sahel and the Tropical wintering groups significantly advanced the start of the

migration period (Fig 1), so that there was an overall significant effect of year (LMM: t =

-3.766), but the slope was not different between the two groups (LMM: t = -0.214). The mar-

ginal mean slopes were -0.5 ± 0.1 days per year in the Sahel group (p< 0.001) and -0.5 ± 0.1

days per year in the Tropical group (p< 0.001).

The marginal mean slope of the change in the end of the migration period was not signifi-

cantly different from zero in any of the wintering groups (North Africa: -0.3 ± 0.2 days per

Table 2. Summary of the changes (in days per year) of start, peak, end date of the main migration period and migration window for 30 bird species migrating

through the island of Ponza between 2002 and 2019.

Species Start [days/year] Peak [days/year] End [days/year] Migration window [days/year]

Wintering group: North Africa

Erithacus rubecula NA -1.0 ± 0.4� -0.5 ± 0.4 NA

Phoenicurus ochruros NA -0.4 ± 0.3 -0.3 ± 0.4 NA

Phylloscopus collybita NA -1.3 ± 0.5� -0.3 ± 0.6 NA

Saxicola torquatus NA -0.4 ± 0.3 0.2 ± 0.3 NA

Sylvia atricapilla NA -0.3 ± 0.4 -0.3 ± 0.4 NA

Turdus philomelos NA -1.3 ± 0.6� -0.1 ± 0.8 NA

Wintering group: Sahel

Acrocephalus schoenobaenus -0.2 ± 0.4 0.3 ± 0.3 0.0 ± 0.9 -0.5 ± 1.3

Jynx torquilla -1.5 ± 0.5� -0.3 ± 0.5 -0.4 ± 0.3 1.2 ± 1.0

Lanius senator 0.1 ± 0.3 -0.2 ± 0.3 0.6 ± 0.4 0.5 ± 0.3

Muscicapa striata -0.2 ± 0.4 0.5 ± 0.3 NA NA

Oenanthe hispanica -0.3 ± 0.4 -1.2 ± 0.7 -1.6 ± 0.5� -1.2 ± 0.7

Oenanthe oenanthe -0.1 ± 0.5 -0.7 ± 0.6 -0.2 ± 0.3 -0.1 ± 0.6

Phoenicurus phoenicurus -1.6 ± 0.5� -1.4 ± 0.5�� -0.1 ± 0.3 0.2 ± 0.8

Phylloscopus trochilus 0.0 ± 0.8 -0.7 ± 0.4 0.3 ± 0.2 0.0 ± 1.0

Streptopelia turtur -0.3 ± 0.3 -0.1 ± 0.3 0.2 ± 0.4 0.5 ± 0.8

Sylvia cantillans 0.6 ± 1.0 -1.0 ± 0.4� -0.1 ± 0.5 -2.4 ± 0.8

Sylvia communis -0.5 ± 0.3 -0.1 ± 0.3 -0.2 ± 0.7 0.7 ± 1.0

Upupa epops -1.3 ± 0.5� -1.1 ± 0.5 0.7 ± 0.6 3.9 ± 1.1�

Wintering group: Tropical Africa

Acrocephalus arundinaceus -0.7 ± 0.2�� -0.6 ± 0.4 0.1 ± 0.2 0.7 ± 0.4

Anthus trivialis -0.7 ± 0.6 -0.5 ± 0.3 -0.2 ± 0.3 0.8 ± 1.4

Ficedula albicollis -0.8 ± 0.5 -0.4 ± 0.4 -0.2 ± 0.3 0.5 ± 0.7

Ficedula hypoleuca -0.7 ± 0.3� 0.1 ± 0.3 0.5 ± 0.2� 0.8 ± 0.4

Hippolais icterina 0.2 ± 0.2 0.4 ± 0.3 0.3 ± 0.7 0.2 ± 1.4

Hirundo rustica -1.7 ± 0.4�� -0.5 ± 0.5 0.0 ± 0.3 2.6 ± 0.8�

Luscinia megarhynchos -0.5 ± 0.4 -0.4 ± 0.4 0.1 ± 0.3 0.7 ± 0.8

Merops apiaster -0.3 ± 0.2 -0.1 ± 0.3 0.1 ± 0.3 0.4 ± 0.4

Oriolus oriolus -0.2 ± 0.2 0.4 ± 0.3 NA NA

Phylloscopus sibilatrix -0.3 ± 0.4 0.3 ± 0.3 0.3 ± 0.2 1.2 ± 0.7

Saxicola rubetra -0.6 ± 0.3 0.1 ± 0.3 0.1 ± 0.1 0.6 ± 0.5

Sylvia borin -0.3 ± 0.3 0.2 ± 0.3 NA NA

Slopes ± SE from the linear regression of date by year are given. Significant slopes are represented in bold typeface.

�� = p < 0.01

� = 0.01 < p < 0.05. Exact p-values are shown in S2 Table. Negative values indicate an advanced passage. In the last column (Migration window), the magnitude of the

change in width of the migration window is shown. Positive values indicate a broader migration window. NA indicates missing values when either start or end of the

main migration period were not assessed.

https://doi.org/10.1371/journal.pone.0239489.t002
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year, p = 0.074; Sahel: -0.1 ± 0.1 days per year, p = 0.678; Tropical: 0.1 ± 0.1 days per year,

p = 0.373). There was no overall effect of year across species in the end of the migration period

(LMM: t = -1.793) (Fig 1).

The migration window was broadened overall by 0.5 ± 0.3 days per year, though not signifi-

cantly so (LMM: t = 1.818). There were no differences between wintering groups (LMM; t =

-0.662) nor in the slopes of change between groups (LMM; t = 0.653).

Discussion

After having been reported in a large number of studies in the early 2000’s [10, 11], the

advance of spring passage in migratory European-African migratory birds has received

decreased attention, in particular in the Mediterranean basin. However, our results clearly

show that this phenomenon is still ongoing, and it is occurring at a substantial rate. The values

of yearly change in our study should be considered with caution for species with relatively low

numbers of yearly captures or species for which data were not obtained every year. However,

the robust overall results indicate that on average the peak of passage has been advanced by up

to one day per year. The advance was most marked in species wintering in North Africa and,

Fig 1. Trends of change in start, peak, and end date of the main migration period of 30 bird species migrating

through the island of Ponza between 2002 and 2019, subdivided into wintering groups. Every dot represents the

passage date of a single species in any given year. Patterns for all species singularly are shown in S1 Fig.

https://doi.org/10.1371/journal.pone.0239489.g001

Fig 2. Trends of change in the peak date of the main migration period on Ponza of males and females from 4

species wintering in the Sahel and 6 species wintering in tropical Africa. Every dot represents the passage date of a

single species in any given year.

https://doi.org/10.1371/journal.pone.0239489.g002
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to a lesser extent, in those wintering in the Sahel zone. The peak of passage did not change

markedly in species spending the winter in tropical Africa. While there was evidence for an

advancement of the beginning of the migration period, the end did not change substantially.

This results in a substantial though non-significant increase of the width of the migration win-

dow. For example, if we consider the Sahel group in our study, the average migration window

changed from ~25 to ~40 days (Fig 1).

The pronounced advance in the peak date of passage in species wintering in North Africa

confirms earlier findings that suggested that species not crossing the Sahara are able to better

track changing conditions in the breeding grounds [64]. Given the phenological shift in plant

productivity and the related change in peak prey abundance for insectivores [65], this result

was not surprising. Improved conditions in the Sahel might be responsible for the advance-

ment of migration dates also in species spending the winter in that area. Moreau [66] observed

that migratory birds arrive to the Sahel zone at the beginning of the dry season, and through-

out the winter they face deteriorating conditions that reach their negative peak when birds are

preparing for spring migration. Recent winter rains may have relaxed this situation and

allowed for richer foraging conditions during this critical time. Earlier departure with increas-

ing winter rains in the Sahel has been shown for several species in past studies [67]. Interest-

ingly, peak date of passage did not change over the period of the study in species wintering in

the forested areas of tropical Africa. These are also the species that start their migration last

since migration date is correlated with wintering latitude [68]. In general, the recently

described re-greening of the Sahel zone [52, 69] might favour species that extensively use this

region as a wintering area or as a stopover site during migration, by allowing faster refueling

rates and thus earlier departure [70, 71]. Overall, environmental conditions in the wintering

areas are the most likely factor determining regional differences in phenological adjustments.

Future studies should address climatic changes in different regions within the wintering range

of Eurasian-African migratory species to better understand these patterns.

Table 3. Summary of the changes (in days per year) in the peak date of the main migration period of 11 sexually dimorphic migratory bird species on Ponza

between 2002 and 2019, divided by sex.

Males Females

Species Peak ± SE p Peak ± SE p

Wintering group: North Africa

Sylvia atricapilla -0.3 ± 0.5 0.618 -0.6 ± 0.4 0.166

Wintering group: Sahel

Lanius senator -0.1 ± 0.4 0.856 0.9 ± 0.5 0.082

Oenanthe oenanthe 0.0 ± 0.6 1.000 -0.5 ± 0.5 0.364

Phoenicurus phoenicurus -1.6 ± 0.5 0.004�� -1.1 ± 0.5 0.046�

Sylvia cantillans -1.0 ± 0.5 0.045� -1.5 ± 0.4 0.004��

Wintering group: Tropical Africa

Ficedula albicollis -0.9 ± 0.4 0.053 0.0 ± 0.4 0.918

Ficedula hypoleuca -0.4 ± 0.2 0.136 0.2 ± 0.2 0.484

Hirundo rustica -0.2 ± 0.6 0.779 -0.2 ± 0.6 0.710

Merops apiaster -0.3 ± 0.4 0.396 0.1 ± 0.3 0.861

Oriolus oriolus -0.2 ± 0.3 0.463 0.3 ± 0.4 0.382

Saxicola rubetra -0.1 ± 0.2 0.575 0.3 ± 0.2 0.280

Negative values indicate an advanced passage. Significant slopes are represented in bold typeface.

�� = p < 0.01

� = 0.01 < p < 0.05.

https://doi.org/10.1371/journal.pone.0239489.t003
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The earlier start of the migration passage in Ponza is likely due to an earlier departure of

the first migrants within each species [10]. The first birds to leave the wintering grounds are

usually males [72, 73] and birds belonging to more temperate populations [74]. Our data sug-

gest that both mechanisms play a role. In species wintering in the Sahel, both males and

females advanced their peak date of passage, while in species wintering in tropical Africa, this

only happened in males. While an increase in protandry seems to explain the earlier passage of

tropical winterers, this does not seem to be the explanation for Sahel species. In the latter spe-

cies, early departing individuals might have advanced their passage while late departing indi-

viduals, which possibly originated from more Northern populations [74], did not. There is

evidence that individuals do not vary their migration timing over the years [34, 75–80], though

this is not true for all species, especially in the case where individuals are able to track environ-

mental cues to adjust their departure [81–84]. The role of phenotypic plasticity in individual

departure as opposed to population-specific selection on early departing individuals needs to

be further studied for each individual species.

Another explanation for the increased gap between first and last passage migrants is faster

migration of the first migrants and/or slower migration of the last ones. There is high variabil-

ity in the geographical patterns of migration within species and individuals [76, 80], and birds

might undertake detours to track favourable habitats along the route [85]. van Noordwijk [86]

suggested that faster migration could be achieved by skipping stopovers along the route. Dete-

riorating conditions in the Sahara Desert or in Northern Africa may cause less efficient stop-

over and thus an earlier departure, leading to an earlier arrival on Ponza. A skew of the

passage phenology towards early migrants would also occur if conditions in Africa affected

early migrants differently than late migrants. Northern Wheatears on the neighboring island

of Ventotene show better body condition late in the season [74]. This indicates that late

migrants might encounter more favourable conditions for refueling in Northern Africa than

early migrants.

We do not know whether the change in passage dates on Ponza directly reflects a change in

arrival on the breeding grounds. Most birds do not spend more than one day on Ponza before

resuming migration [87], thus if they were to delay arrival to their territories, they would have

to extend their stopover later on the continent. However, the strong carry-over effects of

migration phenology on breeding events [88] indicate that differences in timing observed on

Ponza should indeed reflect, at least to a certain extent, the differences in arrival to the breed-

ing grounds. There is some evidence that the change in date of arrival at the breeding grounds

in Europe is less steep than the change of passage in the Mediterranean [10, 32, 89], indicating

that birds might slow down the pace of their migration when approaching the breeding

grounds to fine-tune their arrival. Laying dates have advanced in relation to temperature

changes at the breeding grounds [90, 91], to a smaller extent in long-distance compared to

short-distance migratory species [92]. The passage data from Ponza confirm this observation,

indicating that adjustments to the changing climate might be less pronounced in species win-

tering the furthest away from their breeding grounds.

Trans-Saharan migratory species show decreasing population trends in many of their

breeding grounds in Europe [93, 94]. One of the causes of this decline is the phenological mis-

match between the availability of prey at the breeding grounds and the arrival and consequent

start of breeding of the birds [95]. The available data do not allow us to draw conclusions

about the causes of the intraspecific differences and the mechanisms involved, but they are

helpful for developing hypotheses and design future studies. The results of our study call for an

intensification of data collection in the form of year-round tracking and long-term data sets at

a large geographical scale. More data about the ecology of species, especially in the wintering
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quarters, are required to understand the selective pressure acting on migration timing, and to

predict future changes and how these will affect population processes.

Supporting information

S1 Fig. Frequency distribution of captures by date (Julian day: 1 January = day 1) for 30

species on the island of Ponza between 2002 and 2019. Average CPUE per day are repre-

sented by the black lines, while the moving average is represented by the blue curve. This figure

only illustrates general patterns. Note, however, that peak, start, and end of the main migration

period were calculated for every year separately for the analysis of timing patterns.

(TIF)

S2 Fig. Yearly dates of passage of 30 species on the island of Ponza between 2002 and 2019.

The blue lines represent the regression line of the start and end of the main migration period,

while the black line represents the regression line for peak passage. Black dots represent yearly

peak passage dates, while the whiskers represent start and end of the main migration period

for every year of the study.

(TIF)

S1 Table. Start and end date of capture operations on Ponza during the 18 years of the

study.

(DOCX)

S2 Table. p-values of the linear regressions of passage date and year for 30 species migrat-

ing through Ponza between 2002 and 2019. Slopes and SE are shown in the main text in

Table 2.

(DOCX)
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