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Abstract

Objective

Sympathoadrenal activation and endothelial damage are hallmarks of acute critical iliness.
This study investigated their association and predictive value in patients resuscitated from
out-of-hospital cardiac arrest (OHCA).

Methods

Post-hoc analysis of patients included at a single site in The Targeted Temperature Man-
agement at 33 degrees versus 36 degrees after Cardiac Arrest (TTM) trial. The main study
reported similar outcomes with targeting 33 versus 36 degrees. TTM main study Clinical-
Trials.gov: NCT01020916. One hundred sixty three patients resuscitated from OHCA were
included at a single site ICU. Blood was sampled a median 135 min (Inter Quartile Range
(IQR) 103-169) after OHCA. Plasma catecholamines (adrenaline, noradrenaline) and
serum endothelial biomarkers (syndecan-1, thrombomodulin, sE-selectin, sVE-cadherin)
were measured at admission (immediately after randomization). We had access to data on
demography, medical history, characteristics of the OHCA, patients and 180-day outcome.

Results

Adrenaline and noradrenaline correlated positively with syndecan-1 and thrombomodulin

i.e., biomarkers reflecting endothelial damage (both p<0.05). Overall 180-day mortality was
35%. By Cox analyses, plasma adrenaline, serum sE-selectin, reflecting endothelial cell ac-
tivation, and thrombomodulin levels predicted mortality. However, thrombomodulin was the
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only biomarker independently associated with mortality after adjusting for gender, age,
rhythm (shockable vs. non-shockable), OHCA to return of spontaneous circulation (ROSC)
time, shock at admission and ST elevation myocardial infarction (30-day Hazards Ratio
1.71 (IQR 1.05-2.77), p=0.031 and 180-day Hazards Ratio 1.65 (IQR 1.03-2.65), p=0.037
for 2-fold higher thrombomodulin levels).

Conclusions

Circulating catecholamines and endothelial damage were intercorrelated and predicted in-
creased mortality. Interventions aiming at protecting and/or restoring the endothelium may
be beneficial in OHCA patients.

Introduction

Out-of-hospital cardiac arrest (OHCA) is a leading cause of death among adults in the devel-
oped world. Despite state-of-the-art treatment from the earliest prehospital phase to hospital
discharge, less than 30% survive, and many with poor functional outcome [1, 2]. Although
most patients die in the earliest phase due to absent return of spontaneous circulation (ROSC),
patients admitted to the hospital and intensive care unit (ICU) still face high mortality rates or
survive with significant disabilities [1, 2]. One reason for the poor in-hospital outcome is the
development of Post-Cardiac Arrest Syndrome (PCAS), characterized by varying degrees of

1) anoxic brain injury, 2) arrest-related myocardial dysfunction, 3) systemic ischemia/reperfu-
sion injury and 4) persistent precipitating pathology i.e., the cause of cardiac arrest [3, 4].
PCAS results from a pathophysiologic process driven by a whole-body ischemia/reperfusion
response, which triggers immediate and excessive activation of the inflammatory and hemo-
static systems, leading to a sepsis-like syndrome [5] with ultimate development of (multiple)
organ failure [3, 4]. Thus, similar to sepsis [6], OHCA patients present with excessive endothe-
lial damage from the earliest phase of resuscitation [7-9].

Microcirculatory failure is a hallmark of acute critical illness: It is caused by numerous inju-
rious hits on the vascular system, including the endothelium, and it is a driver of organ failure
and thereby closely linked to outcome [6]. One of the hits encountered by the vascular system
and endothelium in acute critical illness, including cardiac arrest, is a toxic high level of cate-
cholamines [10-13], either endogenously released following excessive sympathoadrenal activa-
tion [14, 15] and/or exogenously administered as vasopressor/inotropic therapy [16, 17]. We
have previously demonstrated associations between- and negative predictive values of high cir-
culating catecholamines and endothelial damage in trauma [18, 19], sepsis [20] and ST seg-
ment elevation myocardial infarction (STEMI) [21] patients. However, no studies have
previously investigated the association between circulating catecholamines, endothelial damage
and outcome in cardiac arrest patients.

The objective of the present study was to investigate the association between sympathoadre-
nal activation, endothelial damage and outcome in OHCA patients, hypothesizing that exces-
sive sympathoadrenal activation and endothelial damage would be associated and linked to
poor outcome. We had access to previously collected plasma samples from OHCA patients in-
cluded at a single site (Copenhagen, Denmark) in The Targeted Temperature Management at
33 degrees C versus 36 degrees C after Cardiac Arrest (TTM) trial [22]. The main TTM study
reported similar outcomes with targeting 33 versus 36 degrees [22].
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Materials and Methods
Trial protocol and patients

The present study represents a post hoc sub-study of patients from TTM trial (ClinicalTrials.
gov number NCT01020916), a randomized clinical trial recruiting patients in 36 intensive care
units (ICUs) in Europe and Australia [22]. The present sub-study was planned after conduct of
the TTM-trial and after disclosure of the database from the TTM-trial.

The TTM protocol was approved by the ethics committees in each participating country
and institution (in Denmark by the regional ethical committee (H-1-2010-059) and the Dan-
ish Data Protection Agency) and conducted in accordance with the Declaration of Helsinki.
Written informed consent was obtained from a legal surrogate and from all patients who re-
gained mental capacity [22]. Participant consent was documented as a signed consent form
that was kept according to Danish Legislation. The procedure for obtaining written informed
consent was approved by the ethics committee. The TTM inclusion criteria were patients >18
years of age who were unconscious (Glasgow Coma Scale (GCS) <8) on admission to the hos-
pital after OHCA of presumed cardiac cause, irrespective of the initial rhythm. Eligible patients
had more than 20 consecutive minutes of spontaneous circulation after resuscitation. The
main exclusion criteria were an interval from the ROSC to screening of more than 240 minutes,
unwitnessed arrest with asystole as the initial rhythm, suspected or known acute intracranial
hemorrhage or stroke and a body temperature of less than 30°C [22].

Eligible patients for the present study were patients included at Rigshospitalet, Copenhagen
University Hospital, Denmark (in total n = 171). Furthermore, to be included, an adequate vol-
ume of stored plasma and serum should be available from the pre-intervention admission
blood sample to allow for investigation of the planned biomarkers (fulfilled in n = 163 as eight
patients had too little sample volume to perform the planned biomarker analyses). The present
study is based on these 163 patients.

We had access to the following data as part of the TTM trial protocol: Demography, medical
history, characteristics of the cardiac arrest, patient characteristics at admission and outcome
(mortality, Cerebral Performance Category (CPC) and modified Rankin scale (mRS); all sur-
viving patients were followed until 180 days after the enrollment of the last patient) [22].

Blood samples

Blood was sampled from an arterial line within 5 minutes following inclusion and randomiza-
tion in the study. The sample was divided for blood gas analysis (ABG, Radiometer ABL 725/
735, Copenhagen, Denmark), routine biochemistry and research analyses (citrate, heparin and
EDTA plasma, serum). All samples were centrifuged immediately at 4°C. Plasma and serum al-
iquots were stored at -80°C until thawed for analysis.

Enzyme linked immunosorbent assay (ELISA) analyses

Biomarkers of sympathoadrenal activation (adrenaline, noradrenaline) and endothelial glyco-
calyx damage (syndecan-1) [23], endothelial cell activation (sE-selectin) [24, 25], endothelial
cell injury (soluble thrombomodulin) [24-26] and endothelial junction disruption (sVE-
cadherin) [27] were measured in uniplicate by commercially available immunoassays in EDTA
plasma (catecholamines) and serum (endothelial biomarkers) according to the manufactures
recommendations: Plasma (p)-adrenaline and p-noradrenaline (2-CAT ELISAFAST TRACK
Labor Diagnostica Nord GmbH & Co. KG, Nordhorn, Germany; lower limit of detection
(LLD) 10 pg/ml (adrenaline) and 50 pg/ml (noradrenaline), respectively); syndecan-1 (Dia-
clone, Nordic Biosite, Copenhagen, Denmark; LLD 4.94 ng/ml); sE-selectin (R&D Systems

PLOS ONE | DOI:10.1371/journal.pone.0120914 March 19, 2015 3/14



@'PLOS ‘ ONE

Endothelial Damage in Resuscitated Cardiac Arrest Patients

Europe, Ltd., Abingdon, UK; LLD 0.009 ng/ml); thrombomodulin (Diaclone, Nordic Biosite,
Copenhagen, Denmark; LLD 0.31 ng/ml) and sVE-cadherin (R&D Systems Europe, Ltd.,
Abingdon, UK; LLD 0.113 ng/ml). Values below LLD were recorded as the LLD value (n =5
for adrenaline, n = 3 for noradrenaline, none for the remaining biomarkers).

Statistics

Statistical analysis was performed using SAS 9.1.3 SP4 (SAS Institute Inc., Cary, NC, US).

Patients stratified according to shockable rhythm (yes vs. no, see Table 1 legend for defini-
tion) or high vs. low thrombomodulin level (high: >median vs. low: <median) were compared
by Mann-Whitney U test or Chi-square/Fisher ‘s exact tests, as appropriate.

Simple correlations were investigated by Spearman s correlations with results displayed as
rho and p-values. To investigate the contribution of p-catecholamines, individual biomarkers
of endothelial activation or damage, characteristics of the OHCA and demographic variables to
the variation in levels of the endothelial biomarkers (syndecan-1, thrombomodulin, sE-selectin
and sVE-cadherin), multivariate backwards linear regression analysis were performed includ-
ing variables that were either found to correlate with or expected to influence the investigated
biomarkers: Age, BMI, number of defibrillations, time from OHCA to ROSC, pH, p-
adrenaline, p-noradrenaline, syndecan-1, sE-selectin, thrombomodulin, sVE-cadherin and
ECG finding at admission (STEMI vs. other). Results are presented as regression coefficients
(B) with 95% confidence intervals (CI), p-values and adjusted R

The predictive value of admission p-catecholamines (dichotomized by the median: high vs.
low) and biomarkers of endothelial activation and damage (log, transformed) for 7-day,
30-day and 180-day mortality was investigated by univariate and multivariate Cox proportion-
al-hazards models, the latter after adjusting for previously described [22] predictive variables:
Age, gender, rhythm (shockable vs. non-shockable), time from OHCA to ROSC, shock at ad-
mission and admission ECG finding (STEMI vs. other). Results are presented as hazards ratio
(HR) with 95% CI and p-values. Furthermore, the predictive value of high vs. low p-catechol-
amines and biomarker levels (dichotomized by the median: high vs. low) for mortality were in-
vestigated by Log-Rank tests based on Kaplan-Meier survival curves in patients stratified
according to these variables. Results are presented with > and p-values.

Descriptive data are presented as medians with inter quartile ranges (IQR) or as n (propor-
tions). P-values <0.05 were considered significant.

Results
Patients

The 163 patients had a median age of 62 years, were predominantly men (88%) and had an
overall 7-, 30- and 180-day mortality rate of 20%, 33% and 35%, respectively. A comparable
number of patients received the 33 and 36°C temperature intervention (n = 81 vs. n = 82, re-
spectively). A detailed description of patient demography, medical history, admission physiolo-
gy, outcome and characteristics of the cardiac arrest is provided in Table 1.

Factors associated with p-catecholamines and biomarkers of endothelial
activation and damage
Levels of circulating catecholamines and endothelial derived biomarkers are displayed in
Table 1.

Demography and medical history. P-catecholamines were neither associated with age
nor gender (data not shown). Syndecan-1 correlated negatively with age (rtho = -0.16,
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Table 1. Demography, medical history, characteristics of the cardiac arrest, patient admission characteristics and outcome in all patients
(n=163) and in patients stratified according to admission serum thrombomodulin (high (>median) vs. low (<median), n = 160) admitted to a tertia-
ry university hospital after out-of-hospital cardiac arrest (OHCA).

All patients High thrombomodulin Low thrombomodulin p-value

(n=163) (n=178) (n=82)
Demography
Age years 62 (53-68) 64 (58-69) 60 (51-66.75) 0.018
Male gender n (%) 143 (88%) 76 (97%) 64 (78%) <0.001
Body Mass Index kg/m? 25.4 (23.5-27.8) 25.0 (23.5-27.8) 25.4 (23.6-29.3) NS
Medical history
Chronic heart failure n (%) 6 (3.7%) 2 (2.6%) 3 (3.7%) NS
Previous AMI n (%) 24 (14.7%) 11 (14.1%) 11 (13.4%) NS
Ischemic heart disease n (%) 33 (20.4%) 16 (20.8%) 15 (18.3%) NS
Previous cardiac arrhythmia n (%) 20 (12.3%) 12 (15.4%) 7 (8.5%) NS
Arterial hypertension n (%) 50 (30.7%) 22 (28.2%) 25 (30.5%) NS
Previous TIA or stroke n (%) 10 (6.1%) 4 (5.1%) 5 (6.1%) NS
Diabetes mellitus n (%) 22 (13.5%) 12 (15.4%) 10 (12.2%) NS
Asthma or COPD n (%) 4 (2.5%) 2 (2.6%) 2 (2.4%) NS
Previous PCI n (%) 12 (7.4%) 5 (6.4%) 5 (6.1%) NS
Previous CABG n (%) 7 (4.3%) 3 (3.8%) 3 (3.7%) NS
Pacemaker n (%) 3(1.8%) 1(1.3%) 1(1.2%) NS
Characteristics of the cardiac arrest
Location (R/ P/ O) % 56%/43%/1% 56%/44%/0% 56%/42%/2% NS
Bystander witnessed arrest n (%) 146 (89.6%) 69 (88.5%) 74 (90.2%) NS
Bystander CPR n (%) 129 (79.1%) 62 (79.5%) 64 (78%) NS
Shockable rhythm n (%) 145 (89.0%) 68 (87.2%) 75 (91.5%) NS
Adrenaline administration n (%) 122 (74.8%) 63 (80.8%) 56 (68.3%) 0.071
Dose of adrenaline mg 2(1-4) 2(1-4) 1 (0-3) 0.017
Pre-hospital intubation n (%) 128 (79.0%) 57 (74.0%) 68 (82.9%) NS
OHCA to ROSC min 23 (14-30) 24 (14-30) 20 (14-32) NS
Patient characteristics on admission
Cormeal reflex n (%) 157 (96.3%) 75 (96.2%) 79 (96.3%) NS
Pupil reflex n (%) 150 (92.0%) 70 (89.7%) 77 (93.9%) NS
pH -Log[H*] 7.2 (7.1-7.3) 7.1 (7.0-7.2) 7.2 (7.1-7.3) 0.001
Lactate ng/ml 7.0 (3.8-11.0) 8.4 (4.4-12.5) 5.0 (3.0-9.3) 0.010
Shock on admission n (%) 17 (10.4%) 11 (14.1%) 6 (7.3%) NS
Initial temperature °C 35.5 (35.0-36.0) 35.6 (34.7-36.0) 35.5 (35.2-36.0) NS
ECG findings (U/S/L/A/O) % 25%/58%/7%/1%/9% 27%/59%/4%/0%/10% 283%/59%/10%/0%/8% NS
Biomarker levels on admission
OHCA to randomization min 135 (103-169) 142 (104-169) 130 (102-169) NS
Adrenaline pg/ml 542 (108-1,128) 792 (215-1,865) 368 (95-1,025) 0.041
Noradrenaline pg/ml 698 (389-1,542) 1,090 (439-2,117) 519 (308-1,206) 0.004
Syndecan-1 ng/ml 152 (74-235) 161 (86-248) 147 (71-224) NS
Thrombomodulin ng/ml 7.0 (5.3-9.2) 9.3 (7.7-11.6) 5.4 (4.7-6.2) NA
sE-selectin ng/ml 34 (27-45) 37 (28-45) 33 (25-44) NS
sVE-cadherin ng/ml 2,595 (2,303-3,174) 2,818 (2,359-3,286) 2,516 (2,185-3,019) 0.016
Outcome
Discharge facility (O /R / H) % 66%/4%/30% 76%/2%/22% 60%/5%/35% NS
180-day CPC 1-2 n (%) 101 (62%) 40 (51%) 59 (72%) 0.007
180-day mRS 0-3 n (%) 102 (63%) 41 (53%) 59 (72%) 0.001

(Continued)
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Table 1. (Continued)

All patients High thrombomodulin Low thrombomodulin p-value
(n =163) (n=178) (n=82)
7-day mortality n (%) 33 (20.2%) 20 (25.6%) 13 (15.9%) 0.126
30-day mortality n (%) 53 (32.5%) 34 (43.6%) 18 (22.0%) 0.004
180-day mortality n (%) 57 (35.0%) 36 (46.2%) 20 (24.4%) 0.004

Data are presented as medians (IQR) or n (%). Patients stratified according to the median serum level of thrombomodulin at admission were compared by
Mann-Whitney U test or Chi-square/Fisher’s exact tests as appropriate, with p-values <0.05 shown in bold. AMI, acute myocardial infarction. TIA,
transient ischemic attack. COPD, chronic obstructive pulmonary disease. PCI, percutaneous coronary intervention. CABG, coronary artery bypass graft.
Location: R, place of residence; P, public place; O, other. CPR, cardio-pulmonary resuscitation. Shockable rhythm: ventricular fibrillation, nonperfusing
ventricular tachycardia, unknown rhythm responsive to shock, perfusing rhythm after bystander-initiated defibrillation; non-shockable rhythm: asystole,
pulseless electrical activity, unknown rhythm not responsive to shock. ROSC, return of spontaneous circulation. ECG (electrocardiography) findings: U,
unchanged from previously/normal; S, ST-segment myocardial infarction (STEMI); L, left bundle branch block; A, atrial fibrillation or flutter; O, other.
Discharge facility: O, other hospital/intensive care unit; R, rehabilitation facility; H, home; CPC, Cerebral Performance Category (1-2 designates good
outcome); mRS, modified Rankin Scale (0-3 designates good outcome).

doi:10.1371/journal.pone.0120914.t001

p = 0.048) whereas thrombomodulin correlated positively with age (rtho = 0.22, p = 0.006) and
was higher in men (7.3 vs. 5.2 ng/ml, p<0.001). sE-selectin correlated with BMI (rho = 0.23,
p = 0.003) and was higher in patients with diabetes (41 vs. 33 ng/ml, p = 0.028).

Inter-correlations p-catecholamine and endothelial biomarker levels. Admission levels
of both p-adrenaline and p-noradrenaline were positively inter correlated (rtho = 0.27,

p =0.001) and correlated with syndecan-1 (Fig. 1A and rho = 0.19, p = 0.022) and thrombomo-
dulin (Fig. 1D and rho = 0.24, p = 0.003).

Among the endothelial biomarkers, sVE-cadherin correlated with thrombomodulin
(rho = 0.23, p = 0.003) and sE-selectin (rho = 0.20, p = 0.014).

Characteristics of the OHCA and admission variables. Syndecan-1 correlated with the
administered adrenaline dose, pH (Fig. 1BC), lactate (rho = 0.35, p<0.001), time from OHCA
to ROSC (rho = 0.31, p<0.001) and number of defibrillations (rho = 0.25, p = 0.002) and
thrombomodulin correlated with administered adrenaline dose, pH (Fig. 1EF) and lactate
(rho = 0.25, p = 0.004).

Patients with STEMI-induced OHCA (n = 95, 58%) had almost 3-fold higher syndecan-1
levels compared to patients with other causes of OHCA (median 206 ng/ml (IQR 125-249) vs.
81 ng/ml (IQR 39-167), p<0.001). STEMI OHCA patients received a prehospital bolus admin-
istration of unfractionated heparin (10,000 IE) and a higher proportion of STEMI OHCA pa-
tients received adrenaline during resuscitation (n = 77 (81%) vs. n = 45 (66%), p = 0.031).
Despite the higher adrenaline administration in STEMI OHCA patients, p-catecholamine lev-
els were comparable in STEMI OHCA and other OHCA patients as well as sE-selectin and
thrombomodulin levels (data not shown). sVE-cadherin was approximately 10% lower in
STEMI OHCA patients (median 2,558 ng/ml (IQR 2,157-3,030) vs. 2,763 ng/ml (IQR 2405-
3,294), p = 0.024). Survival was comparable in STEMI and other OHCA patients (data not
shown).

The level of circulating catecholamines and endothelial biomarkers was comparable in pa-
tients stratified according to shockable (n = 145) vs. non-shockable rhythm (n = 18) (data not
shown).
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Fig 1. Correlations between admission levels of syndecan-1 or thrombomodulin, reflecting endothelial glycocalyx and cell damage, respectively,
and plasma (p)-adrenaline (pg/ml) (A and D), administered adrenaline (mg) (B and E) and pH (C and F) in 163 OHCA patients P- and rho-values for
Spearman’s correlations are displayed.

doi:10.1371/journal.pone.0120914.g001

Factors independently associated with endothelial activation and
damage

Multivariate linear regression analysis revealed that STEMI as cause of the OHCA, increased
time from OHCA to ROSC and lower pH were independently associated with higher synde-
can-1 (glycocalyx damage), explaining 36% of its variation (Table 2). Likewise, lower age,
higher BMI and higher sVE-cadherin were independently associated with higher sE-selectin
(endothelial activation); higher age, lower pH and higher sVE-cadherin were independently as-
sociated with higher thrombomodulin (endothelial cell injury) and higher thrombomodulin
and higher sE-selectin were independently associated with higher sVE-cadherin (endothelial
junction disruption) (Table 2).

Sympathoadrenal activation, endothelial damage and outcome

Log-Rank tests based on Kaplan-Meier survival curves for medians (high vs. low) of admission
biomarker levels revealed that high p-adrenaline and high thrombomodulin were associated
with increased 30-day (p = 0.006 and p = 0.004, respectively) and 180-day mortality (Fig. 2AB).
High p-adrenaline was the only investigated biomarker associated with higher 7-day mortality
(p = 0.005).

By Cox proportional-hazards analyses, high p-adrenaline (above median) was a univariate
predictor of increased mortality (180-day: HR 2.0 (95%CI 1.7-3.5), x> = 6.3, p = 0.012; 30-day:
HR 2.2 (95%CI 1.2-3.8), x> = 7.0, p = 0.008; 7-day: HR 2.8 (95%CI 1.3-6.1), > = 6.9, p = 0.008).
Furthermore, thrombomodulin, sE-selectin, age, rhythm and time from OHCA to ROSC were
univariate predictors of mortality (Table 3). In the adjusted models, higher thrombomodulin
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Table 2. Variables independently associated with admission biomarkers reflecting endothelial glycocalyx and cell activation and/or damage, and
endothelial cell junction function (syndecan-1, sE-selectin, thrombomodulin and sVE-cadherin, respectively) by backwards multivariate linear re-
gression analysis in 163 patients admitted to a tertiary university hospital after out-of-hospital cardiac arrest.

Syndecan-1 sE-selectin Thrombomodulin sVE-cadherin
Adj. R2=0.36 Adj. R2=0.14 Adj. R2=0.24 Adj. R2=0.13
B (95%Cl) p B (95%Cl) p B (95%Cl) p B (95%Cl) P
Age years NS -0.23 (-0.45--0.02)  0.034  0.09 (0.04-0.14)  0.001 NS
BMI kg/m? NS 0.94 (0.31-1.57) 0.004 NS NS
OHCAto ROSC  min 1.31 (0.48-2.13)  0.002 NS NS NS
pH -log[H*] -119(-216--21)  0.018 NS -6.8 (-10.5--3.1)  <0.001 NS
STEMI Yes 84 (56-111) <0.001 NS NS NS
Syndecan-1 2-fold NA NA NS NS NS
sE-selectin 2-fold NS NA NA NS 251 (21-481) 0.033
Thrombomodulin ~ 2-fold NS NS NA NA 333 (146-519)  <0.001
sVE-cadherin 2-fold NS 9.9 (3.6-16.3) 0.002 2.6 (1.0-4.2) 0.002 NA NA

Regression coefficients (8) with 95% confidence intervals (95%Cl), p-values and adjusted R? are displayed, with p-values <0.05 shown in bold. Predicted
changes in syndecan-1 (ng/ml, reflecting glycocalyx damage), sE-selectin (ng/ml, reflecting endothelial activation), Thrombomodulin (ng/ml, reflecting
endothelial cell injury) and sVE-cadherin (ng/ml, reflecting endothelial junction disruption) associated with one unit increase in the explanatory variables
(age (1 year older), BMI, number of defibrillations (NS all over, data not shown), time from OHCA to ROSC (min), pH, STEMI (yes), p-adrenaline and p-

noradrenaline (10-fold higher, NS all over, data not shown), syndecan-1, thrombomodulin, sE-selectin and VE-cadherin (all 2-fold higher). NS, non-
significant. NA, non-applicable.

doi:10.1371/journal.pone.0120914.t002
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Fig 2. Kaplan-Meier plots displaying 180-day mortality in 163 OHCA patients stratified according to median levels (high vs. low) of A) plasma (p)-
adrenaline and B) Serum thrombomodaulin at hospital admission. Chi-square and p-values for log-rank tests are shown.

doi:10.1371/journal.pone.0120914.9002
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Table 3. Cox Proportional Hazards models predicting 7-day, 30-day and 180-day mortality in 163 patients admitted to a tertiary university hospital
after out-of-hospital cardiac arrest.

Univariate Syndecan-1 sE-selectin Thrombomodulin sVE-cadherin
(2-fold higher) (2-fold higher) (2-fold higher) (2-fold higher)

HR (95%Cl) p HR (95%Cl) p HR (95%Cl) p HR (95%Cl) p HR (95%Cl) p
7-day univariate - - 1.29 (0.93-1.81) 0.126 0.51 (0.28-0.94) 0.031 2.09 (1.20-3.66) 0.010 0.84 (0.36-1.97) NS
mortality

multivariate - - 1.13(0.79-1.62) NS 0.58 (0.31-1.10) 0.094 1.34 (0.74-2.44) NS 0.79 (0.34-1.86) NS
Gender male 1.01 (0.35-2.87) NS 1.29 (0.40-4.12) NS 1.23(0.39-3.83) NS 1.08 (0.32-3.64) NS 1.29 (0.41-4.06) NS
Age 1 year 1.05 (1.02-1.08) 0.003 1.07 (1.08-1.11) <0.001 1.07 (1.02-1.10) 0.002 1.06 (1.02-1.10)  0.022 1.07 (1.08-1.11)  <0.001
older
Shockable  yes 0.22 (0.10-0.46) <0.001 0.21 (0.10-0.45) <0.001 0.19 (0.08-0.41) <0.001 0.22 (0.10-0.49) <0.001 0.20 (0.09-0.44) <0.001
rhythm
OHCA to 1 min 1.02 (1.01-1.03) 0.002 1.01 (1.00-1.03) 0.065 1.02 (1.01-1.04) 0.009 1.02 (1.00-1.03) 0.028 1.02 (1.01-1.03) 0.022
ROSC longer
Shock at yes 2.32 (0.96-5.61) 0.063 1.36 (0.49-3.81) NS 0.92 (0.30-2.83) NS 1.25 (0.44-3.56) NS 1.23(0.43-3.52) NS
admission
STEMI yes 1.72 (0.82-3.62) 0.151 2.22 (0.97-5.09) 0.060 2.35(1.01-5.46) 0.047 2.44 (1.09-5.47) 0.031 2.23 (0.96-5.17) 0.062
30-day univariate - - 1.27 (0.98-1.65) 0.072 0.69 (0.42-1.12) 0.135 2.43(1.56-3.79) <0.001 1.33(0.65-2.72) NS
mortality
multivariate - - 1.15 (0.87-1.53) NS 0.68 (0.42-1.12) 0.129  1.71 (1.05-2.77) 0.031 1.05 (0.53-2.11) NS
Gender male 0.91 (0.41-2.02) NS 1.11 (0.45-2.73) NS 1.08 (0.45-2.61) NS 0.80 (0.31—2.05) NS 1.12 (0.45-2.77) NS
Age 1 year 1.05(1.02-1.07) <0.001 1.07 (1.04-1.10) <0.001 1.06 (1.03-1.09) <0.001 1.05(1.02-1.09) <0.001 1.06 (1.03-1.10) <0.001
older
Shockable  yes 0.25 (0.13-0.46) <0.001 0.25(0.13-0.49) <0.001 0.21(0.10-0.42) <0.001 0.28 (0.14-0.57) <0.001 0.24 (0.12-0.47) <0.001
rhythm
OHCA to 1 min 1.02 (1.01-1.03) <0.001 1.02 (1.01-1.03) 0.007 1.02 (1.01-1.04) <0.001 1.02 (1.01-1.03) 0.002 1.02 (1.01-1.03) 0.002
ROSC longer
Shock at yes 1.87 (0.88-3.97) 0.102 0.97 (0.38-2.44) NS 0.73 (0.27-1.97) NS 0.85(0.33-2.18) NS 0.96 (0.38—2.46) NS
admission
STEMI yes 1.27 (0.73-2.21) NS 1.72 (0.90-3.28) 0.099  1.88 (1.00-3.55) 0.051 1.91 (1.02-3.55) 0.042  1.91 (1.01-3.64) 0.048
180-day univariate - - 1.26 (0.98-1.62) 0.068 0.78 (0.48-1.24) NS 2.40 (1.56-3.69) <0.001 1.35(0.68-2.69) NS
mortality
multivariate - - 1.16 (0.89-1.53) NS 0.74 (0.46-1.18) NS 1.65 (1.08-2.65) 0.037 1.02 (0.52-2.01) NS
Gender male 0.99 (0.49-2.18) NS 1.21 (0.49-2.99) NS 1.18 (0.49-2.87) NS 0.90 (0.35-2.30) NS 1.23 (0.50-3.03) NS
Age 1 year 1.05 (1.02-1.07) <0.001 1.06 (1.04-1.09) <0.001 1.06 (1.03-1.09) <0.001 1.05(1.02-1.08) <0.001 0.23(0.12-0.45) <0.001
older
Shockable  yes 0.24 (0.13-0.43) <0.001 0.24 (0.13-0.47) <0.001 0.21(0.11-0.40) <0.001 0.28 (0.14-0.54) <0.001 1.06 (1.03-1.09) <0.001
rhythm
OHCA to 1 min 1.02 (1.01-1.03) <0.001 1.02 (1.01-1.03) 0.005 1.02 (1.01-1.04) <0.001 1.02 (1.01-1.03) 0.001 1.02 (1.01-1.03) <0.001
ROSC longer
Shock at yes 1.73 (0.82-3.64) 0.153 0.88 (0.35-2.20) NS 0.67 (0.25-1.81) NS 0.78 (0.31-1.99) NS 0.87 (0.34-2.20) NS
admission
STEMI yes 1.14 (0.67-1.93) NS 1.44 (0.78-2.66) NS 1.62 (0.89-2.94) 0.117 1.61 (0.90-2.90) 0.112 1.61(0.87-2.96) NS

Hazards ratios (HR) with 95% confidence intervals (HR (95% Cl)) and p-values associated with one unit increases in age (1 year older), gender (being
male), shockable rhythm (yes), time from OHCA to ROSC (1 minute longer), shock at admission (yes) and 2-fold increases (log, transformed) in serum
levels of syndecan-1, sE-selectin, thrombomodulin and sVE-cadherin. Only p-values <0.20 are shown, with p<0.05 shown in bold.

doi:10.1371/journal.pone.0120914.t003

remained an independent predictor of higher 30-day and 180-day mortality together with higher
age, non-shockable rhythm and increased time from OHCA to ROSC (Table 3).

Patients with high vs. low degree of endothelial cell injury

Since thrombomodulin i.e., endothelial cell injury, was an independent predictor of mortality,
we compared patients with high vs. low thrombomodulin levels at admission (Table 1) reveal-
ing that patients with high thrombomodulin were older, predominantly men, received a higher
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adrenaline dose during resuscitation, had lower pH and higher lactate and had higher p-adren-
aline and p-noradrenaline (both approximately 2-fold increased) and also higher sVE-cadherin
(Table 1). Patients with high thrombomodulin levels also had a poorer outcome according to
the Cerebral Performance Category (CPC) and modified Rankin scale (mRS) and they had
higher mortality (Table 1).

Discussion

In the present study, OHCA patients presented with high and inter-correlated levels of circu-
lating catecholamines and biomarkers of excessive endothelial damage. Increased time from
OHCA to ROSC, lower pH and STEMI were independently associated with higher syndecan-1
levels, a marker of glycocalyx damage, whereas lower pH, higher age and higher sVE-cadherin
were independently associated with higher thrombomodulin levels, a marker of endothelial cell
injury. By Cox proportional-hazards analyses, high thrombomodulin levels independently pre-
dicted 30-day and 180-day mortality.

Acute critical illness is accompanied by excessive sympathoadrenal activation that induces
widespread, dose-dependent effects on the vascular system [10, 11, 14], including the endothe-
lium [15]. We have proposed [11] that endogenously released catecholamines ensure oxygen
supply to vital organs in acute critical illness by balancing the clotting ability of the circulating
blood according to the degree of endothelial anti-/procoagulation in the microcirculation.
Hereby, progressive endothelial damage (and procoagulation) in the microcirculation is bal-
anced by increasing hypocoagulability (coagulopathy) in the circulating blood [11]. Given this,
the evolutionary rational for the coagulopathy observed in many acute critically ill patients
[28-30], may be that evolution has prioritized tissue oxygenation above hemostasis. We have
reported of associations between- and negative predictive values of high circulating catechol-
amines and endothelial damage in trauma, sepsis and STEMI patients [18-21]. In line with
this, the present study found that circulating levels of adrenaline and noradrenaline correlated
positively with syndecan-1 and thrombomodulin levels, biomarkers of endothelial glycocalyx
and cell damage, respectively [23, 24, 26]. Furthermore, high circulating thrombomodulin was
an independent predictor of mortality. The present study thus supports the notion that differ-
ent “injurious” hits can mount a similar, universal response, characterized by excessive sym-
pathoadrenal activation, endothelial damage and coagulopathy.

Gando et al [7] suggested years ago that the endothelial damage observed in OHCA patients
could in part be attributed to both exogenous administered and endogenously released cate-
cholamines. Recently, Hagihara et al [16] reported in a prospective observational propensity
score analysis of data from 417,188 OHCA patients that use of prehospital adrenaline was asso-
ciated with increased chance of ROSC before hospital arrival but also with decreased chance of
survival and good functional outcomes 1 month after the event. This is in accordance with pre-
vious studies also questioning the beneficial effect of adrenaline administration in CA [17, 31].
Interestingly, several retrospective studies of trauma-, sepsis- and surgical patients have re-
ported a paradoxical survival benefits for patients receiving B-blockers as part of their regular
medication at the time of the injurious hit [32-36], despite these patients often being older and
suffering from more co-morbidities compared to patients not receiving B-blockers. Random-
ized clinical studies comparing B-blockers with placebo in trauma, sepsis and patients suffering
from acute ischemic heart disease have confirmed these findings [37, 38]. It is tempting to spec-
ulate that the beneficial effects of B-blockers observed in many acute critically ill patients may
in part be due to protective effects on the endothelium in conditions with excessive catechol-
amine release.

PLOS ONE | DOI:10.1371/journal.pone.0120914 March 19, 2015 10/14



@' PLOS ‘ ONE

Endothelial Damage in Resuscitated Cardiac Arrest Patients

Glycocalyx damage is associated with pathophysiologic sequels like capillary leakage, accel-
erated inflammation, platelet activation and loss of vascular responsiveness [39, 40]. Previous
studies investigating circulating syndecan-1 levels as a surrogate for endothelial glycocalyx
damage have reported increased levels in trauma [18, 41], sepsis [20, 42], major vascular- [23]
and abdominal surgery [42], STEMI [21] and OHCA [8] patients, with the highest levels in
non-survivors and/or the most sick patients. In the present study, STEMI OHCA patients had
several-fold higher syndecan-1 levels compared to patients with other causes of OHCA. It is
not known if this is due to downstream effects of the STEMI, to iatrogenous factors such as the
heparin IV injection given to these patients or to other factors. It is well described that heparin
can destabilize the endothelial glycocalyx [43] through induction of a rapid dose-dependent re-
lease of glycocalyx adsorbed heparan sulphate-bound proteins [44, 45], and it is possible that
this may contribute to accelerated glycocalyx damage following a “second hit” (e.g. ischemia/
reperfusion) [23]. However, shocked STEMI patients without cardiac arrest who receive a com-
parable IV injection of heparin [21] display lower circulating syndecan-1 level compared to
STEMI OHCA patients (median 129 ng/ml vs. 206 ng/ml), indicating that other factors than
heparin i.e., exogenous adrenaline administration, defibrillations, time from OHCA to ROSC,
pH and lactate (shock) (these were all correlated with syndecan-1 in the present study) contrib-
ute to the glycocalyx damage [8, 39].

There is emerging evidence that the change from a normal quiescent endothelium to endo-
thelial cell activation, glycocalyx damage, junctional disruption and ultimate endothelial cell in-
jury reflects a progression from reversible to irreversible endothelial damage [25, 41, 46]. In the
present study, we investigated different endothelial derived molecules as surrogate markers for
glycocalyx damage, endothelial cell activation, endothelial junction disruption and endothelial
cell injury, to reveal the influence of progressive endothelial disruption on outcome in OHCA
patients. Interestingly, we found that biomarkers reflecting endothelial damage (syndecan-1,
thrombomodulin) were independently associated with shock degree (time from OHCA to
ROSC, pH) whereas biomarkers reflecting endothelial activation (sE-selectin) and junctional
disruption (sVE-cadherin) were independently associated with patient demography and/or
other endothelial biomarkers. The finding that sE-selectin, sVE-cadherin and thrombomodulin
were inter correlated supports the notion that endothelial activation, junctional disruption and
cell injury are linked at the biologic level. Finally, we found that high circulating thrombomo-
dulin was an independent predictor of increased mortality. In accordance with previous stud-
ies, higher age, male gender, high catecholamine levels and shock were all associated with high
thrombomodulin levels [21]. The strong predictive value of thrombomodulin supports the no-
tion that patients with the most severe form of endothelial injury have the poorest outcome.
The finding that post-CA therapeutic hypothermia may attenuate the anoxic brain injury and
improve outcome [47, 48], emphasizes that therapeutic interventions applied after ROSC can
be beneficial. Given this, we infer that interventions aiming at protecting and/or restoring the
endothelium, administered at the earliest possible, may be able to alleviate the downstream en-
dothelial damage and the ensuing PCAS, and thereby improve patient outcome. A randomized
clinical trial to test this hypothesis is currently underway.

The present study had several limitations. First, the observational nature of study does not
allow independent evaluations of the cause-and-effect relationships suggested. Second, the IV
heparin injection to STEMI OHCA patients makes it impossible to differentiate between po-
tential effects of the STEMI itself vs. heparin on glycocalyx damage. Third, the study was a post
hoc sub-study of the TTM trial, a randomized multicenter trial, where we only investigated pa-
tients included at a single site [49]. Given this, the present findings should be considered hy-
pothesis-generating and the p-values as explorative in nature.
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Conclusions

In the present study, OHCA patients presented with evidence of excessive endothelial damage
that correlated with circulating catecholamine levels, time from OHCA to ROSC and biochem-
ical shock markers. High thrombomodulin levels, reflecting endothelial cell injury, indepen-
dently predicted increased mortality. We speculate that interventions aiming at protecting
and/or restoring the endothelium may be of value in OHCA patients.
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