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Aberrant gene expression pattern in the 
glycolysis-cholesterol synthesis axis is linked  
with immune infiltration and prognosis in  
prostate cancer
A bioinformatics analysis
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Abstract 
Aberrant lipid metabolism is an early event in tumorigenesis and has been found in a variety of tumor types, especially prostate cancer 
(PCa). Therefore, We hypothesize that PCa can be stratified into metabolic subgroups based on glycolytic and cholesterogenic 
related genes, and the different subgroups are closely related to the immune microenvironment. Bioinformatics analysis of 
genomic, transcriptomic, and clinical data from a comprehensive cohort of PCa patients was performed. Datasets included 
the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) dataset, GSE70768, our previously 
published PCa cohort. The unsupervised cluster analysis was employed to stratify PCa samples based on the expression of 
metabolic-related genes. Four molecular subtypes were identified, named Glycolytic, Cholesterogenic, Mixed, and Quiescent. 
Each metabolic subtype has specific features. Among the 4 subtypes, the cholesterogenic subtype exhibited better median 
survival, whereas patients with high expression of glycolytic genes showed the shortest survival. The mitochondrial pyruvate 
carriers (MPC) 1 exhibited expression difference between PCa metabolic subgroups, but not for MPCs 2. Glycolytic subtypes 
had lower immune cell scores, while Cholesterogenic subgroups had higher immune cell scores. Our results demonstrated that 
metabolic classifications based on specific glycolytic and cholesterol-producing pathways provide new biological insights into 
previously established subtypes and may guide develop personalized therapies for unique tumor metabolism characteristics.

Abbreviations: ICGC = international cancer genome consortium, MPC = mitochondrial pyruvate carrier, PCa = prostate cancer, 
PFI = progression-free interval, TCGA = the cancer genome atlas, TME = tumor microenvironment.

Keywords: immune infiltration, metabolic reprogramming, metabolic subgroup, PCa prognosis, PCa targeted therapy, prostate 
cancer, tumor microenvironment

1. Introduction

Prostate cancer (PCa) remains one of the main global health 
problems faced by men. The incidence of PCa in European and 
American populations is increasing year by year.[1] In the United 
States, Approximately 230,000 new cases of PCa are diagnosed 
every year, and about 195,000 radical prostatectomy proce-
dures are performed.[2,3] According to American Cancer Society 
data, the relative survival rates for PCa patients compared to 
survival were 99%, 98%, and 96% at 5, 10, and 15 years, 
respectively.[4] Metastatic PCa causes over 30,000 deaths per 
year in the US and 350,000 deaths worldwide.[5,6] Therefore, 

Metastatic PCa is still the main cause of death in PCa patients 
and an important economic burden on the public health sys-
tem. These data indicate that most patients with PCa have slow 
tumor growth and require only active monitoring, and only 
a very small number of patients with aggressive PCa require 
treatment to save lives.

Metabolic reprogramming of tumor cells is essential for them 
to adapt to the tumor microenvironment (TME) and maintain 
tumor growth.[7,8] Several studies demonstrated that the met-
abolic state and activity of immune cells seriously affect the 
proliferation and invasion of tumor cells.[9,10] The metabolic 
adaptability of tumor cells driven by oncogenes or inactivated 
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tumor suppressors intrigues tumor development in the complex 
TME. Metabolic reprogramming of tumor cells is mainly charac-
terized by overactive glycolysis and fatty acid synthesis. In many 
cancer types, key metabolic enzymes are upregulated, includ-
ing PCa,[11] kidney cancer,[12] lung cancer,[13] and lymphoma.[14] 
However, the heterogeneity of different metabolic pathways and 
whether clinical results can be used to classify PCa into clini-
cal subgroups have not yet been fully established. This study 
divided PCa into 4 subgroups based on the expression profiles 
of glycolysis and cholesterol-producing genes and studied the 
relationship between PCa subtypes and survival, mutation, and 
immune environment. And we may contribute to the prognostic 
stratification of PCa to enable customized treatment design and 
the development of new therapies by understanding how spe-
cific cellular tumor progression pathways better.

2. Materials and Methods

2.1. Data source

The data in this study are from our previous published PCa 
cohort[15] and the Cancer Genome Atlas (TCGA) database 
(https://www.cancer.gov/tcga), GEO (https://www.ncbi.nlm.nih.
gov/geo/), International Cancer Genome Consortium (ICGC) 
(https://icgc.us/). The Standardized RNA data of 499 PCa sam-
ples were obtained from the TCGA website. The RNA sequence 
data of our PCa cohort was standardized by Z score, which 
included 64 PCa patients. The PCa-ICGC data of normalized 
read count values were downloaded from the ICGC website, 
and patients were primarily derived from a French population. 
The microarray datasets (GSE70768[16]) were downloaded 
from the GEO. As mentioned previously, the expressionprofile 
(FPKM/read count values) was transformed into TPMs (tran-
scripts per kilobase million).[17] The somatic mutational data 
(CNVs, SNVs) was also downloaded.

2.2. Batch profile estimation and correction

We applied a normalization strategy to analyze the data from 
TCGA, GEO, ICGC, and our PCa cohort and deleted unneces-
sary changes as corrections. The “ComBat” method is used to 
eliminate the possibility of batch effects between different data 
sets due to non-biological technical biases.[18]

2.3. Metabolic subgrouping

To identify molecular subsets associated with PCa metabolism, 
the “REACTOME_GLYCOLYSIS” (n = 29) and “REACTOME_ 
Gene sets for the “CHOLESTEROL_BIOSYNTHESIS” (n = 72) 
pathway were retrieved from the molecular features database 
(Broad Institute’s Molecular Signature Database), which con-
tained glycolysis and cholesterol synthesis related genes.[19] 
Subgroups were classified based on the expression levels of gly-
colytic and cholesterol-related genes using ConsensusClusterPlus 
v1.38.[20] Euclidean distance and hierarchical clustering with 
K = 5 are considered distance metrics and clustering algo-
rithms, respectively. According to the median expression levels 
of glycolysis and cholesterol synthase genes in each sample, all 
patients were divided into 4 groups: quiescent subtype (gly-
colysis ≤ 0, cholesterol ≤ 0), glycolytic subtype (glycolysis > 0, 
cholesterol ≤ 0), cholesterogenic subtype (glycolysis ≤ 0, choles-
terol > 0) and mixed subtype (glycolysis > 0, cholesterol > 0).

2.4. Survival analysis

In the subsequent prognostic analysis, we focused on the 
TCGA-PCa cohort, which has the most detailed clinical data. 
The survival rate of 4 PCa subtypes was compared using the 
Kaplan–Meier curves and Log-rank tests. The Kaplan–Meier 

curve was used to show the difference in survival rate, and a log-
rank test was employed to test the significance of the difference 
in survival with the cutoff point <0.05.

2.5. Estimation of the level of immune cell infiltration in 
PCa

We used the ESTIMATE algorithm[21] to infer the level of 
immune cell infiltration of each PCa sample, including immune 
score, tumor purity, and stromal score. We used the Kruskal-
Wallis method to examine the difference between PCa subtypes. 
A P value < .05 was defined as statistically significant.

2.6. The proportion of immune cell subpopulations in PCa 
subtypes

We applied the CIBERSORT algorithm[22] to infer the proportion 
of LM22 human immune cells in merged data. The 1000 permuta-
tions and P < .05 were set as inclusion criteria. The LM22 human 
cells among the 4 PCa subtypes were compared. The Kruskal–
Wallis test was used to examine the difference among PCa sub-
types. A P value < .05 was defined as statistically significant.

2.7. Gene set enrichment analysis

The gene enrichment analysis was employed to calculate the 
overall enrichment score in the meta-cohort.[23] The signature 
gene sets curated from c2/c5 were downloaded from Broad 
Institute’s Molecular Signature Database. Then we compared 
the KEGG pathway between glycolytic and cholesterogenic 
groups. According to the false discovery rate < 0.05, the more 
important enrichment pathways were identified.

2.8. Comparison with existing molecular subtypes

Several studies have indicated that the expression profiles of doz-
ens of genes (a set of biomarkers) have been used to impute risk 
scores for PCa prognosis. Recently, individual genetic biomark-
ers have been overexpressed, including PCa-associated transcript 
1 (PCAT1) or α-methylacyl-CoA racemase (AMACR), ETS gene 
fusion, and glutathione S- Transferase Pi 1 (GSTP1) is hypermeth-
ylated and used to stratify aggressive PCa.[24] According to the latest 
National Comprehensive Cancer Network PCa Guidelines, several 
clinically applicable expression profiles have been developed: the 
Prolaris (46 gene test) from Myriad Genetics Inc. and the 22 gene 
test from Decipher Inc., and the Genomic Prostate from Oncotype 
DX scores (17 genetic tests).[25,26] We compared our established 
model with the current PCa model using the AUC curve.

2.9. Mitochondrial pyruvate carrier (MPC)-related genes 
MPC1/2 correlate with metabolic subgroups

MPC genes encode 2 proteins, MPC1, and MPC2, which are 
dysregulated in a variety of tumors, including colon cancer,[27] 
kidney cancer,[12] and PCa,[11] and to closely related to progno-
sis. MPC can control the expression of mitochondrial pyruvate 
in tumor cells, thereby inhibiting the expression of MPC1 and 
MPC2, and promoting glycolytic activity and lactate produc-
tion.[28] To explore the association between MPC1/2 and gly-
colysis-cholesterol synthesis phenotype, we compared the 
expression of 2 genes in the PCa metabolic subgroup.

2.10. Association between genomic mutation and 
molecular subtypes

The SNP and CNV data were obtained from PCa-TCGA, and 
identified in our PCa cohort samples. In every subgroup, the 

https://www.cancer.gov/tcga
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most genomic variation genes were exhibited using the heat-
map. The mutation analysis was conducted using the R package 
“maftools,”[29] which calculates the mutation frequency of given 
genes and compares the most mutant genes between the glyco-
lytic and cholesterogenic subtypes. P value < .05 was considered 
statistically significant.

3. Results

3.1. Identification of 4 phenotypes of PCa based on 
analysis of glycolytic and cholesterogenic gene expression

A total of 829 PCa tumor samples were included in the meta-co-
hort (TCGA PCa cohort, n = 499, ICGC PCa cohort, n = 142, 
GSE70768 PCa dataset, n = 123, and our previous PCa cohort, 
n = 65). The TCGA PCa cohort and our PCa cohort were merged 
to reduce the batch effects using the “ComBat” algorithm. The 
raw PCA for combined expression profile and combat PCA for 
combined expression profile was exhibited in Figure S1A and B, 
http://links.lww.com/MD/H799. The “Glycolysis” (n = 29) and 
“Cholesterol biosynthesis” (n = 72) gene sets are derived from 
the Reactome gene set.To detect the core genes of each pathway 
and correlate with PCa biology, an unsupervised consensus cluster 
analysis was conducted to stratify the 2 subtypes of significantly 
expressed glycolysis (n = 12) and cholesterol synthesis (n = 10) 
genes (Fig. 1A). The median expression of co-expressed cholesterol 

production and glycolysis genes in each sample was calculated. 
The median expression value of co-expressed metabolic-related 
genes in each sample was imputed. According to the co-expression 
of these 2 gene sets, the 4 metabolic subtypes of PCa were strat-
ified, and we named quiescent, glycolytic, cholesterogenic, and 
mixed (Fig. 1B). The levels of genes associated with glycolysis and 
cholesterol biosynthesis, and the proportion of patients in each 
metabolic subgroup, are shown in Figure 1C. The mixed subgroup 
had the largest number of patients (233/829, 28.1%), followed by 
patients with cholesterol (226/829, 27.2%), glycolytic (192/829, 
23.2%), and quiescent subtypes(178/829, 21.5%).

To uncover the correlation between PCa metabolic subtypes and 
patient’s prognosis, survival analysis for Disease-Free Survival, 
Disease-Specific Survival, Disease-Free Interval, Progression-Free 
Interval (PFI), and Overall Survival was performed in the TCGA 
cohort. The Kaplan–Meier analysis was employed to test the dif-
ference. There was no statistical significance in the distribution 
of metabolic subgroups in Overall Survival and Disease-Specific 
Survival. However, significant statistical significance in DFS/PFI 
was detected. Patients in the cholesterol group exhibited a better 
prognosis compared with patients in the glycolytic (Fig. 1D–G). 
A variety of metabolic phenotypes related to the glycolysis-cho-
lesterol synthesis axis in PCa have been identified. Compared 
with tumors with high cholesterol production phenotypes with 
cholesterol synthesis and low glycolysis rate, they are less aggres-
sive and resistant to chemotherapy, and more sensitive.

Figure 1. The PCa tumors were stratified based on the expression of glycolysis and cholesterol-producing genes. (A) Heatmap exhibited consensus clustering 
solution (k = 5) for glycolytic and cholesterogenicrelated genes in PCa samples (n = 829). (B) Scatter plot exhibited median expression levels of co-expressedg-
lycolytic (x-axis) and cholesterogenic (y-axis) genes in each PCa sample. According to the relative expression levels of glycolysis and cholesterol-producing 
genes, 4 metabolic subgroups were identified. (C) The heat map showed the expression levels of co-expressed glycolysis and cholesterol production genes in 
each subgroup. (D–G) Kaplan–Meier survival analysis of patients with DFI (D), DSS (E), PFI (F), and OS (G) PCa stratified by metabolic subgroup were exhibited. 
DFI = disease-free interval, DSS = disease-specific survival, OS = overall survival, PCa = prostate cancer, PFI = progression-free interval.

http://links.lww.com/MD/H799
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3.2. Clinical characteristics of metabolic subgroups

The correlation between Metabolic subgroups and Clinical char-
acteristics is integrated into a module map (Fig. 2A).In terms of 
clinical features, the glycolytic and cholesterogenic subgroups 
were older population (Age < 65), the glycolytic had higher 
Gleason score and PSA score (Fig. 2B and C), Glycolytic and 
mixed subtypes has advanced pathologic T, N stage (Fig. 2D and 
E). During the follow-up, the glycolytic group has a higher per-
centage of stable disease and tumor-free (Fig. 2F and G).

3.3. Identification of PCa subtype-specific GO and KEGG 
terms

Gene enrichment analysis reveals distinct enriched up-regu-
lated gene sets among the 4 metabolic subgroups. The glyco-
lytic subtype was enriched in the cytoskeleton and oxidative 

phosphorylation structural constituent of the cytoskeleton. 
Olfactory receptor activity, signaling receptor activity, and 
receptor activity were highly activated in cholesterogenic sub-
group. In contrast, Kinase regulator activity, anatomical struc-
ture homeostasis, and muscle system process were activated in 
the quiescent and mixed subtype (Fig. 3A). Generally, pathways 
related to cancer are highly active in the subgroup of glycolysis 
and cholesterol production. Multiple cancer-related pathways 
were identified that are hyperactivated in cholesterogenic and 
glycolytic subtypes, PCa, liver cancer, Rizki tumor invasiveness, 
and Schaeffer prostate development(Fig. 3B).

3.4. The expression levels of MPC varied among the 
metabolic subgroups

The main function of the mitochondrial pyruvate carrier 
(MPC) complex on the inner mitochondrial membrane is to 

Figure 2. Clinical characteristics of Metabolic subgroups. The correlation between Metabolic subgroups and Clinical characteristics is integrated into a module 
map (A). The Stacked histogram was shown the association metabolic subgroups and Gleason score (B) and PSA score (C), pathologic T (D), N stage (E), 
primary therapy outcome success (F), and new tumor events (G).
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transfer free pyruvate from the cytoplasm to the mitochon-
drial matrix.[30] Previous studies have shown that MPC1 and 
MPC2 are different in metabolic pathways and can promote 
tumor glycolytic activity. This variation exerts a vital role in the 
production of lactic acid.[31,32] The mRNA levels of MPC1 sig-
nificantly differed among the metabolic subtypes, but not for 
MPC2 (Fig. 4A). MPC1 expression was relatively higher in the 
glycolytic group, while MPC2 expression levels generally show 
lower expression levels in the metabolic subgroup. In the choles-
terol group, MPC1 expression was relatively higher than that in 
the quiescent and glycolytic group (Fig. 4B). Therefore, we can 
infer that dysregulation of MPC may be related to the metabolic 
tumor subtypes of PCa.

3.5. Association between genomic variation and molecular 
subtypes

To uncover the genomic variation with different metabolic 
phenotypes, the SNP, CNV, and metabolic subgroups with 
altered mRNA expression in these genes were evaluated. 
The CNVs/SNP differed significantly among the metabolic 
subgroups (Fig.  5A and B). The PCa subtype-specific gene 
mutations were explored between the cholesterogenic and 
glycolytic subtypes (Fig. 5C and D). Highly mutated genetic 
profiles were also exhibited. TP53, TTN, and RYR2 were the 
most frequently mutated genes in the cholesterogenic sub-
type, while TP53, SPOP, and FOXA1 were observed in the 

Figure 3. Screen of PCa subtype-specific up-regulated GO (A) and KEGG (B) among 4 metabolic subtypes using the GSEA method in the TCGA dataset. 
GSEA = gene enrichment analysis, PCa = prostate cancer.

Figure 4. Relation of MPC1 (A) and MPC2 (B) expressions with PCa metabolic subgroups. MPC = mitochondrial pyruvate carrier, PCa = prostate cancer.
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glycolytic subtype. The SPOP and FOXA1 showed high muta-
tion frequency in the glycolytic subtype, with cutoff points < 
0.05 (Fig. 5E).

3.6. Relationship between metabolic subtype tumor 
genome and immune microenvironment

Metabolic reprogramming is closely related to the immune envi-
ronment. We observed markedly abnormal expression of meta-
bolic genes in PCa patients. To uncover the association between 
metabolic subtypes and immune environment, the ssgene 
enrichment analysis method was employed to impute the enrich-
ment score of immune cells in tumor samples based on a set of 
29 immune-related genes (Fig. 6A). The stroma scores and the 
immune scores in the Glycolytic and Quiescent subset were sig-
nificantly higher, while the tumor purity in the Cholesterogenic 
and Mixed subset was significantly higher (Kruskal–Wallis test, 
P < .05) (Fig. 6B).

The relation between metabolic subtypes and human leuko-
cyte antigen-presenting was also assessed, and results indicated 
that significantly higher expression in Glycolytic and Quiescent 
and lower expression in Cholesterogenic and Mixed (Kruskal-
Wallis test, P < .05, Fig. 6C). Expression levels of immune cell 
marker genes such as IL3RA (pDC), IL-17 (Th17 cells), FOXP3 
(Treg), CXCR5 (Tfh cells), CD1A (iDC), and CD8A (cytotoxic 
T cells)[33] showed the same trend, which was highest in gly-
colytic group and lowest in Cholesterogenic group (Fig.  6D). 
These findings also proved that Glycolytic obtains a higher con-
centration of immune cell infiltration.

The expression levels of PD1 (benzoate dehydratase 1), 
PD-L1 (programmed death-ligand 1), and PD-L2 (programmed 

death-ligand 2) were also explored among 4 PCa subtypes in 
meta-cohort. The findings demonstrated that the expression 
levels of PD-L1, PD1, and PD-L2 were higher in the glycolysis 
group, while the relative expression levels of PD-L1, PD1, and 
PD-L2 were lower in the cholesterol group (Kruskal–Wallis test, 
P < .05) (Fig. 6E). Based on the above research results, we spec-
ulated that the glycolytic subtype may respond better to PD-L1 
immunotherapy because PD-1/PD-L1 are usually positively 
associated with the immune response in the body.[34]

3.7. Identification of PCa subtype-specific networks

A weighted gene co-expression network was constructed based 
on the PCa samples by WGCNA algorithm,[35] and a set of gene 
modules was recognized to be associated with previously identi-
fied highly expressed genes. We identified several gene modules 
that significantly distinguish PCa by metabolic subtype and age 
(Fig. 7A and B). WGCNA produced a gene module (black) that 
was significantly related to the cholesterol subgroup, and the Blue 
module was highly positively related to the Glycolytic subgroup 
(Fig. 7C–E). The key genes were identified with the cutoff points 
of Gene GS > 0.5 and Gene MM > 0.8.[36] A total of 192 hub genes 
were identified in the Black and Blue module, including 3 transcrip-
tion factor genes, that is, ESRRA, KDM5C, and SUMO2 (Fig. 7F).

3.8. Comparison between metabolic subtypes and 
previous PCa subtypes

We further compared the predictive performance of met-
abolic subtypes (defined as metabolicSig) with 3 features 
recently obtained from Stinnesbeck’s study (referred to as 

Figure 5. The landscape of mutations among PCa metabolic subgroups.This heat map showed the distribution of somatic mutation (SNP) (A) and CNV (B) 
events that affected frequently mutated genes across metabolic subgroups in PCa. (C) Mutation analysis between the glycolytic and cholesterogenic subsets. 
(D) Gene mutation map of highly mutated genes between the 2 subtypes. (E) The forest plot exhibited a comparison of gene mutations between the 2 subtypes 
(*P: .1, **P: .05, ns: not significant). PCa = prostate cancer.
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StinnesbeckmRNASig),[37] 9 mRNA signature obtained from 
Xiangkun’s study (defined as XiangkunmRNASig)[38] and 
4-mRNA signature derived from Ning’s study (referred to as 
NingmRNASig)[39] using the same TCGApatient cohort. As 
shown in Figure 8, the AUC of metabolic Sig at 3 years of PFI was 

0.868, which was significantly higher than XiangkunmRNASig 
(AUC = 0.769) and StinnesbeckmRNASig (AUC = 0.769), but 
lower than NingmRNASig (AUC = 0.896). These results sug-
gest that metabolicSig has better prognostic performance in pre-
dicting survival than the 2 recently published mRNA markers.

Figure 6. Immune environment landscape across metabolic subgroup of PCa. The heatmap showing the distribution of immune cell infiltration in PCa across 
the metabolic subtypes (A). Association between 4 metabolic groups and the Stromal Score, Immune Score, and Tumor Purity (B), HLA related genes (C), 
immune cell subpopulation marker genes (D), PD-1, PD-L1, and PD-L2 (E). HLA = human leukocyte antigen-presenting, PCa = prostate cancer.
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4. Discussion
Although about 3-quarters of U.S. PCa patients are already 
in the localized stage at diagnosis, an increasing number of 
men are being diagnosed with distant-stage PCa. Survival 
rates for distant PCa have improved, but less than one-third 

of men survive 5 years after diagnosis.[40] The large differ-
ences in the incidence and treatment of PCa may be due to 
its genomic instability and changes in various PCa-related risk 
factors. Therefore, it is an urgent scientific problem to explore 
the potential molecular mechanism of PCa occurrence and 

Figure 7. The weighted gene correlation network analysis (WGCNA). (A). better soft threshold was identified. (B). Gene dendrogram and module colors using 
WGCA method. (C).The WGCNA analysis exhibited that 2 sets of genes (modules) significantly correlated with glycolytic and cholesterogenic subsets. (D and 
E). Module membership versus gene significance was plotted in glycolytic and cholesterogenic subsets. (F).The identification of PCa subtype-specific networks.
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development to seek more effective diagnosis and treatment 
strategies. The assessment of metabolic genes is expected to be 
a useful tool for studying the abnormal metabolism of cancer 
cells. In the process of tumorigenesis and development, met-
abolic pathways usually adapt to malignant tumors through 
metabolic reorganization, and the accompanying TME plays 
an important role in cancer progression. In the process of gly-
colysis and metabolism, cancer cells produce enough ATP to 
promote the proliferation of cancer cells.[41] Several studies 
reported that a higher percentage of malignant tissues exhib-
ited higher glycolytic properties in multiple tumors, especially 
in PCa.[42] Jiajia Hu et al reported that PCa cells may metab-
olize glucose as an energy source to activate a series of bioen-
ergy pathways, among which glucose and glycolysis play an 
essential role in the growth of prostate cells.[43] The metabolic 
balance control of PCa cells was changed, and the biosynthe-
sis of endogenous cholesterol was increased, which accumu-
lated in tumor cells.[44] PCa and obesity adipose tissue is an 
active endocrine tissue that can regulate the metabolic activity 
of the prostate and affect cancer, especially the development 
of tumors. Both PCa and obese adipose tissue were relatively 
active endocrine tissues, which can regulate the metabolic 
activity of the prostate and affect the development of cancer, 
especially the development of tumors.[44,45] Therefore, elucida-
tion of the metabolic pathways associated with PCa is essential 
for prevention and treatment.

Continued understanding of clinically relevant tumor sub-
types is needed to accelerate the development of PCa per-
sonalized therapy. In the current study, PCa shows a distinct 
metabolic profile associated with the expression levels of genes 
involved in glycolysis and cholesterol synthesis, 2 biological 
processes that affected the prognosis of PCa. Four metabolic 
subtypes were identified based on glycolytic and cholesterol 
production pathways that are related to survival. Each meta-
bolic subtype has specific characteristics. We also found that 
genes related to glycolysis and cholesterol production closely 
correlated with the expression of PCa-specific oncogenes, and 
these findings provide a deeper understanding of the metabolic 
vulnerability of PCa isoforms when applied to target aggressive 
tumors.

Glycolysis can promote tumor development and is associated 
with immune escape and chemotherapy resistance, which may 
partly explain the underlying mechanism leading to adverse out-
comes in the glycolysis group.[46] In the process of glycolysis, 

aerobic glycolysis enters tumor cells to provide stable energy for 
the growth of tumor cells.[47] Several studies indicated that the 
growth of tumors is highly dependent on glycolysis. Therefore, 
inhibitors including glycolytic enzymes and metabolic regula-
tors that target glycolysis can effectively inhibit cell prolifer-
ation.[48,49] Tumor cells activated M2-TAM through lactate (a 
glycolytic product) through a bystander effect, which further 
intrigued PD-L1/PD-1 signaling-mediated immune escape. 
Therefore, tumor-specific aerobic glycolysis is expected to 
become a potential therapeutic target for tumor therapy. In the 
study, our results indicated that PCa metabolic subtypes with 
higher expression of glycolysis genes but lower expression of 
cholesterol-producing genes seemed to be more aggressive and 
more aggressive, and sensitive to chemotherapy because we have 
observed that this subgroup has a poor prognosis. Our research 
also shows that there are a variety of metabolic phenotypes 
related to glycolysis and cholesterol synthesis in PCa. Research 
suggested that glycolysis in tumors is significantly associated 
with the TME.[50–52] Hypoxia in the TME means that tumor cells 
rely on increased glycolysis to meet their energy needs. Several 
studies reported that accelerated glycolysis satisfied the need for 
the rapid proliferation of cancer cells and provided a favorable 
microenvironment for tumor progression.[50,53] In the study, our 
findings supported that altered gene expression along the glycol-
ysis-cholestanol synthesis axis is linked with immune infiltration 
in PCa. However, our study has several limitations. Firstly, the 
prognosis of the patients analyzed in this study may not only 
depend on metabolic subgroups. It may be influenced by other 
genetic factors not considered in this study, such as germline 
mutations that cause PCa and affect prognosis and treatment.[54] 
Secondly, Our findings are mainly predicted by RNA sequencing 
and have not yet been used clinically. Thirdly, because current 
risk stratification models that can predict oncological outcomes 
cannot accurately describe the prognosis of every patient and 
every stage of the disease, there is a need for testing tools and 
treatments that are personalized and precise.

In conclusion, these findings reaffirm the important role of 
cholesterol metabolism in the biology of PCa, especially in 
patients with poor immunotherapy. We proved that the genes 
involved in cholesterol synthesis are highly expressed in tumor 
tissues of some PCa patients, and the prognosis showed better, 
confirming the correlation between cholesterol production and 
the progression and classification of PCa.
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