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Coronavirus disease 2019 (COVID-19) is a deadly respiratory disease caused
by severe acute respiratory syndrome coronavirus 2, which has caused a
global pandemic since early 2020 and severely threatened people’s liveli-
hoods and health. Patients with pre-diagnosed conditions admitted to
hospital often develop complications leading to mortality due to acute res-
piratory distress syndrome (ARDS) and associated multiorgan failure and
blood clots. ARDS is associated with a cytokine storm. Cytokine storms
arise due to elevated levels of circulating cytokines and are associated
with infections. Targeting various pro-inflammatory cytokines in a specific
manner can result in a potent therapeutic approach with minimal host
collateral damage. Immunoregulatory therapies are now of interest in
order to regulate the cytokine storm, and this review will summarize and
discuss advances in targeted therapies against cytokine storms induced
by COVID-19.
1. COVID-19 infection and the cytokine storm
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) was first reported in the Chinese city
of Wuhan in December 2019 and since then has spread across the globe rapidly,
leading to over 4.9 million deaths and over 243 million infections (as of October
2021) [1]. COVID-19 infection leads to a hallmark hyper-inflammatory state,
more commonly known as a ‘cytokine storm’ [2,3]. The onset of a cytokine
storm leads to impaired oxygen-exchange and acute respiratory distress syn-
drome (ARDS), which is driven by a cytokine storm caused by upregulated
levels of inflammatory mediators. ARDS is thought to be the cause of death
in up to 70% of fatal COVID-19 cases where a cytokine storm has been detected
[4]. Furthermore, continuous inflammation causes an imbalance in pro- and
anti-coagulative factors, leading to microthrombosis, multiorgan injury and
failure [5].

With a marked similarity to SARS and MERS, severely ill patients with
COVID-19 demonstrate decreased CD4+ and CD8+ T lymphocyte counts,
increased Th17 cell proliferation and abnormally elevated pro-inflammatory
cytokine levels, notably interleukin-6 (IL-6), interferon-γ (IFN-γ), granulocyte-
macrophage colony-stimulating factor (GM-CSF) and tumour necrosis factor-
α (TNF-α) (figure 1) [6–8]. Moreover, post-mortem pathological examinations
reported diffuse alveolar damage, mononuclear infiltration and pulmonary
oedema, also characteristic of other highly pathogenic coronaviruses [8].
These findings altogether are indicative of a cytokine storm underlying ARDS
and multiple organ failure (MOF) in most severe cases. Thus, targeting
exaggerated cytokine response may be effective in improving outcomes in
COVID-19 patients.
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Figure 1. SARS-CoV-2 immune response and outcomes. SARS-CoV-2 infection of host cells via the ACE-2 receptors triggers an immune response, notably activation
of neutrophils, macrophages and Th17 cells, downregulation of CD4+ and CD8+ T cells and increased cytokine production. The abnormally elevated pro-inflam-
matory cytokines, known as cytokine storm, can cause cell death and tissue damage across the body that may lead to MOF and death.
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2. Anti-inflammatory therapeutic approaches
used to date to combat COVID-19

Multiple anti-inflammatory therapies have been used to
diminish high cytokine levels and to mitigate the cytokine
storm-related morbidity and mortality in COVID-19 patients
(tables 1 and 2). However, none of the existing therapeutic
approaches has demonstrated desired efficacy, and no con-
sensus has been reached yet with regard to timing,
duration and type of regimen. Untargeted immunosuppres-
sion of cytokine storm in COVID-19 with corticosteroids
and anti-malarials has been associated with mixed success
so far. While anti-inflammatory corticosteroids, such as dexa-
methasone, have been successfully used for the treatment of
critically ill SARS and MERS patients, these drugs failed to
deliver on their promise for long-term use in COVID-19 treat-
ment of patients with mild-to-moderate symptoms due to
increased risk of co-infections [38]. However, a randomized,
open-label clinical trial, RECOVERY, showed that dexa-
methasone could decrease mortality in hospitalized patients
with COVID-19 who require respiratory support [39]. The
short-term use of low-dose methylprednisolone was reported
to improve clinical outcomes for severely ill patients,
but further clinical investigations are required for confir-
mation [40,41]. The clinical performance of anti-malarials,
chloroquine and its derivative hydroxychloroquine is also
inconsistent. While it has been suggested that chloroquine
inhibits production and release of IL-6 and TNF-α [42] and
hydroxychloroquine modulates antigen processing in anti-
gen-presenting cells [43], thus both suppressing cytokine
storm, major clinical trials with these drugs have been
halted due to suboptimal efficacy and prominent adverse
effects [44,45]. Intravenous immunoglobulin (IVIG), derived
from pooled human plasma, has been used for the treatment
of various immune diseases [46]. As an immunomodulator,
IVIG can suppress inflammation [9,47], and in a recent
multi-centre retrospective cohort study proved that when
administered early, IVIG improves prognosis for critically ill
COVID-19 patients [48].
The complexity of the immune system as a whole and in
particular the immune response to SARS-CoV-2 with elevated
levels of both pro-inflammatory and anti-inflammatory cyto-
kines such as IL-6 and IL-10, respectively [49], may underpin
the mixed outcomes of general immunosuppressive anti-
COVID-19 treatments so far. However, targeted immunomo-
dulating therapies have been explored on par and hold
promise to become a potential first-line COVID-19 therapy.

Most widely, blocking cytokine receptors to suppress their
activity is explored as a COVID-19-related cytokine storm
treatment avenue. IL-6 has a fundamental role in the cytokine
storm, and its elevated levels tend to be correlated with the
disease severity [50–52]. A recombinant humanized antibody,
tocilizumab, binds to soluble and membrane-bound IL-6
receptors, and inhibits IL-6 mediated inflammatory response
by blocking its signal transduction [53]. Multiple studies
suggest that tocilizumab could effectively improve symptoms
and outcome in severe and critical COVID-19 patients
[54–58]. However, tocilizumab has been previously linked
to increased risk of opportunistic infections for other
indications such as rheumatoid arthritis [59], and a major
clinical trial has recently demonstrated that this drug was
not effective in preventing intubation or death in moderately
ill hospitalized COVID-19 patients [60]. Analogously, another
rheumatoid arthritis drug, IL-1 receptor antagonist protein,
anakinra, which inhibits the activity of pro-inflammatory
IL-1α and IL-1β cytokines, has been repurposed for
COVID-19 [61]. A retrospective cohort study of patients
with COVID-19 and ARDS showed that intravenous
administration of a high-dose anakinra improved the clinical
status of the participants [61]. Furthermore, anakinra was
found to reduce the need for oxygen therapy and the
mortality among severe COVID-19 patients [62].

Alternatively, downstream inhibitionofmajor inflammation-
associated signalling pathway could provide an alternative
approach to cytokine storm suppression, for instance, targeting
Januskinase-signal transducerandactivatorof transcriptionpro-
teins (JAK-STAT) pathway [63]. Early clinical data suggest that
the use of currently available JAK inhibitors such as baricitinib



Table 1. Small-molecule-based targeted anti-inflammatory approaches in patients with COVID-19. RA = rheumatoid arthritis; MF = myelofibrosis; cGVHD = graft-
versus-host disease; MCL = mantle cell lymphoma; CLL = chronic lymphocytic leukaemia; WM = Waldenström macroglobulinemia; MZL = marginal zone
lymphoma; LAM = lymphangioleiomyomatosis; PsA = psoriatic arthritis; Ps = plaque psoriasis.

drug cytokine regulation

study type
(identification
number), status study aim

original
indication

JAK inhibitors

baricitinib IL-6: JAK1, JAK2, TYK2; IFN-

ɣ: JAK1, JAK2; IL-2, IL-4,

IL-7: JAK1, JAK3 [9]

Phase III (NCT04421027),

recruiting [10]

to assess effectiveness in hospitalized

patients with COVID-19

RA

ruxolitinib IL-6: JAK1, JAK2, TYK2; IFN-

ɣ: JAK1, JAK2; IL-2, IL-4,

IL-7: JAK1, JAK3 [9]

Phase II and III

(NCT04359290),

recruiting [11]

to evaluate safety and efficacy in

patients with COVID-19 severe

pneumonia

MF, cGVHD

BTK inhibitors

acalabrutinib IL-6, IL-10, TNF-α, MCP-1

[12]

Phase II (EudraCT 2020-

001736-95), active

[13]

to evaluate efficacy and safety of

multiple candidate agents for

treatment of COVID-19 in hospitalized

patients

MCL

ibrutinib IL-6, IL-10, TNF-α, MCP-1

[14]

Phase II (NCT04439006),

recruiting [15]

to study side effects, best dose and its

efficacy in treating COVID-19 patients

who require hospitalization

MCL, CLL, WM,

MZL, cGVHD

mTOR inhibitor

rapamycin/

sirolimus

IL-1β, IL-6 [16] Phase II (NCT04341675),

recruiting [17]

to assess clinical outcomes and

improvement in hospitalized patients

with COVID-19

LAM

PDE4 inhibitors

apremilast IFN-ɣ, TNF-α, IL-2, IL-12,

IL-17, IL-23, IL-10 [18]

Phase II (NCT04488081),

recruiting [19]

to evaluate efficacy for treatment of

critically ill COVID-19 patients

PsA, Ps
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and ruxolitinib is associated with improved clinical and
laboratory parameters, or faster clinical improvement of severe
COVID-19 patients [64,65]. However, the risks may outweigh
the benefits for JAK inhibitors in COVID-19 treatment as these
drugs may increase the chance of viral reactivation by blocking
anti-viral IFN-α production [66], and baricitinib, in particular,
has been linked to lower lymphocyte counts, which is already
a critical concern for COVID-19 patients [67].
3. Potential targeted therapeutic approaches
against the COVID-19 cytokine storm

There are as yet few anti-inflammatory therapeutic approaches
that have been deliberated upon in a clinical trial setting.
However, as more evidence on COVID-19 pathogenesis
comes to light, targeting cytokine storm appears more
promising, and more therapeutic approaches with different
molecular entities such as small-molecule therapeutics,
biologics and nanomedicines are investigated (figure 2).

3.1. Small-molecule therapeutics
The main advantage of small-molecule drugs over any higher
molecular weight therapeutic agents is oral availability and
predictable pharmacokinetic profiles due to their simple
chemical structures [68]. In addition to well-known
JAK inhibitors such as baricitinib and ruxolitinib that are
currently undergoing clinical trials for COVID-19 repurpos-
ing (table 1), other kinase inhibitors are now also being
considered in response to the pressing need to mitigate the
fatal consequences of COVID-19-related cytokine storm.

Small-molecule inhibitors specific to Bruton’s tyrosine
kinases (BTK) such as acalabrutinib and ibrutinib are con-
sidered for the treatment of COVID-19 due to their ability
to inhibit B-cell signalling pathway and suppress subsequent
production of pro-inflammatory cytokines such as TNF-α, IL-
6, IL-10 and chemokine (C-C motif ) ligand 2 (CCL2) [69,70].
Both BTK inhibitors showed improvements in symptoms and
outcomes in preliminary studies with acalabrutinib substan-
tially reducing key pro-inflammatory IL-6 cytokine levels
[12,14] and are now in the middle of Phase II clinical trials
to further evaluate their effectiveness [13,15].

Moreover, a few studies have suggested using sirolimus
(also known as rapamycin), a selective mammalian target of
rapamycin (mTOR) inhibitor, to tame the cytokine storm by
inhibiting the mTOR pathway that plays a key role in down-
stream T-cell differentiation and cytokine production [71–74].
The immunosuppressant has previously been shown to
shorten the duration of ventilator usage and improved clinical
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Figure 2. Therapeutic approaches targeting COVID-19-induced cytokine storm
with small-molecule, biologic and nanomedicine therapies.
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outcomes in patients with severe H1N1 pneumonia by inhibit-
ing T and B cells activation [16]. However, whether its efficacy
in influenza treatment can be replicated in COVID-19 is yet to
be seen as Phase II clinical trials for sirolimus are soon to begin
upon completion of recruitment [75].

Another potential target of interest is phosphodiesterase 4
(PDE-4), which regulates the production of pro-inflammatory
cytokines through cyclic adenosine monophosphate activation
[18]. Apremilast was originally proposed as an auto-immune
disease treatment and shown to diminish pro-inflammatory
cytokine TNF-α, IFN-γ, IL-2, IL-4, IL-6 and IL-13 expression
and vice versa to increase anti-inflammatory IL-10 expression
[76]. Treatment with the selective PDE-4 inhibitor at early
phases of SARS-CoV-2 pneumonia resulted in a significant
reduction in IL-6 across all four patients with minimal side
effects [77]. The early success and excellent safety profile led
to further investigation, and apremilast has been accepted for
a Phase II clinical trial [19].
3.2. Biologics
The use of monoclonal antibodies (mAbs) in the treatment of
inflammation has been widely accepted for the last decade,
with immunomodulatory mAbs generally proven safe and
in many cases effective [78]. Most therapeutic approaches
for suppressing cytokine storm are based on targeting
either the cytokine itself or its receptor. Together with
widely investigated tocilizumab, other mAbs targeting IL-6
such as siltuximab and IL-6 receptor such as sarilumab are
being considered as promising anti-inflammatory therapies
for COVID-19, and both are currently evaluated in Phase III
clinical trials in hospitalized COVID-19 patients [23,79].
Another mAb targeting IL-1β cytokine has now also reached
Phase III clinical trials [25], previously demonstrating a
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reduction in serum inflammatory biomarkers in COVID-19
patients upon subcutaneous administration [80].

Anti-TNF-α mAbs have been associated with not only
reduced activity of TNF-α but also downregulation of key
pro-inflammatory cytokines IL-1 and IL-6, offering a
‘double-whammy’ therapeutic approach [81,82]. Observa-
tional clinical data in patients on anti-TNF therapy for
rheumatoid arthritis have shown to be inversely associated
with death and hospital admission for COVID-19 [83]; how-
ever, no effect on intensive care admission was observed
[84]. While the potential use of anti-TNF-α mAbs is backed
up by a holistic understanding of the mechanisms of a cyto-
kine storm and observational clinical data, very few clinical
studies are currently investigating these therapies for the pre-
vention of cytokine storm progression and overall COVID-19
treatment (table 2) [31,32].

Targeting other pro-inflammatory cytokines such as
GM-CSF has also been pursued to curb hyperinflammation
[85,86]. Anti-GM-CSF mAb lenzilumab and anti-GM-CSF
receptor mAb mavrilimumab, alongside other mAbs used
in the treatment of COVID-19, have been associated with
earlier clinical improvement in respiratory parameters,
demonstrating potential efficacy of this therapeutic approach
[28,86,87]. While IFN-γ, IL-8 and C-C chemokine receptor
type 5 (CCR5) mAbs are investigated as anti-cytokine storm
therapies in COVID-19 [34,35,37], a few cytokines and che-
mokines upregulated in a cytokine storm such as C-X-C
motif chemokine ligand 10 (CXCL10) and CCL2 are not yet
targeted directly by any therapeutic approaches and in light
of the urgent need for a viable COVID-19 treatment, drugs
against these targets should be evaluated as well.
3.3. Nanomedicine
Although useful in combating the cytokine storm, the use of
immunosuppressants will result in systemic reduction in
patients’ immunity and pose an increased risk of secondary
infection or sepsis. Moreover, the short half-lives of small
molecules limit the ability to achieve sustained drug delivery
and therapeutic benefits. On the other hand, biologics usually
suffer from poor bioavailability and, therefore, a higher dose
might be required, resulting in an increased risk of unfore-
seen adverse effects. Encapsulating these therapeutic agents
into smart nanocarriers would allow targeted delivery,
increased bioavailability and circulation stability as well as
optimization of pharmacokinetic profiles of combination
therapies as multiple therapeutic agents can be encapsulated
into nanoparticles.

A few nanomedicine approaches have emerged as anti-
inflammatory COVID-19 treatments. Rao et al. demonstrate
decoy nanoparticles formulated by fusing two cellular mem-
brane nanovesicles to protect host cells by competing with
virus [88]. Alongside angiotensin-converting enzyme 2
(ACE-2) receptors that bind SARS-CoV-2 virus itself, the
nanodecoy possesses IL-6 and GM-CSF receptors on its
surface that efficiently bind and neutralize pro-inflammatory
cytokines IL-6 and GM-CSF [88]. Thus, nanodecoys have
been shown to effectively suppress cytokine levels in acute
pneumonia mouse model in vivo [88].

Other nanoparticle-based approaches so far have focused
on delivery of non-specific anti-inflammatory agents such as
adenosine and corticosteroids. Dormoont et al. reported the
development of squalene-based multidrug nanoparticles con-
sisting of adenosine and the antioxidant α-tocopherol as a
potential targeted approach for cytokine storm mitigation
[89]. Adenosine, a non-specific immunomodulator, has
been shown to inhibit TNF-α, IL-6 and IL-12 production
and promote the release of anti-inflammatory IL-10 [90].
This nanoformulation exploits the enhanced permeability
and retention effect to achieve site-targeted delivery. The
multidrug nanoparticle has been shown to accumulate at
the site of inflammation and was associated with a
significant reduction in TNF-α alongside an increase in IL-
10 in endotoxemia mouse model [89]. To avoid systemic
immunosuppression and increased risk of secondary infec-
tion, nanoformulations of dexamethasone have been
previously developed to treat other inflammatory diseases
such as cancer, inflammatory bowel disease and inflamma-
tory arthritis and proposed for COVID-19 treatment to
improve specificity, stability and efficacy of dexamethasone
[91]. However, the idea is still at its early stages, and more
research has to be done to find the optimal formulation and
evaluate its efficacy.

While nanomedicine has been centre-stage in vaccine
development recently, it is so far underused in therapeutic
development to combat viral infections in general and
COVID-19 in particular [92]. However, more evidence is
being amassed on potential benefits of nanomedicine in
developing COVID-19 therapies and how nanomedicine can
address limitations of repurposed anti-inflammatory agents
and improve their specificity, bioavailability and in situ
release kinetics [93,94].
4. Challenges and perspectives
As cytokine storm has been convincingly linked to fatal out-
comes in SARS-CoV-2 infections, targeted approaches to curb
hyperinflammation have been widely explored and hold
promise of improving prognoses and reducing COVID-19-
associated mortality. However, complexity of the immune
response in general and specific patterns linked to COVID-19
are yet to be fully comprehended. As the understanding of
origins, patterns and consequences of SARS-CoV-2-induced
cytokine storm grows, it will become more apparent what
subset of patients and at what disease stage could benefit
the most from anti-inflammatory therapies. In parallel to the
vaccine rollout, it is critical to continue investing efforts into
novel treatment developments given the likelihood of variation
in vaccine protection due to continuous mutations in the virus.
Moreover, integrating nanoscience into re-purposing of exist-
ing targeted drugs and the development of novel molecular
entities can help overcome safety and efficacy shortcomings
currently associated with these therapeutics—by targeting
drugs to a particular tissue in the body or by boosting synergy
of combination therapies through concurrent delivery.
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