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Abstract: Wheat viruses including wheat streak mosaic virus, Triticum mosaic virus, and barley yel-
low dwarf virus cost substantial losses in crop yields every year. Although there have been extensive
studies conducted on these known wheat viruses, currently, there is limited knowledge about all
components of the wheat (Triticum aestivum L.) virome. Here, we determined the composition of
the wheat virome through total RNA deep sequencing of field-collected leaf samples. Sequences
were de novo assembled after removing the host reads, and BLASTx searches were conducted. In
addition to the documented wheat viruses, novel plant and fungal-associated viral sequences were
identified. We obtained the full genome sequence of the first umbra-like associated RNA virus
tentatively named wheat umbra-like virus in cereals. Moreover, a novel bi-segmented putative
virus tentatively named wheat-associated vipovirus sharing low but significant similarity with both
plant and fungal-associated viruses was identified. Additionally, a new putative fungal-associated
tobamo-like virus and novel putative Mitovirus were discovered in wheat samples. The discovery
and characterization of novel viral sequences associated with wheat is important to determine if
these putative viruses may pose a threat to the wheat industry or have the potential to be used as
new biological control agents for wheat pathogens either as wild-type or recombinant viruses.

Keywords: wheat virome; metagenomics; RNA-seq; umbra-like virus; vipovirus; wheat fungal-
associated viruses

1. Introduction

Wheat (Triticum aestivum L.) is one of the leading staple crops in the world; however,
wheat viral diseases continue to pose a great threat to the industry [1]. Wheat viruses
including wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), High Plains
wheat mosaic emaravirus (HPWMoV), soilborne wheat mosaic virus (SBWMV), barley
yellow dwarf virus (BYDV), and cereal yellow dwarf virus (CYDV) have a significant
impact in the Great Plains and other wheat growing regions around the world [2–4].
WSMV, TriMV, and HPWMoV have been reported as causal agents of the wheat streak
mosaic disease (WSM) complex; a destructive disease-causing significant yield loss [5]. In
2017, WSM caused a total of $76 million in yield loss to Kansas farmers [5]. WSMV and
TriMV are type species classified under the Potyviridae family and are both filamentous
viruses with positive-sense, single-stranded RNA genomes [6–8]. In contrast, HPWMoV
belongs to the Fimoviridae family, which is a multipartite, negative-sense virus consisting of
8 RNA segments [9]. All 3 viruses are naturally transmitted by the wheat curl mite (WCM),
Aceria tosichella Kiefer [10]. The typical symptoms of WSM are yellow, mosaic-like streaks
on the leaves which lead to chlorosis and reduction in photosynthetic capabilities. Severe
infection may also lead to stunted growth.

BYDV and CYDV are other economically important known wheat viruses from the
family Luteoviridae, genera Luteovirus and Polerovirus, respectively. BYDV and CYDV are
causal agents of the barley yellow dwarf disease (BYD) [11,12] transmitted mainly by the
bird cherry-oat aphid (Rhopalosiphum padi) [13]. Stunting and discoloration of leaves are
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typical symptoms of BYD. Historically, the 20-year average yield loss caused by BYD is 1%
in Kansas; however, these losses can increase up to 49% when conditions are conducive for
the proliferation of R. padi, the natural vector of BYD viruses [14,15].

Despite successful breeding programs, wheat viral diseases are still major issues for
farmers. Enormous studies have been conducted to characterize these wheat pathogenic
viruses and determine virus-host interactions [16,17]. However, most of these studies have
focused on the documented wheat viruses [2,4], and there has been no metagenomics study
to analyze all viral communities associated with wheat.

Viruses are the most abundant habitants of the earth, infecting both prokaryotes and
eukaryotes [18–20]. The study of virology has been spurred on by the identification of a
plant virus, tobacco mosaic virus, which was the first virus to be discovered in 1898 [21].
Since then, a multitude of virology studies have been conducted to identify and char-
acterize pathogenic viruses causing disease in humans, animals, and plants [22,23] and
determine the relationships of viral pathogens with their hosts and vectors [24–26]. With
the introduction of high-throughput next-generation sequencing (NGS) and advanced
bioinformatics tools, a new age of virus discovery has commenced in the last decade and
many novel pathogenic and non-pathogenic viruses have been identified [27,28]. Indeed,
studying viral communities associated with a particular organism, ecosystem, or holobiont
(virome) in the metagenomics era has been a significant contribution to the field of virology,
including plant virology [29,30]. The identification of persistent viruses which may be
potential biological control candidates [31,32], the discovery of novel and newly emerg-
ing viruses [31,33,34], and the determining of evolutionary relationships of economically
important viral pathogens [35,36] are some of these contributions.

To address the current knowledge gap about the wheat virome, we conducted a
metagenomics study with field-collected wheat leaf samples. Through high-throughput
total RNA sequencing, not only known wheat viruses but novel plant and fungal-associated
viral sequences were also identified in this study. The discovery and characterization of
new viruses is crucial due to the fact that these viruses may be emerging viral pathogens
and pose a threat to the wheat industry or be beneficial and have potential to serve as new
biological controls for wheat pathogens either as wild-type or recombinant viruses.

2. Materials and Methods
2.1. Sample Collection

Symptomatic wheat leaf samples were collected in 2019 and 2020 from Kansas fields.
In addition to surveyed samples, samples sent to the Kansas State University Plant Disease
Diagnostics Lab and the provided field samples from Nebraska, Montana, and Colorado
fields were also added to the collection. A total of 30 samples were chosen for total RNA
library preparation and sequencing based on the geographic locations (Table S1).

2.2. RNA Extraction and Library Preparation

Total RNAs from 100 mg of wheat leaf tissues were extracted using TRIzol reagent
(Invitrogen, CA, USA), according to the manufacturer’s instruction. The extracted RNAs
were treated with DNase I (Zymo Research, CA, USA). The integrity and quantity of the
DNase-treated RNAs were measured using Qubit 4 (Invitrogen, CA, USA) with the RNA
IQ assay kit. The TruSeq Stranded Total RNA with Ribo-Zero Plant kit (Illumina Inc.,
CA, USA) was utilized to remove the rRNA and prepare the libraries for sequencing
following the manufacturer’s instruction. Agencourt RNAClean XP (Beckman Coulter,
MA, USA) was used to purify the samples to ensure the removal of all traces of rRNA.
TruSeq RNA Single Indexes Sets A and B (Illumina Inc., CA, USA) were used for adapter
ligation. After each step of cDNA synthesis, adapter ligation, and enrichment of the DNA
fragments, the samples were purified using the Agencourt AMPure XP (Beckman Coulter,
MA, USA). The final libraries were subjected to quality control analysis using Agilent
Bioanalyzer 2100 system (Agilent Technologies, CA, USA) and were quantified using the
Qubit 4 (Invitrogen, CA, USA) with the 1X dsDNA High Sensitivity Assay (Invitrogen,
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CA, USA). At the Kansas State Integrated Genomics Facility, cDNA libraries were indexed
using unique identifiers, pooled (2 sets of 15) and sequenced in two lanes using the NextSeq
500 platform for high-output with a read length of 1 × 75 bp.

2.3. RNASeq Analysis and Virus Genome Identification

Trimmomatic was used to trim the reads for quality, length, and the adapter se-
quences [37]. To ensure the reads no longer contained adapter sequences and were of high
quality, FastQC was utilized for quality control [38]. STAR Aligner was used to index the
wheat reference genome obtained from Ensemble Genomes project and align the indexed
reference to the reads [39,40]. The unmapped reads were extracted and used for mapping
and de novo assembly using two assemblers: CLC Genomics Workbench 20 (CLC Bio,
Qiagen, MD, USA) and Trinity 2.8.0 [41]. All de novo assembled contigs were used as
queries for BLASTx searches against the non-redundant protein database with the search
parameter limited to the virus taxids and E-value < 0.001 [42].

2.4. Viral Genome Sequence Validation

To validate the identified viral sequences, the first strand cDNAs were synthesized
using original RNAs and SuperScript II Reverse Transcriptase (Invitrogen, CA, USA) with
oligo dT and /or gene specific primers designed using the de novo-assembled contigs.
For PCR, the 25 µL reaction contained 1x GoTaq Flexi Buffer (Promega, WI, USA), 1 µM
MgCl2, 0.1 µM dNTP, 0.4 µM of gene specific primers (Table S2), 1.25 U GoTaq Flexi DNA
Polymerase (Promega, WI, USA), and nuclease-free water. The thermal cycle program for
the GoTaq Flexi protocol is as follows: 94 ◦C for 2 min, 34 cycles of 94 ◦C for 10 s, 55 ◦C
for 15 s, 72 ◦C for 2 min, and 72 ◦C for 5 min. The PCR products were cleaned using the
DNA Gel Extraction Kit (Zymo Research, CA, USA) and sequences confirmed through
Sanger sequencing.

2.5. Rapid Amplification of cDNA Ends

The 5′ and 3′ untranslated regions (UTRs) of the novel viral sequences were completed
through rapid amplification of cDNA ends (RACE) using gene specific primers and the
SMARTer RACE 5′/3′ Kit (Takara Bio, CA, USA), following the manufacturer’s instruction.
PCR products were cloned using the Zero Blunt II TOPO kit (Invitrogen, CA, USA) and
transformed using One Shot TOP10 Chemically Competent E. coli (Invitrogen, CA, USA).
At least 15 clones for each viral sequence were sent for Sanger sequencing (Genewiz Inc.,
NJ, USA). Sanger sequencing results were aligned, and consensus sequences were extracted
for individual viral sequences.

2.6. Small RNA Deep Sequencing

The total RNA of the sample NS02_19 was utilized for small RNA deep sequencing.
Total RNA was extracted using mirVana miRNA isolation kit (Thermo Fisher Scientific,
CA, USA) and treated with DNase I (Zymo Research, CA, USA). The RNA integrity was
measured using the Qubit 4 RNA IQ assay (Invitrogen, CA, USA). Two µg of the total RNA
was sent to the Beijing Genomics Institute (BGI), Hong Kong for library construction and
50-bp single-read sequencing using the DNBSeq platform.

2.7. Phylogenetic Analysis

The phylogenetic analysis was conducted only with novel viral sequences identified
in this study. The amino acid sequences were aligned using MUSCLE [43] with the top viral
reference sequences showing the highest similarities in BLASTx searches. MEGA 5 was
utilized to determine the best substitution model for the alignments [44]. The maximum-
likelihood trees were constructed using the PHYML plugin integrated in the Geneious
Prime 2020 20.4 program (http://www.geneious.com, accessed 20 June 2020) using the
default settings with 1000 bootstrap replicates [45].

http://www.geneious.com
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3. Results
3.1. RNASeq Analysis

A total of 980 M reads with an average of 33 M reads per library were obtained
(Table S3). Reads are publicly available at NCBI Sequence Read Archive (SRA) under the
BioProject number PRJNA722004. Clean reads were mapped into the genome of the wheat
(GenBank assembly accession: GCA_900519105.1) [39] and unmapped reads were collected
for mapping into the genome of the known wheat viruses (Table S4). After subtracting
the mapped reads for known wheat viruses, the remaining reads were de novo assembled
and used for BLASTx searches. Figure 1 shows all identified viral sequences by BLASTx
searches using contigs generated either by mapping or de novo assembly.
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Figure 1. The composition of the virome of the studied wheat samples. Wheat viral communities
identified here included known (WSMV, TriMV, HPWMoV, BYDV, CYDV) and novel (umbra-like,
virga-like, poty-like, tobamo-like, mito-like) viral sequences.

3.2. Wheat Virome Composition and Characterizing Novel Viral Sequences
3.2.1. Known Wheat Viruses

The five documented wheat viruses including WSMV, TriMV, HPWMoV, BYDV-PAV,
and CYDV were identified (Figure 1) and their full genome sequences were obtained
and deposited in the GenBank (Table S5). Full genome sequences of the identified WSM-
associated viruses including WSMV, TriMV, and HPWMoV and their accession numbers
can be found in the recent publication [46]. WSMV single infections were the most prevalent
in the leaf samples among the known wheat viruses. Other known wheat viruses, such
as BYDV-PAV and CYDV occurred in low incidences of ~7% (2 out of 30 libraries) and 4%
(1 out of 30 libraries), respectively. The presence of these known wheat viral sequences was
validated in original RNAs via RT-PCR and Sanger sequencing (Figure S1).

3.2.2. “Umbra-Like” Viral Sequences

BLASTx searches identified contigs of ~1.5 kb in two of our libraries and illustrated ≤ 60%
significant (E value < 0.001) similarities to unclassified umbra-like viruses (Table 1). The
presence of this viral sequence was confirmed in original RNAs (Figure S1). Both positive
wheat samples for the umbra-like viral sequence were from fields located in the same
county but in two different years (Table S1).
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Table 1. Identified hits by BLASTx searches using the de-novo assembled contigs.

Novel Viral Sequence Positive Libraries Known Virus Hits Similarity (%) Query Coverage (%) E Value

Umbra-like viruses GL01_19, GL20 Unclassified umbraviruses ≤60% <55% <0.00001

Virga-like NS02_19, FO19, EL19,
KW19, GL01_19, ME19

Plant-associated virga viruses ≤26% <27% <0.00001
Fungal-associated virga viruses ≤30% <40% <0.00001

Poty-like NS02_19, FO19, EL19,
KW19, GL01_19, ME19 Potyviruses ≤25% >40% <0.00001

Tobamo-like NS02_19, FO19, EL19,
KW19, GL01_19, ME19

Fungal-associated tobamo-like
viruses and plant

tobamoviruses
≤40% ~50% <0.00001

The complete nucleotide sequence including the nucleotide sequences of both ends
of the genomic RNA of this newly identified umbra-like virus tentatively named wheat
umbra-like virus (WULV) was determined by RACE. The full genome size of WULV
was 3527 nucleotides with a short 5′UTR of 10 nt and a longer 3′UTR of 237 nt. Four
predicted open reading frames (ORF) were determined for WULV using the ORFfinder
(https://www.ncbi.nlm.nih.gov/orffinder/, accessed 20 September 2021) (Figure 2a). The
predicted ORFs were used as queries to search against the Conserved Domain Database
(CDD). ORF1 (nt 11 to 544) encoded a putative protein of 177 aa which did not show any
similarity to known proteins at the database. The second ORF, ORF2 (nt 624 to 2098) en-
coded a large putative protein of 490 aa with the RNA-dependent RNA polymerases (RdRp)
conserved domain (Figure 2a). ORF1 and ORF2 are non-overlapping with 80 nt-long inter-
genic region. ORF3 (nt 1988 to 2626) which has an overlap with ORF2 encoded a putative
protein of 212 aa, and additionally ORF4 (nt 2675 to 3295) encoded a putative protein of
206 aa (Figure 2a). A 48 nt-long intergenic region is between ORF3 and ORF4. Neither
ORF3 nor ORF4 amino acid sequences demonstrated significant similarities to known
proteins in databases.

The RdRp nucleotide sequence of WULV showed the highest identity (65%) and
50% coverage to strawberry associated virus A (MK21275). Phylogenetic trees constructed
based on both the RdRp nucleotide and amino acid sequences illustrated a close phy-
logenetic relationship between WULV and recently identified and reported umbra-like
associated RNAs (ulaRNAs) in strawberry, papaya, and babaco (Figure 2b,c). WULV was
clustered with strawberry associated virus A based on the RdRp nucleotide sequence, but
the amino acid sequence did not place it in a defined clade.

3.2.3. “Poty-Like” and “Virga-Like” Viral Sequences

Contigs with BLASTx hits of ≤25% significant similarity (E value < 0.001) with po-
tyviruses such as barley mild mosaic virus (BaMMV) were found in several libraries
(Table 1). Additionally, other viral sequences showing ≤30% significant similarity to re-
cently discovered unclassified virga-like viruses associated with both plant and fungi were
found in the same libraries as the poty-like viral sequences (Table 1). Both viral sequences
were validated in the original RNAs via RT-PCT and Sanger sequencing (Figure S1).

Two larger individual contigs of ~2200 and 3500 nt were generated through the re-
assembly of smaller contigs for poty-like and virga-like sequences, respectively. Discovery
of these 2 viral sequences in the same libraries along with their low-level amino acid
similarities to newly discovered unclassified viruses belonging to the Virgaviridae and also
viruses from the family Potyviridae suggested that they may potentially belong to a novel
putative virus.

https://www.ncbi.nlm.nih.gov/orffinder/
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The nucleotide sequences of the ends of the genomic RNAs of both poty-like and
virga-like sequences were determined by RACE. The complete genome of the virga-like
RNA, which contains the 5′ and 3′ UTRs of 107 and 46 nt, respectively, was 3739 nucleotides.
The full genome sequence of the poty-like RNA was 2439 nucleotides with the 5′ and 3′

UTRs of 100 and 114 nt, respectively. Both RNAs were polyadenylated. The alignment of
the 5′ and 3′ UTRs of these novel viral sequences resulted in an 85% and 45% similarity,
respectively (Figure S2). This high level of similarity at the 5′ and 3′ UTRs of the two RNAs
strongly suggests that these are two viral segments of one putative novel virus tentatively
named wheat-associated vipovirus (WaVPV) with the virga-like and poty-like sequences
as RNA1 and RNA2, respectively.

Two predicted overlapping ORFs were determined for the WaVPV RNA1 (Figure 3a).
ORF1 (nt 108 to 3615) and a small ORF2 (nt 3412 to 3664) encoded putative proteins of
1168 and 83 amino acids, respectively. The predicted ORFs were used as queries to search
against the CDD. The ORF1 of RNA1 showed a significant similarity (E-value < 0.0001)
with the viral RdRp and contained a conserved GDD motif, while no significant similarity
was found for the RNA1-ORF2 deduced amino acid sequence among the known protein
sequences in databases (Figure 3a). The WaVPV RNA2 encoded a putative protein of
729 amino acids from a single predicted ORF (nt 101 to 2291) (Figure 3a). Our search using
the RNA2 predicted ORF as the query identified a DEAD-like helicase domain with a
significant (E-value < 0.0001) similarity (Figure 3a).
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The phylogenetic analysis of the amino acid sequence of the ORF1 (RdRp) of WaVPV
RNA1 grouped this putative virus with a fungal-associated virus, uromyces virgavirus F,
and it is found in a clade of other recently discovered fungal-associated and insect-specific
virga-like viruses belonging in the Virgaviridae family (Figure 3b). On the other hand, the
phylogenetic tree built based on the RNA2 polyprotein grouped WaVPV RNA2 with plant
viruses from the Potyviridae family (Figure 3c), which supports the BLASTx results.

3.2.4. “Tobamo-Like” Viral Sequences

BLASTX searches also identified contigs with the size range of 2–4 kb in several li-
braries (Table 1). These results illustrated low (≤40%) but significant (E value < 0.001)
amino acid similarities to tobamoviruses including plant, fungal, and insect-associated
tobamaviruses. The presence of this novel viral sequence was confirmed in RNA sam-
ples via RT-PCR and Sanger sequencing (Figure S1). We were able to generate a nearly
complete genome sequence of this novel tobamo-like viral sequence tentatively named
wheat associated tobamo-like virus (WaTBLV) through the re-assembly, RACE, and Sanger
sequencing. The near complete genome sequence of WaTBLV has a length of 10,285 nt
encoding 4 predicted ORFs (Figure 4a). ORF1 encoded a putative large protein of 1647 aa
and showed a significant similarity to viral methyltransferase and helicase. ORF2 encoded
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a putative protein of 400 aa containing an RdRp conserved domain (Figure 4a). ORF3 and
ORF4 encoded putative proteins of 859 and 305 aa, respectively. A DEAD-like helicase
domain was identified for ORF3; while no conserved domain was found for ORF4.
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motifs for viral methyltransferase and viral helicase (ORF1), RdRp (ORF2), and DEAD-like helicase (ORF3). No conserved
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insect-associated tobamoviruses (blue), and plant tobamoviruses (green) have been defined. The tree did not contain a
defined outgroup due to the lack of sufficient information about the taxonomy of this group of viruses.

The phylogenetic analysis of the RdRp amino acid sequence placed WaTBLV in a
single sister taxa with other newly identified fungal-associated tobamo-like viruses such as
macrophomina phaseolina tobamo-like virus 1 (QOE55599) and plasmopara viticola lesion
associated tobamo-like virus 1 (QIP68002) (Figure 4b).

3.2.5. “Mito-Like” Viral Sequences

BLASTx searches identified several viral sequences showing similarities to mitoviruses
(Table 1). The identified mitovirus sequences in our libraries shared low amino acid
similarities (~40%) and a query coverage ranging from 70–80% with mitovirus reference
sequences affecting rust fungi, suggesting that this putative mitovirus tentatively named
Mitovirus sp. is novel. We were able to assemble the near complete genome sequence
(2642 nt) of Mitovirus sp. The genome of Mitovirus sp. contains a single ORF demonstrating
a significant similarity to the viral RdRp (Figure 5a).

Our phylogenetic analysis using the nucleotide sequence of the near complete genome
placed Mitovirus sp. in a clade with fungal-associated mitoviruses infecting rust such
as cronartium ribicola mitovirus 1 (KT921179) and sunflower rust-associated mitovirus
(MT860451) and grouped them away from plant-associated mitoviruses (Figure 5b).
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3.3. Small RNA Sequencing

To determine if new putative viruses, WaVPV and WaTBLV, are replicative viruses
triggering host immune response, we generated the small RNA profile of a positive sample
with both novel viral sequences. The small RNA deep sequencing yielded 52 M reads with
the length ranging from 15–45 nt. After quality filtering and adapter trimming, the clean
reads used for mapping was ~7 M. The clean reads were mapped to the complete genome
of WaVPV and produced 1354 and 1007 reads for RNAs 1 and 2, respectively (Figure 6a,b).
The size distribution of siRNAs mapped into both RNAs had a prominent peak at 21 nt
followed by a peak at 20 nt (Figure 6a,b) suggesting that WaVPV is probably a replicative
virus and triggers RNA interference (RNAi) defense mechanism. For the WaVPV RNA1,
two mapping hotspots were determined in the genome (Figure 6a), whereas the mapping
hotspots for RNA2 was well dispersed throughout the genome (Figure 6b).
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Figure 6. The coverage and size distribution of small RNAs mapped to WaVPV RNA 1 (a), RNA 2 (b), and WaTBLV (c). The
small RNA mapping showed strong peaks at the 21 nt for both WaVPV RNAs followed by peaks at the 20 nt. The coverage
of the mapping using the full genome of viral sequences was strong throughout the RNA 2 of WaVPV, but two defined
peaks were observed for RNA1. Mapping using WaTBLV genome generated small RNAs with a strong peak at the 21 nt
followed by a peak at the 24 nt. A single peak located in WaTBLV ORF4 was determined.

By using the near complete genome sequence of WaTBLV as a reference for mapping,
1291 reads with a prominent peak at 21 nt followed by a peak at 24 nt were generated
(Figure 6c). This result also suggested that WaTBLV is probably a replicative virus triggering
the RNAi antiviral defense mechanism of the host. A single mapping hotspot located in
ORF4 was determined in the genome of WaTBLV (Figure 6c).
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4. Discussion

Wheat documented viruses continue to present a great threat to the wheat industry and
global food security. To identify potential undocumented/new putative viruses naturally
associated with this important crop which may either be a new threat to the wheat industry
or have the potential to be used as new biological agents for the control of wheat pathogens,
we determined the composition of the wheat virome using field samples through high
throughput sequencing.

Our study was able to uncover that among all known wheat viruses, WSMV is the most
dominant virus in the field. The full genome sequences of the WSM-associated viruses
(WSMV, TriMV and HPWMoV) found in this study were utilized in a comprehensive
evolutionary study of WSM viruses recently published by our group [46]. BYDV and CYDV,
other economically important wheat viruses and causal agents of the barley yellow dwarf
disease (BYD) complex, were also among the known wheat viruses identified in this study.
In this study, we reported ~7% and 3% infections for BYDV and CYDV, respectively. In a
2008 survey in Kansas, the BYDV and CYDV infection were at 6% and 2%, respectively [47].
However, in a 2011–2012 survey, 32% of the samples were infected with BYDV and 2%
with CYDV [3]. In contrast to the Kansas surveys, a survey of wheat viruses in Ohio has
seen large numbers of infection of BYDV (67%) and CYDV (69%) in 2016–2017 seasons [2].
One possible explanation for these high rates of viral infections can be the large population
size of the aphid vectors (R. padi and other species) in the surveyed fields.

In addition to known and documented wheat viruses, novel plant and fungal-associated
viral sequences were also discovered in this study. A putative umbra-like viral sequence
was described here. Phylogenetic analysis of the RdRp placed this new umbra-like se-
quence tentatively named wheat umbra-like virus (WULV) in a well-supported clade that
includes previously umbra-like associated RNAs (ulaRNAs) identified in strawberry, pa-
paya, citrus, babaco, maize, and sugarcane [48–52]. The sequence homology of the RdRp
between WULV and other ulaRNAs ranged from 40–65% and 45–60% at the nucleotide and
amino acid levels, respectively, suggesting WULV is a novel member of ulaRNAs. ulaRNAs
are a group of subviral RNAs with high RdRp sequence homology to umbraviruses be-
longing to the genus Umbravirus, family Tombusviridae [53,54]. Umbraviruses encode their
own RdRp and replication-required protein along with proteins required for cell-to-cell
and long-distance movements, but they are dependent on their helper viruses, mainly from
the family Luteoviridae for encapsidation and transmission [54].

Although the RdRp of ulaRNAs is closely related to umbraviruses and like um-
braviruses, most ulaRNAs generate their own RdRp through -1 ribosome frameshift recod-
ing [48,49,55]; their genome size and feature are different. Hence, ulaRNAs are considered
as unclassified umbraviruses. Such genome size and feature variations have even been
observed among ulaRNAs themselves. Liu et al. (2021) conducted a comprehensive
structural analysis and genome mapping of ulaRNAs and classified this group of the coat
protein-dependent RNAs into 3 classes [56].

The WULV genome organization is close to the strawberry associated virus A (SbaVA) [56].
Interestingly and in contrast to other ulaRNAs, the ORF1 and ORF2 of both SbaVA and
WULV encoding replication-required proteins are not overlapped (Figure 2a). However,
while SbaVA has only one ORF after RdRp with no homology to known proteins, WULV
has two ORFs (Figure 2a) encoding putative proteins with no homology to proteins in the
database. To the best of our knowledge, this is the first report of the complete genome
sequence of an ulaRNA identified in cereals. In a recent metagenomics study, contigs
illustrating sequence similarities to ulaRNAs have also been reported in Colorado wheat
samples [57].

We did not identify any luteoviruses as a helper virus in our positive samples for
WULV. However, our WULV infected samples were positive for WSMV which is a po-
tyvirus. It has been also reported that the newly discovered ulaRNA in papaya (papaya
umbravirus (PUV)) was always found in systematic papaya plants associated with a
potyvirus, papaya ringspot virus [48,58]. Whether WSMV plays the role of the helper
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virus for WULV is not currently clear. Additionally, the pathogenicity of WULV in wheat
needs further investigation.

The two poty-like and virga-like viral sequences were always detected together in
each positive RNA sample and shared high similarity (85%) of nucleotide sequences at the
5′ UTR suggesting that these viral sequences are two segments of a new putative bi-partite
virus. We tentatively named this putative virus wheat-associated vipovirus (WaVPV), as a
combination of Virgaviridae and Potyviridae, the families with the greatest similarity hits
for these novel viral sequences. RT-PCR without the reverse transcriptase enzyme was
utilized to verify that WaVPV segments were not integrated into the host genome (data not
shown). The schematic genome organization of WaVPV is similar to the recently reported
4 unclassified tobamo-like, fungal-associated viruses: plasmopara viticola lesion associated
vivirus (PvLaVivivirus1–4) [59]. As with PvLaVivivirus1–4, WaVPV RNA1 and RNA2 also
encode RdRp and helicase, respectively. However, WaVPV does not contain a conserved
domain for methyltransferase, which has been observed to be encoded by either RNA1
or RNA2 of the PvLaVivivirus1–4 [59]. Additionally, and unlike the previous studies of
unclassified fungal-associated tobamo-like viruses, WaVPV RNA2 contains the DEAD-like
helicase conserved domain sharing similarities to only potyviruses infecting plants and
had no significant similarity hits for tobamo-like viruses. Hence, and from an evolutionary
standpoint, WaVPV is an interesting novel putative virus showing similarity to both plant
and fungal viruses. Our evidence at this time is not enough to conclude that wheat is the
primary or alternative host for WaVPV, and still its association with fungal hosts infecting
wheat cannot be ruled out.

The evolutionary relationship between fungal and plant viruses has yet to be fully
understood and presents complex and conflicting standpoints. Although the close relation-
ship and interaction of plant and fungal-associated viruses are still being studied, some
breakthroughs contain evidence to support the possibility of cross-kingdom infections.
Previous studies have observed that some fungal-associated viruses can replicate in plant
protoplasts without the introduction of changes to the viral genome to adapt to the plant
host [60]. On the other hand, a plant virus, cucumber mosaic virus, was observed to be
able to infect a fungal host, Rhizoctonia solani, efficiently [61]. Interestingly, a recent study
has shown that a mixed-infection of a fungal-associated virus with a plant virus can aid
in the replication of the plant virus in the fungal host and for the fungal-associated virus,
the mixed infection aids in systemic infection of the plant host and infection of vegetative
incompatible fungi of a different fungal species [62]. Hence, cross-kingdom infections of
plant and fungal-associated viruses bring more questions about the origins of plant and
fungal viruses.

Metagenomics and phylogenetic analyses have introduced different concepts to un-
derstand the evolutionary history of plant and fungal-associated viruses. In this study,
the phylogenetic analysis of the WaVPV RNA1 based on the RdRp amino acid sequence
placed the segment in the sub-clade containing both recently discovered unclassified fungal-
associated and insect-specific viruses from the Virgaviridae family, whereas the WaVPV
RNA2 did not have any fungal-associated virus similarity hits and was found to be in
a close relationship with barley mild mosaic virus (BaMMV) and other plant viruses be-
longing to the Potyviridae family. These results suggest that each segment of WaVPV was
obtained from viruses infecting different kingdoms and may have been a result of genetic
exchange between distinct plant and fungal-associated viruses.

Reassortment is a type of genetic exchange and one of the main evolutionary mech-
anisms utilized by segmented RNA viruses [63]. During mixed-infections of multiple
viruses, RNA segments may be exchanged between different viruses to produce novel
viruses [64]. The limitation of reassortment has been accepted to be between only viruses
with segmented RNAs and these segmented RNA viruses must be closely related enough
to be of the same viral species; however, there have been reports of inter-kingdom ge-
netic exchange and reassortment between different viral families leading to the creation
of novel viruses [59,65]. The first report of a novel virus origin through inter-kingdom
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genetic exchange was in the discovery and characterization of a plant virus, ourmia melon
virus (OuMV) [65]. OuMV contained three viral segments: the RdRp containing homo-
logues of fungal viruses from Narnaviridae family, the movement protein (MP) containing
similarities with plant viruses from the Tombusviridae family, and the coat protein (CP)
showing close relationships with viruses infecting plants and animals [65]. Another study
conducted to characterize plant viruses in grapevine samples has also discovered a novel
virus, grapevine associated jivivirus, which has been suggested to be the result from the
reassortment of virga-like and flavi-like viruses [59]. This suggested that reassortment
may not only occur between different viral families, but also viruses infecting hosts of
two different kingdoms. Similar to the latter study, the discovery of WaVPV in this study
also supports the possibility of inter-kingdom genetic exchange.

In addition to known and novel plant viral sequences, known and novel fungal-
associated viral sequences were also found in this study. A novel fungal-associated tobamo-
like viral sequence tentatively named wheat associated tobamo-like virus (WaTBLV) was
identified in this study. The organization of the near complete genome of WaTBLV was
similar to tobamoviruses belonging to the family Virgaviridae [66]. Our phylogenetic
tree built based on the RdRp amino acid sequences placed WaTBLV in a well-supported
clade with other recently reported fungal- and insect-associated tobamo-like viruses and
separately from plant-associated tobamoviruses (Figure 4b). This result suggests that
WaTBLV is probably a fungal-associated virus with the currently unknown fungal host.

As similar to plant tobamoviruses, the ORF1 and ORF2 of newly identified tobamo-like
viruses in fungi and insects contain methyltransferase, viral helicase, and RdRp conserved
domains, respectively [66]. However, the ORF3 of tobamo-like viruses such as WaTBLV
discovered here has a DEAD-like helicase domain, while no conserved domain has been
identified for the ORF4 [31,67]. The genome size and organization of WaTBLV was close to
the recently identified tobamo-like virus, macrophomina phaseolina tobamo-like virus [67].
It will also be interesting to study the potential of WaTBLV as a new biological agent to
control wheat pathogenic fungi.

A new putative mitovirus was also identified in our wheat samples. Mitoviruses
belong to the family Narnaviridae [68]. This group of viruses are considered as the simplest
out of all mycoviruses, containing a positive-sense, single-stranded RNA genome which
encodes only the RdRp and strictly replicate in the mitochondria of the host [68]. The low
similarity (≤40%) at the amino acid level between the mitovirus identified in this study
and other reported mitoviruses indicates that this may be a novel mitovirus. Although the
natural fungal host of this new putative mitovirus tentatively named Mitovirus sp. is not
yet known, our phylogenetic analysis groups it with mitoviruses infecting rust (Figure 5b)
suggesting that the potential host may also be rust fungi infecting wheat. The potential of
this new mitovirus as a new biological agent is worth investigating.

During replication of RNA viruses, the synthesis of the double-strand RNA (dsRNA),
an intermediate replication form, triggers the antiviral defense mechanism (RNAi) of the
host which leads to the degradation of RNAs into small RNAs called viral small interfering
RNAs (vsiRNA) [69,70]. For plant viruses, vsiRNAs range from 21–24 nt with the peak at
21 nt while this remains unclear for fungal-associated viruses; however, multiple small
RNA sequencing studies have observed the range of 20 to 24 nt [71–74]. Here, the size
distributions of vsiRNAs, which resulted from mapping of small RNAs generated from an
infected wheat sample against the full genomes of WaVPV and WaTBLV, had a prominent
peak at 21 nt (Figure 6a–c). These results suggest that these putative viruses may originate
from replicative viruses and may be processed by the antiviral RNAi machinery.

Taken together, the findings of this study emphasize the importance of identifying
and characterizing all viral communities associated with wheat. However, the geographic
area of sampling of this study was small. Moreover, there are still many open questions
regarding the newly identified putative viruses including WULV and WaVPV, and further
experiments are needed to fully characterize these two putative viruses. Studying the
pathogenicity and distribution of WULV in wheat fields is crucial. Furthermore, the biology
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of these putative novel viruses needs to be studied. In fact, these aspects are the focus of
our current research. Additionally, it is important to determine the natural host of WaVPV
and whether this putative virus is a serious threat to the wheat industry.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13122457/s1, Table S1: List of samples in this study. Table S2: List of designed primers
for RT-PCR and RACE. Table S3: Results from RNASeq Analysis. Table S4: List of sequences and
accession numbers used as references for mapping. Table S5: The list of sequences obtained from
this study along with the accession numbers. Figure S1: Validation of viral sequences in the original
RNAs. Figure S2: The alignment of the 5′ and 3′ UTRs of WaVPV RNA1 and RNA2.
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