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Human hand gesture recognition from surface electromyography (sEMG) signals is one

of the main paradigms for prosthetic and rehabilitation device control. The accuracy

of gesture recognition is correlated with the control mechanism. In this work, a new

classifier based on the Bayesian neural network, pattern recognition networks, and

layer recurrent network is presented. The online results obtained with this architecture

represent a promising solution for hand gesture recognition (98.7% accuracy) in sEMG

signal classification. For real time classification performance with rehabilitation devices,

a new simple and efficient interface is developed in which users can re-train the

classification algorithm with their own sEMG gesture data in a few minutes while enables

shape memory alloy-based rehabilitation device connection and control. The position of

reference for the rehabilitation device is generated by the algorithm based on the classifier,

which is capable of detecting user movement intention in real time. The main aim of this

study is to prove that the device control algorithm is adapted to the characteristics and

necessities of the user through the proposed classifier with high accuracy in hand gesture

recognition.

Keywords: sEMG, gestures recognition, neural networks, hand rehabilitation, shape memory alloy

1. INTRODUCTION

As a result of complex human evolution, the hand is one of the most versatile parts of our body
(Craig and Taylor, 1955). As well as giving us the ability to perform several tasks during our daily
life, it is also one of the key factors that differentiates humans from other species. Its 27 degrees of
freedom provide a mechanism able to manipulate nearly every kind of object.

According to different studies, a system placed in the brain takes the responsibility of hand
control (Hirzinger et al., 1998; Biagiotti et al., 2003; Yue et al., 2017). The control system structure
is complex and difficult to understand, which hinders the motor function recovery process after a
stroke, disease, or disorder.

With the aim to improve the rehabilitation techniques applied to the human hand, several
robotic solutions have been proposed over the past 20 years. The main benefit of robotic
rehabilitation is that it allows an active interaction between the patient and the rehabilitation
system, which is essential in the recovery process (Londoa et al., 2017).

Taking into consideration the interaction between the user and the rehabilitation system,
rehabilitation procedures can be classified into two groups:

• Physical interaction (PI): physical contact between the rehabilitation system and the user is
needed in order to apply several forces to the patient during the task performance;

• Emotional interaction (EI): the system encourages the user during the process in the absence of
physical contact.
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PI rehabilitation using robotic systems requires direct physical
contact between the robot and patient during the rehabilitation
process. External forces provided by the robot help or hinder
patient movement. Usually, the first steps of the rehabilitation
process are completed with robotic assistance, while in the
last stages, the user receives robotic opposition during the
rehabilitation tasks.

For instance, Pyk et al. (2008) proposed PITS, a glove-based
robotic system with different position sensing devices. In the
same way, the NJIT-RAVR structure is a ring gimbal with six
degrees of freedom for hand rehabilitation (Qiu et al., 2009). Both
systems perform similarly. A glove covers the hand of the patient
which, depending on the system, gives more or less freedom to
the user. For example, more freedom is given by PITS as its
glove is not linked to any structure, whereas the NJIT-RVAR
glove is placed in a ring gimbal with a limited number of degrees
of freedom. Also, virtual reality is used for displaying several
interactive tasks in the systems. Patients must perform the task in
contact with the robotic system which has a haptic master able to
capture hand movements and translate them into the computer
space. The complexity level of the task displayed is adapted to
each patient recovery phase.

Several advantages such as creating a safer environment with
nearly zero risk of injury, motivating the patient with different
interactive exercises, automation of the rehabilitation process,
adaptation of the device to different rehabilitation stages, and
quantifying the rehabilitation process making it objective are
characteristic of PI rehabilitation robotic devices.

EI rehabilitation focuses on different tasks completed in
collaboration with a robotic system using one of these three
methods: (1) imitation: robot movements are followed by the
user, (2) motivation: robot-user interaction using sounds or
visual effects encourages the user during the process, and (3)
imitation and motivation: combination of (1) and (2) (Maciejasz
et al., 2014). In this context, systems such as CosmoBot
(Wood et al., 2009) or Ursus (Calderita et al., 2014) are
prominent. The process is simple: the robot performs an action
that must be followed by the user. At the same time, the system
monitors the progress and status of the patient during the
recovery process.

Recently, several studies have proposed the use of
electroencephalogram (Zhang et al., 2021, 2022) or
electromyography (Ahsan et al., 2011; Asif et al., 2020;
Pamungkas and Simatupang, 2020) sensors in order to control
robotic rehabilitation procedures, because they are able to
detect the patient’s intention of motion. Electromyography
sensors measure the electrical signals originated in the muscles
for quantifying its activity. Information such as the activity
performed by the muscle or the effort needed to perform the
activity could be obtained by surface electromyography (sEMG)
analysis.

Specifically, the type of hand gesture performed by a person
could be identified using electromyography sensors (Binh et al.,
2005; Alsheakhali et al., 2011; Khan and Ibraheem, 2012). sEMG
data captured by electromyography sensors contain features that
could be extracted in order to train different neural network
architectures. Neural networks are used to predict the type of

hand gesture executed by the user. For example, Ahsan et al.
(2011) used a back-propagation algorithm to train a network
architecture for hand gesture classification using sEMG reaching
an 88.4% average success rate of identification. Asif et al. (2020)
achieved a 92% average classification accuracy for the same
issue using a convolutional neural network architecture. Another
possibility presented by Pamungkas and Simatupang (2020)
is the use of Bayesian neural network architecture for sEMG
classification, which was able to reach a 90.61% average accuracy.
All of these architectures could be combined in order to obtain
higher accuracy rates (He et al., 2018; Asif et al., 2020).

Hand gesture recognition using sEMG is useful not only for
rehabilitation issues (knowing the type of gesture is helpful for the
patient during the rehabilitation tasks and allows them to correct
the application of movement opposition), but also for building
artificial hands or robotic structures with the ability to imitate
human motions.

Another rehabilitation system which combines physical
contact with robotic devices and sEMG detection is AMADEO
(Londoa et al., 2017), a platform with five end-effectors where
the five fingers can be placed. Several exercises are displayed in a
screen while, at the same time, sEMG signals are recorded. sEMG
features are used to help the patient during the activity and to
evaluate the rehabilitation process.

Although several works address the topic of sEMG signals
for hand gesture identification, few works use these identified
gestures for hand rehabilitation devices and they usually focus
on the mixed gesture identification between the wrist movements
and the hand gesture. In this paper, we propose to identify
six hand gestures using only finger movements, which will
be implemented in a high-level control algorithm for hand
rehabilitation with an exo-glove.

Specifically, this study is focused on the implementation of
a PI rehabilitation system combined with an sEMG recognition
architecture for hand gesture identification. The goal is to
evaluate new classifier structures for sEMG recognition. A novel
hand gesture classifier for sEMG based on a neural network
architecture (a combination between the Bayesian neural
network, pattern recognition networks, and layer recurrent
network) is developed, which enables the generation of the
position of reference for PI rehabilitation devices according to
the specific patient movement intention. Results from this study
will ultimately provide insights on the feasibility of the neural
networks’ structures proposed for hand gesture recognition.

Compared to other state-of-the-art solutions, our approach’s
contribution is:

• The development of a novel neural network architecture based
on the Bayesian neural network, pattern recognition networks,
and layer recurrent network with 98.7% accuracy for hand
gesture recognition.

• The generation of a new algorithm to calculate the position
reference for the rehabilitation device according to the user
intention of movement.

• Previous contributions could be used in real time. They
were tested in a hand rehabilitation device actuated by shape
memory alloy (SMA) and developed by our research group.
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• A new user-friendly interface was developed for personalized
sEMG acquisition, neural network training and verification,
and control of the rehabilitation device.

This paper contains five sections. Section 2 presents the
methodology with a description of the sEMG data acquisition
and processing method, neural network architectures used for
gesture classification, and the rehabilitation system: actuator
characteristics and design, rehabilitation device, and the high-
level control algorithm. Preliminary experimental results are
covered in Section 3. Section 4 presents the discussion and
Section 5 proposes the conclusions and future works.

2. MATERIALS AND METHODS

2.1. Experimental Protocol
A gesture recognition algorithm is proposed with an individual
calibration of the neural networks carried out simultaneously,
with the objective of using this information in rehabilitation glove
control. For this reason, the experimental protocol consists of:

• The sEMG signal acquisition for a new database consisted of
250 samples per each proposed gesture. One sample represents
a 300 ms sEMG signal. In total, 1,500 samples were stored.

• The features were extracted from the sEMGwindows (this was
done during the acquisition process);

• The features for the 1,500 samples were used in the neural
network architecture training and offline evaluation process.

• A total of 100 new samples per gesture (in total 600 samples)
were acquired and in this case, storing of the output of the
proposed classifier architecture and the user gesture occurred
at the same time. With this information the confusion matrix
was built to evaluate the proposed architecture in the online
evaluation process.

• On the last step, the gesture recognition algorithm was
connected with the glove rehabilitation device, and the data
from sEMG, gesture, tendon positions, and reference were
stored.

2.2. Proposed Hand Gesture Identification
sEMG data are used for hand gesture identification. Considering
the hand movement on daily activities and the consecrated hand
rehabilitation movements, six hand gestures are proposed for the
identification:

• Relax, lack of user movement;
• Gripper (pinch), tap the thumb with the index finger;
• Thumb up, thumb extension;
• Grip, replication of object holding;
• Fist, close the hand;
• Open hand, finger extension;

The proposed classifier must be able to identify these gestures
regardless of the user’s hand: left or right, and based on this, must
generate the reference for the rehabilitation glove. Right hand
gestures are shown in Figure 1.

sEMG data are collected using the Thalmic Labs Myo Gesture
Control Armband (Huitzil-Velasco et al., 2017). The armband
features eight sEMG sensors with a stream rate of 200 Hz.

According to Merletti and Parker (2004), Konrad (2005) almost
all of the EMG signal power is located between 10 and 250 Hz,
and considering the Nyquist-Shannon sampling theorem, the
amplifier device band will need to be set to 500 Hz or higher. In
this case, a part of the signal will be lost, the armband frequency
being limited to 200 Hz. sEMG sensors are placed over the
forearm giving information of the activity of the arm muscle
groups responsible for hand and wrist movements. As a non-
invasive method, the accuracy of the sEMG acquisition process
depends on well-known factors such as electrode position, skin
factors, ambient noises, and movement noises.

Also, it is usually good practice to rectify sEMG a priori only
considering its absolute value. Note that this change can affect
other characteristics, like the frequency which will be doubled.

Another interesting process is sEMG filtering. It is a good
technique for noise reduction as unwanted harmonics are
removed. Several studies use upper cutoff frequency filters
(around 500 Hz). In general, notch filters with lower cutoff
frequencies between 10 and 500 Hz are common, although
it depends on the study and the limb analyzed. Butterworth
architecture filters are the most common. Balbinot and Favieiro
(2013) used a 60 Hz notch filter to remove the noise characteristic
of the power line (in Europe it would have been 50 Hz).

Another possibility is to normalize the sEMG amplitude as it
prevents noise variations with no influence on the classification
(Konrad, 2005).

After these previous steps: rectification, filtering, and
normalization, sEMG can be more easily interpreted and
classified. In this work only the rectification process was
implemented because the signals were filtered and normalized by
the Myo SDK (Tomaszewski, 2016).

The sEMG level for each gesture is presented in Figure 2A.
After the feature extraction process (Figure 2B), an average of
1,000 samples from one of each electrode is acquired for each
proposed gesture. The fist gesture can be easily distinguished
from the open hand gesture, however, other gestures like the
gripper and thumb up gestures are more similar. Moreover, when
the average of several signals is plotted on the graph (Figure 2A),
a certain signal segment for a short time can negatively influence
the classification.

Results demonstrate that sEMG signal segmentation and
feature extraction are needed. There are two main techniques
for signal segmentation: adjacent segmentation and overlapping
segmentation. The adjacent segmentation technique was selected.
In this approach, sEMG data are split into adjacent windows.
According to Oskoei and Hu (2007), a real-time classification is
considered when the length of the segment lasts less than 300 ms,
but the longer the segment, the more accurate the classification
of the gesture. For this reason, segments were fragmented into
windows with a fixed length of 300 ms. In each window, seven
time-domain features were calculated: (1) mean average value
(MAV), (2) root mean square (RMS), (3) variance (VAR), (4)
signal strength indicator (SSI), (5) zero-crossing (ZC), (6) wavelet
transform (WL), and (7) side scatter (SSC). These represent
56 values extracted from each window. Values 1–8 represent
the first feature MAV for each electrode (8 electrodes), from
9 to 16 represent the second feature RMS for each electrode,
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FIGURE 1 | Hand gestures performed during sEMG signal recording.

FIGURE 2 | Gesture according with the sEMG signal and features: (A) sEMG signals; (B) signals features.

and so on. Previous studies used these features for classification
(Phinyomark et al., 2012; Phinyomark and Scheme, 2018; Barioul
et al., 2019; Wu et al., 2020; Khushaba et al., 2022).

Features from 100 segments for each gesture were
extracted where the mean value is represented in Figure 2B.
Although the first features do not seem to be relevant, the
last features showed notable differences in the gesture
recognition. Similarly to sEMG, noticeable differences
could be observed when observing the fist and hand open
gestures; but the gripper and thumb up gestures could be
easily confused.

These characteristics will be used as an input for the proposed
classifier for gesture recognition. An overview of the proposed
rehabilitation system can be seen in Figure 3. After a minimal
set-up consisting in placing the armband over a forearm and its
calibration (steps 1 and 2 from Figure 3), the data acquisition
process, training the network architecture, and the validation
of gesture recognition are necessary (steps 3, 4, and 5). The
process continues with the control algorithm which generates
the tendon references according to the gesture recognition and
ends with glove rehabilitation device connection, and then the
rehabilitation therapy can begin (steps 6 and 7).
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FIGURE 3 | Overview of the proposed rehabilitation system.

2.3. Classifier Architecture
During the classification process, each hand gesture presented
in Section 2.2 was related with static position information
given by the sEMG features. The proposed classifier in this
work is based on three sub-architectures: a Bayesian neural
network (BNN) in parallel with an artificial neural network
(ANN) in which the results are connected in series with a
layer recurrent network (LRN). The final gesture classification
is the result of the LRN. The proposed architecture can be seen
in Figure 4. Each supervised architecture was configured and
trained as follow:

• ANN: A feedforward network with the ability to classify
different inputs according to target classes. The target data
for pattern recognition networks consist of arrays of all zero
values except for a 1 in element i, where i is the class it
represents. In this case, there is a 56-feature input array
whose target is represented by a 6-element vector, each one
for a specific gesture recognition. The proposed architecture
contains two layers; the first hidden layer of eight neurons
and the output layer with six neurons corresponding to the
six gestures. Weights and bias parameters of the neurons were
adjusted using the scaled conjugate gradient (Hestenes and
Stiefel, 1952) and its performance was evaluated with cross-
entropy. Like BNN, ANN was trained with 250 samples but in
this case the data were divided into 70% for training, 15% for
testing, and another 15% for validation. The data for validation
and testing were not used during the training process.

• BNN: A probabilistic classifier based on the naive Bayes
assumption (predictors are independent of one another within
each class) (Martinez-Arroyo and Sucar, 2006). The network,
built with the classification learner app in Matlab 2020b
(TheMatWorks, Inc., 2021), uses a kernel distribution because
the Gaussian distribution often results in error due to the
non-Gaussian distribution of the sEMG features. For offline
training, 250 samples were used from each hand motion and
a five-fold cross validation was employed during the training

process: each set of five samples was divided into four samples
for training and one sample for validation.

• LRN: This architecture presents two layers: a hidden layer with
10 neurons that receive information from the past by taking
into account the previous results for future predictions and a
output layer with 6 neurons; a vector of 6 positions, one for
each gesture. LRN input results from the output of the first two
networks combined in a 12-element array. LRN remembers
a past sample structure by using a feedforward network,
being capable of analyzing sequential data structures, such as
consecutive hand gestures. LRN is trained using 250 samples
using the Levenberg-Marquardt algorithm (Levenberg, 1944)
while its performance is tested with mean squared error.
LRN receives 12 inputs obtained from 6 inputs of the BNN
prediction over these 250 samples and another 6 inputs
produced by ANN over the same 250 samples. Similarly with
the ANN training process, the data were divided into 70% for
training, 15% for testing, and another 15% for validation.

2.4. User Interface
Though the armband device must be placed in a certain position
on the forearm, the possibility that the electrodes are placed over
the same muscle fiber in two different rehabilitation sessions
is very low. For this reason, a new personalized dataset was
created before each rehabilitation session from the user sEMG
(forearm muscles sEMG) data. During this process, features are
extracted from each sEMG segment and a file with the name of
the motion and the number of the sample is stored in a folder
called Dataset. Each sample contains a 56 × 1 double array,
from the seven features for each sEMG segment. For building
the neural network architecture, 56 × 600 feature samples were
collected for each motion, resulting in a database with 56× 3600
samples. Depending on each supervised architecture, the whole
dataset is split randomly into 70% for neural network training,
15% for validation, and another 15% for tests for the ANN and
LRN, and using the five-fold cross validation for BNN.
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FIGURE 4 | Proposed neural network architecture.

To automate and speed up this process, a user interface is
developed in Matlab 2020b (The MatWorks, Inc., 2021) as an
intuitive way of following the seven steps detailed in the pipeline
in Figure 5. The interface is shown in Figure 5.

After the armband is placed, the user is asked to perform each
gesture in order to create the personalized database. After that,
the button—network training—automatically trains the Bayesian
classifier. For gesture validation, the switch button is turned on
and the lamp of the recognized gesture is colored green while
the other lamps are red. The bottom switch buttons are used to
connect the rehabilitation device and start the therapy.

2.5. Rehabilitation System
Restoring the hand function after spinal cord injury (SCI),
cerebral vascular accident (CVA), or different musculoskeletal
disorders represents a challenging issue. Rehabilitation gives
the user the possibility to recover the ability to perform
daily life tasks. Recently, several exoskeleton devices have been
proposed for hand rehabilitation over the last years, but most
of them focused on soft and low-cost designs, offering a passive
rehabilitation without taking into account user movement
intention. The rehabilitation device used in this paper is an SMA-
actuated glove. It is a wearable device, with low weight and
noiseless performance due to the actuators’ characteristics.

2.5.1. SMA-Based Actuator

SMA is an alloy, commonly Ni-Ti, which has the property to
deform when it is cold and recover its pre-deformed shape
(“memory”) when heated. This process takes place between
the two transformation phases: martensite at low temperature
and austenite at high temperature. To achieve the necessary
transformation temperature, electrical energy is transformed
into thermal energy thanks to the Joule effect. Due to the

shape memory effect (SME), thermal energy is transformed in
mechanical work. The SMA-based actuator used in the proposed
rehabilitation device is based on Copaci et al. (2019a), and it is
composed by:

• Bowden cable: a metallic spiral covered with a nylon sheath.
It has the property of SMA wire force transmission, achieving
the flexibility property. Also, it helps in wire heat dissipation
in the cooling stage.

• Polytetrafluoroethylene (PTFE) tube. The isolator is placed
between the SMA wire and Bowden cable and is able to resist
more than 250◦C. It is considered as a solid lubricant because
it decreases the friction in the SMA wire.

• SMAwire. Flexinol wire from the Dynalloy company was used
(DYNALLOY, Inc., 2020). With a diameter of 0.51 mm, it
applies a force of approximately 34.91 N. The wire activation
temperature is 90◦C where an ∼4% displacement of the wire
length is reached.

According to the necessary finger tendon displacement (∼8 cm),
2 m of SMA wire is needed. Due to the actuator flexibility, it can
take on the human body shape and can possibly be used to guide
the user.

2.5.2. Glove Rehabilitation Device

The rehabilitation glove is presented in Figure 3. A strong but
comfortable mobility glove is used to withstand the strength
of the cables (tendons) without tearing and, at the same time,
allowing natural movements to the fingers. Twelve tendons were
guided/routed over the glove to generate the flexion/extension
movement in each finger contraction (five tendons for extension
and another five for flexion) and another two to help in the thumb
opposition movement.
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FIGURE 5 | User interface for the developed application.

Glove tendons are connected with SMA-based actuators
through a sensor box composed of six rails where a small
cylindrical piece, which connects the SMAwire with the tendons,
could be moved when the actuator is enabled. The same
piece is connected to a Bourns PTA Potentiometer, PTA6043-
2015DPB103 which is able to measure each tendon displacement.

In addition to the six position sensors, we used
electronic hardware of the glove rehabilitation device
including a microcontroller and a power circuit essential
in controlling the SMA-based actuators as feedback for the
controller loop.

The electronic power circuit for SMA wires is based on
MOSFET transistors which can be activated by pulse width
modulation (PWM) generated by the controller. MOSFET
transistors open and close the circuit with a power supply
for actuators. The control hardware architecture can manage
six different actuators; in this case each actuator was an
SMA wire. The whole architecture has been developed by our
research group.

The controller board is based on the STM32F407 Discovery
kit (STM, 2021), from STMicroelectronics, which is programmed
using Matlab/Simulink R© (Caballero et al., 2016). The board
manages signals from the sensors, executes the control actuator
algorithm, and generates the required PWM signals. The low-
level control used for this device is based on a bilinear
proportional integral derivative (BPID) controller, developed by
the research group presented in Villoslada et al. (2015), Copaci
et al. (2019b).

The identified hand gesture together with the sensors
positions signals from the rehabilitation device and generates
six reference signals building a representation of the user’s
movement intention for each finger (two references for the
thumb). In this way, an active reference is generated involving
the patient undergoing rehabilitation therapy, leading to a
faster recovery.

2.6. Reference Generation
According to the rehabilitation device structure, these six
references are duplicated with the opposite ones to provide the
inputs for the low-level control algorithm (six references for the
flexion actuators and six references for the extension actuators)
for the antagonistic movement. However, the current device only
presents a boxed sensor and it can only be tested in one of the
movements, for example the flexion movement.

The entry algorithm from the sEMG data is captured by
the glove tendon movements as can be seen schematically in
Figure 3.X(k) represents the reference generated by the high-level
algorithm, V(k) represents the control signal (PWM generated
by the microcontroller for the electronic power circuit), and Y(k)

represents the position of the actuator signals from the position
sensors.

The reference generation block from Figure 3 receives the
recognized gesture as input, a six-number array from 0 to 1,
where each number represents the probability of being the
gesture performed. The maximum value of the array represents
the gesture predicted. Apart from the gesture array, a six-position
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array is generated. In this case, the position represents the
maximum actuator reference reached according to the gesture.
Using this six-position array, the actual actuator positions,
the actual reference positions, and two adjustable increments
(six references in real time for the actuators) are generated.
Increments are used to change the reference speed and the finger
movement speed. A higher increment is required to move from
the current reference to the current position of the actuator, and a
slower one is required to generate a smoother reference when we
are close to the current position (used when the reference wants
to be followed, during the gesture performance).

3. RESULTS

3.1. Offline Classifier Results
The three architectures presented in Section 2.3 were offline-
evaluated with a database with 1,500 samples (250 features for
each gesture). The results obtained with each architecture are
detailed here.

For the ANN architecture, the samples were split into three
groups: 70, 15, and 15% for training, validation, and testing,
where the validation and test data were not used in network
training. After the network training, the confusion matrix of each
group was determined as shown in Figure 6.

In Figure 6, the diagonal cells (in blue) correspond to
observations/gestures that are correctly classified. The off-
diagonal cells correspond to incorrectly classified observations.
In the validation and test confusion matrix, as can be observed,
the gesture recognition is 99.1%, where the predicted percentage
or output corresponds to the rows and the target class
corresponds to the columns. The last row represents the
normalized row which summarizes the percentages of correctly
and incorrectly classified observations for each true class.
The last column, a normalized-column summary, displays the
percentages of correctly and incorrectly classified observations
for each predicted class. For example, in the confusion matrix
test (Figure 6), one fist gesture was classified as a grip gesture.
In this case, the predicted fist gestures were classified correctly
with 100% accuracy (last column, first row) but the predicted grip
gestures were classified correctly with only 97.7% accuracy (last
column, second row). In the last row, first column, 96.9%, of the
fist gestures were correctly classified for the true fist class.

The kernel naive Bayes classifier achieved 99.2% accuracy. The
confusion matrix is presented in Figure 7A where five samples
from the pinch gesture were classified as an open hand gesture,
five samples for the relax gesture were confused with the thumb
up gesture, and one sample of the grip and thumb up gestures
were classified as the relax gesture. Figure 7B presents the parallel
coordinate prediction where each sample is represented (correct
classified—continuous line and incorrect classified—dotted line).

With the results of the two architectures and the output target,
the LRN architecture was trained. Similar with the ANN case,
the data were split into three groups before the network training.
The best validation performance was obtained after 57 epochs of
training, with a value of 0.00144.

3.2. Online Classifier Results
For online validation, with the trained architectures, a new
dataset was stored containing the outputs of each architecture
and target gesture. According to these data, the confusion matrix
of each architecture was built. Only 100 samples of the training
database were used for the final three-network architecture
testing. The ANN and BNN classifier responses are represented
in the confusion arrays in Figure 8.

According to the results presented in Figure 8B, gesture
classification with BNN is more accurate with a 97.0% hit rate
compared with the ANN architecture which had a 93.3 % hit
rate (Figure 8A). Although the BNN architecture presents better
results in general, the ANN architecture for a specific gesture
presents a good classification, for example the classification
results of the pinch gesture. To reduce gesture confusion, a
combination of both architectures was proposed using another
neural network, LRN, which also takes into account the past
classification gesture. The online results of this LRN architecture
can be seen in Figure 9.

Results presented in Figure 9 show that the proposed hand
gestures can be classified with a precision of 98.7%. The three-
neural network architecture increases the final hit rate in
comparison with previous BNN or ANN approaches. The neural
network was tested with different users obtaining a percentage
between 92 and 99%.

The whole hand gesture classification process takes
approximately 0.12 s while sEMG window segmentation
lasts 0.3 s meaning the whole classification process takes less than
0.5 s. Time consumption depends on the computer components
measuring the times. We utilized an Intel (R) CORE (TM)
i7-5500U CPU @ 2.40 GHz and 16 GB RAM in Windows 10
64bits. A specific database for a new user and all neural network
training with 100 samples for each gesture (in an automated way
with the interface) requires 3–5 min, depending on each user
experience.

3.3. Gesture Recognition and Reference
Generation
Gesture recognition and reference generation evaluation
according to the user’s movement intention are performed using
a new healthy subject who has not tested the Myo Armband with
this algorithm before. The rehabilitation device is placed in a test
bench over the forearm, below the elbow, and the process starts
with data acquisition. Overall, 100 samples were recorded in the
database for each gesture. Neural networks were trained with
these data. Finally, the user must perform some gestures to test
the gesture recognition system. The system is connected to the
rehabilitation device.

Some gestures are recorded for 40 s. sEMG data from eight
sensors are presented in Figure 10. Signals are related to:

• from t = 0 s to t = 4.5 s, the hand is relaxed. Actuators are off
and there is free movement of the hand.

• from t = 4.5 s to t = 10.25 s, the fist gesture is performed.
The actuator step reference intention (movement intention
represented in Figure 11) for each finger is 60 mm, presenting
all the fingers in a flexion movement for closing the hand.
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FIGURE 6 | Confusions matrix of the pattern recognition network—offline. All confusion matrixes had an accuracy of 99.7%.

The reference intention is not the final reference which is
the actuator input. The input reference to the actuators is
composed by the intention reference helped by the increments.

• from t = 10.25 s to t = 16.76 s, the hand open gesture
is presented. In this case, the finger intention reference is 0
mm, so the rehabilitation device structure, which only presents
actuators for flexion, is left to free the hand and is opened by
the user.

• from t = 16.76 s to t = 20.18 s, the gripper gesture is shown, in
which the thumb flexion, thumb opposition, index finger, and
middle finger have a step reference intention of 40 mm while
the last two fingers (ring and pinky) have a reference intention
of 60 mm to simulate the gripper gesture position.

• from t = 20.18 s to t = 29.97 s, the user performs the grip
gesture. All the actuators have a step reference intention of 40
mm.

• from t = 29.97 s to t = 35.46 s, the thumb up gesture is found.
The thumb flexion and the opposition actuators have a step
reference intention of 0 mm while the rest of the fingers have a
step reference intention of 60 mm.

• from t = 35.46 s to t = 40 s, the hand relaxed gesture finishes
the test.

Neural networks can clearly identify each hand motion
achieving accuracy in each gesture recognition. According to
Figure 11, gestures are clearly identified except for a little
instability at t = 22 s. Also, the transition between gestures
could be identified as a different gesture. For example, at
t = 35 s, the user switches from the thumb up gesture
to the relax gesture, but in this transition, a grip gesture
was identified.

According to the movement intention (black signal in
Figure 11), the actuator reference (red signal) is generated. The
movement velocity (the slope) could be modified thanks to
the increments which can be personalized. The green signal
represents the actuator position, which is related to the finger
position. For example, the error between the reference and the
actuator position between t = 11 to t = 17 s is due to the actuator
behavior (the SMA-based actuator needs to be cold to expand).

4. ANALYSIS AND DISCUSSION

The proposed classifier achieved 98.7% precision with the gesture
classification, which is a promising result. In this work, according
to the final application (generating the rehabilitation glove
reference) only finger movements were considered due to the fact
that the rehabilitation device did not permit wrist movement.

It is difficult to compare the state-of-the-art methods with
our data acquisition and network training method. In this work
the process consists in acquiring data (600 samples), training the
proposed architecture, and after that, starting the rehabilitation
therapy. This personalizes the classifier for a specific user. This
approach has the disadvantage that the user spends 3-5 min
acquiring the data and training the classifier but offers good
accuracy in gesture classification. If the classifier is not retrained
for a new user, the accuracy of the classifier decreases depending
on different characteristics: how the armband is collocated,
muscles route, and so on. The literature does not personalize this
process using a dataset which contains samples from different
subjects. With this point of view, they do not spend time in the
training process with the user as the neural network is already
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FIGURE 7 | Naive Bayes offline classification results. (A) Confusion matrix of naive Bayes (accuracy 99.2%). (B) Parallel coordinate prediction of naive Bayes.

trained, which is more comfortable for the user. In contrast, the
classification results are poorer.

Compared with the literature (although gestures are different),
using the same device with feedforward neural networks, 90.1%
accuracy is achieved for the fist, wave-in, wave-out, open, and
pinch gestures by the system proposed by Benalcazar et al.
(2018). In our case, with the six gestures (relax, fist, grip, gripper,
open hand, and thumb up), the feedforward (pattern recognition
network) method achieved 93.3% accuracy online. In Ahsan et al.
(2011), they built a feedforward network with one hidden layer
(10 neurons with tangsig activation function) and one output
layer (4 neurons with purelin activation function) for left, right,

up, and down gestures, presenting 89.2% precision. Likewise, the
architecture proposed by Ahsan et al. (2011) was replicated and
has been tested with our dataset achieving 93.8% accuracy. Asif
et al. (2020) developed a convolutional neural network tested in
real time with 18 subjects for close hand, flex hand, extend hand,
and fine grip gestures, reaching 83.7± 13.5%, 71.2± 20.2%, 82.6
± 13.9%, and 74.6 ± 15% hit rates, respectively. This last case
could not be replicated as they used a deep learning architecture.

A well-known database, NinaPro Database 5 (Pizzolato et al.,
2017), was used to test this architecture. The sEMG features of
this dataset were acquired with two Myo Armbands, in total 16
channels. For this test only the first 8 channels corresponding
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FIGURE 8 | Confusion arrays of the two classifiers: (A) pattern recognition network; (B) Bayesian neural network.

FIGURE 9 | Online LRN confusion matrix (accuracy 98.7%).

to the first Myo armband were selected for more similarity with
this work. The presented results were obtained with only one
Myo armband. Before the test, the data were segmented, and
from each segment the 56 features were extracted. In parallel,
the target gesture was stored to be used for supervised training.
This database consists of 13 gestures, for this reason the proposed
architecture was modified according to this at 13 outputs. In
this case the accuracy result for the 13 gesture classification
was 58.5%. The confusion matrix of this dataset can be seen
in Figure 12. The biggest confusion was between the gestures

(gesture 2 to gesture 13) and the relaxed gesture. This can be
influenced by the target gesture data (a scalar value) which were
created for each 300 ms segment (60 samples). This target data
were set with the stimulus value from the dataset, the value of
the sample n = 31. In our case, when the database is created for
a new user, we store each gesture separately in parallel assigning
the target value.

Similar research with the NinaPro database obtained an
accuracy between 42.47 and 68.98% (Côté-Allard et al., 2019)
using deep learning algorithms. In this case, only one Myo
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FIGURE 10 | sEMG signals for the eight sensors for the gestures tested.

FIGURE 11 | Position response of the rehabilitation device.

armband was used and the sEMG signal was split into 260
ms segments, observing that the classifier accuracy grew with
the training repetition. In another work, the accuracy of the
classifier was between 81.9 and 90.1% (Wei et al., 2019), the
better score was obtained with the multi-view convolutional
neural network using both Myo armbands (16 channels)

and a maximum of 83.9% using only one Myo armband.
Accordingly, to these previous studies, the channel number
influences the classifier accuracy; more information presents
better results. Also, the deep learning algorithms present good
results, but the necessary time to train these algorithms was not
presented.
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FIGURE 12 | Confusion matrix with NinaPro dataset (58.5% accuracy).

To better understand all processes during neural network
training, a dataset with 56 features × 600 samples was used for
statistical analysis. Performance of the proposed neural network
(output vector of each gesture) was compared statistically using a
one-way analysis of variance (ANOVA), in Matlab 2020b. Results
were declared statistically significant if they were associated with
p < 0.05.

The precision, recall, and f-score of the LRN confusion matrix
presented in Figure 9 were calculated obtaining a score of 0.99
for precision, 1 for recall, and an F1 score of 0.994.

The proposed classifier presents 98.7% accuracy, but this
value can be influenced by the user characteristics and also
by the hardware and the method with which the signals were
stored. Combining different neural networks presents promising
results for gesture recognition, with a reasonable time to acquire
new data and retrain neural network architectures. According
to the results obtained with the NinaPro dataset, the deep
learning architecture presents 25.4% better results (a better result
with similar hardware of 83.9%). In our case, the proposed
architecture can be easily retrained with a personalized user
database (100 samples /gesture), where this number of samples
can be a limitation for the deep learning architectures. Also,
future works will include a test with different users where the
sEMG signal can be altered and where personalized classifiers can
be a good approach for a good classification.

A limitation of the proposed method is constraining the user
to acquire the data and retrain the algorithm at the beginning of
therapy for good results.

5. CONCLUSIONS

Neural networks are a promising alternative to identify hand
gestures depending on the sEMG signals. The proposed
architecture - composed by the probabilistic, Bayesian, and
temporal networks - offers a good accuracy for hand gesture
identification, with a hit rate precision of 98.7%, higher than the
previous results mentioned in the literature. Nevertheless,
state-of-the-art papers use different gestures which use
different muscle groups, so comparison between results is
not representative.

This work studied different architectures of shallow and deep
neural networks and the best result was reached when combining
a probabilistic network in parallel with a Bayesian network and
whose results fed a temporal network. To automatically train
these architectures, an application was developed which enables
sEMG data acquisition for the Myo Armband for a specific
user and trains the network’s architecture in less than 5 min,
guaranteeing a personalized good classification of gestures in
real time. Indeed, the application allows the connection with
a hand rehabilitation device. Opposite from other solutions,
the interface proposed accurately achieved the hand gesture
identification (six gestures created only by finger movement),
generating reference for the rehabilitation device and a direct
connection with it.

According to the hand gesture recognition, a high-level
algorithm was developed to generate the necessary reference
for the rehabilitation device of the actuators (thumb flexion,
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thumb opposition, index, middle, ring, and pinky fingers).
This algorithm generates the reference according to the user’s
intention of movement, motivating them to participate in the
rehabilitation therapy. In this way, rehabilitation therapy is
more effective.

In the future, the rehabilitation device presented in this
paper may be improved by adding the extension actuators and
connecting the movement of the actuators with each finger
position. The proposed algorithm was tested only on a few
healthy subjects and more tests need to be applied. Also, the
algorithm needs to be tested and validated by different subjects
with neural and muscle disorders.
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