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Abstract: Colorectal cancer (CRC) is one of the most common tumors worldwide, with a higher rate
of distant metastases than other malignancies and with regular occurrence of drug resistance. There-
fore, scientists are forced to further develop novel and innovative therapeutic treatment strategies,
whereby it has been discovered microorganisms, albeit linked to CRC pathogenesis, are able to act
as highly selective CRC treatment agents. Consequently, researchers are increasingly focusing on
bacteriotherapy as a novel therapeutic strategy with less or no side effects compared to standard
cancer treatment methods. With multiple successful trials making use of various bacteria-associated
mechanisms, bacteriotherapy in cancer treatment is on its way to become a promising tool in CRC
targeting therapy. In this study, we describe the anti-cancer effects of bacterial therapy focusing on
the treatment of CRC as well as diverse modulatory mechanisms and techniques that bacteriotherapy
offers such as bacterial-related biotherapeutics including peptides, toxins, bacteriocins or the use of
bacterial carriers and underlying molecular processes to target colorectal tumors.

Keywords: colorectal cancer; biotherapeutical toxins; bacteriocins; bacterial peptides; bacteriotherapy;
microbiota

1. Introduction

Colorectal cancer (CRC) is globally among the most common causes of cancer-related
death, whereby 50% of patients who are not showing metastasis when diagnosed, will
develop metastases with the progressing course of the cancer disease [1–4], with the most
common sites being liver and lungs [3]. CRC is known to be affected by environmental and
lifestyle factors including poor diet, physical inactivity and a sedentary lifestyle [5,6]. The
pathogenesis of CRC is characterized by multiple factors contributing to the disease, such
as genetic mutations and epigenetic alterations as well as building of and interaction with
the tumor microenvironment (TME) that promotes further tumor progression and metasta-
sis [7–9]. Hereby, chronic inflammation, known as a risk factor for CRC development, plays
a pivotal role, since diverse pro-inflammatory mediators such as cytokines, chemokines,
carcinogens, chemotherapeutic substances or radiation, have been demonstrated to further
stimulate inflammatory pathways (e.g., nuclear factor ‘kappa-light-chain-enhancer’ of
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activated B-cells, NF-κB), leading to tumor cell proliferation and invasion [10–13]. More-
over, it has been frequently shown that inflammatory bowel diseases and bowel-linked
inflammation are not uncommonly associated with CRC tumor progression, highlighting
the role of the gut’s inflammation-protective capability [14].

The gut, as a tissue hosting approximately 3 × 1013 colonic bacteria, is assumed to be
responsible for the majority of known microbial immunomodulatory effects and immunity
in the intestinal tract as well as for metabolism and inflammation and even shows cancer-
protective properties [15–19]. This effect has already been discovered in the late 1800 s by
William B. Coley, who was able to demonstrate tumor reduction and extended survival
of CRC patients by using a mix of bacterial species Serratia marcescens and Streptococcus
pyogenes for the treatment of sarcomas [20].

Today, bacterial therapy has been rediscovered as a potential treatment strategy for
CRC [18,21–23], especially because tumor cells are capable of genetic mutations, and are
thus able to escape from immune monitoring and can even develop resistance to standard
immunotherapies. Moreover, current anti-tumor therapeutics are associated with high
toxicity to normal cells, finally leading to severe side effects in patients, thus current
cancer treatment is frequently exposed to a number of drawbacks [16,24,25]. Therefore,
using bacteria strains possessing anti-cancer properties represents a promising strategy as
preventative, concomitant or alternative treatment of CRC [18,20–23].

In particular, bacterial peptides, including toxins, show characteristics such as low
molecular weight and hydrophobicity, facilitating their entry into tumor tissue, where they
can unfold their anti-cancer effects [26]. Furthermore, taking advantage of the fact that
some bacteria show tumor targeting specificity, they have also been used as carriers for
anti-tumor agents and even for tumor and metastases detection in previous studies [27–31].
Besides, using bacteria as probiotics has been presented as another application strategy in
the treatment of CRC and its prevention, showing direct effects by suppressing carcinogens
and stimulating immune modulation [32–35]. This demonstrates again the various methods
of bacterial application in CRC treatment approaches and its anti-cancer potential on
various levels.

In this review, we will present a wide range of recently demonstrated treatment
methods using bacteria for cancer therapy, whereby different bacterial mechanisms and
their properties for treatment application will be described with a focus on CRC.

2. Bacteriotherapy in CRC Treatment

In recent decades, the mortality rate of various cancers has remarkably increased,
forcing scientists to further develop novel and innovative therapeutic treatment strategies,
whereby bacterial therapy has been shown to be a very promising one [36], especially
regarding CRC, which ranks among the most prevalent life-threatening types of cancer,
bacteriotherapy provides an attractive novel and cost-efficacious treatment approach. Ac-
cordingly, research has shown that the microbiome of patients suffering from CRC has a
significantly different composition than that of healthy individuals [37,38]. Moreover, it is
known that pathogenic bacteria and microorganisms can greatly contribute to the develop-
ment of CRC, but on the other hand, others were found to act as effective therapeutic agents
with less or even no side effects compared to standard cancer treatment [20,39]. Based on
this background further research on bacteria’s role in the treatment of patients suffering
from CRC appears to be very promising.

2.1. Mechanisms Used in Bacteriotherapy in CRC

There have been several mechanisms of bacteria described to date that researchers
are taking advantage of in the treatment of CRC via bacteriotherapy, such as formation of
pores in the cell membrane, inhibition of metastasis, tumor necrosis or apoptosis [20,40].

In particular, apoptosis has been known as a key goal in cancer treatment for several
decades in order to eradicate tumor tissue that is characterized by a loss of balance be-
tween cell proliferation and death [41,42]. The term apoptosis or programmed cell death,
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describes a very complex process, which includes various pathways and mechanisms
(Figure 1) [42,43]. In general, it is distinguished between the intrinsic (mitochondrial-
dependent) pathway and the extrinsic (receptor-dependent) pathway, both finally leading
to Caspase activity and apoptosis. Programmed cell death, stimulated by the intrinsic
pathway, is characterized by cytochrome c release from pro-apoptotic proteins (B-cell lym-
phoma 1-Bcl-1, Bcl-2-associated X protein-Bax, Bcl-2-Antagonist of Cell Death-Bad and
BCL2 Antagonist/Killer 1-Bak)-stimulated mitochondria from the intermembrane space
into the cytosol, subsequently forming the apoptosome complex together with Caspase-9,
eventually leading to apoptosis. The extrinsic pathway on the other hand is stimulated by
cell membrane death receptors such as Tumor necrosis factor receptor (TNF-R) binding to
natural ligands, whereby initiator Caspase-8 is induced, which promotes cleavage of further
downstream caspases, finally inducing apoptosis [41,42,44,45]. Moreover, receptor-ligand
binding induces several cellular responses, including the activation of NF-κB, which can
activate pro-apoptotic proteins depending on the cellular context [44,45]. However, the
two main apoptotic pathways must not be considered separately, since previous research
showed that they are linked with each other and metabolites of one pathway can have an
impact on the other [45].
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Figure 1. Schematic diagram showing the mechanisms of apoptosis triggered by bacterial peptides
in cancer cells. (A) Bacterial toxins, secreted by various bacterial strains can cause apoptosis via
the mitochondria-dependent pathway by causing cell injury, for example, by cell membrane pore
formation. Induction of the intrinsic pathway leads to activation of pro-apoptotic proteins (Bcl-1, Bad,
Bax, Bak), which in turn stimulates the release of cytochrome c molecules from the mitochondrial
intermembrane space into the cytosol. Cytochrome c, together with Caspase-9 forms a complex called
the “apoptosome”, finally stimulating executioner caspases (e.g., Caspase-3) leading to cancer cell
apoptosis. (B) Bacterial proteins and peptides can have a modulatory impact on cytokines such as
TNF-α, resulting in activation or blockage of NF-κB. With suppression of NF-κB, which stimulates
anti-apoptotic proteins Bcl-2 and Bcl-xL, which in turn regulates apoptosis by blocking cytochrome c
release, pro-apoptotic Bax and Bak-proteins remain stimulated and apoptosis is induced. (C) Besides
stimulating the intrinsic pathway of apoptosis, probiotics are capable of apoptosis induction through
stimulation of the extrinsic receptor-dependent pathway. Here, so called cell death receptors, such as
TNF-R, bind to natural ligands, whereby initiator Caspase-8 and -10 are activated to cleave further
downstream caspases, such as Caspase-3, which in turn induces cell apoptosis [41–45].
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Altogether, to make use of these mechanisms such as bacteria-induced apoptosis and
metastasis suppression and to establish efficient therapy methods within using bacteria, it is
important to meet several framework conditions such as maximum cytotoxicity against can-
cer cells with minimum cytotoxicity towards intact cell tissue and the ability to selectively
attack carcinomas [20,40].

In the following section, different mechanisms that have been made use of in bacterial
cancer therapy are described with a particular focus on the main topics of interest related
to CRC.

2.1.1. Bacteriotherapy for Modulating Innate Immunity

Our immune system plays a crucial role in the protection and defense against cancer
development [46]. Here, it is of great importance to understand the duality of the immune
system composed of a defensive and a reparative mode. While the defensive mode pro-
motes the production of immune cells, the reparative mode stimulates the secretion of
immune suppressive cytokines, and growth factors among others, thus facilitating cell
invasion. Bacteria can interact either as pathogens or as compounds of the “normal” flora,
whereby pathogenic interaction of bacteria triggers immune system activity in several
ways, described in the following section [36,47,48].

Activation of Inflammasome Pathways
One mechanism the immune system is activated by, is represented by the stimulation

of inflammasome pathways, triggered by bacteria. Previous investigation on the ∆ppGpp
Salmonella typhimurium strain, which is defective in the synthesis of ppGpp (regulates
virulence gene expression), demonstrated its tumor-targeting activity in CRC mouse models
by activating inflammasome pathways, leading to suppression of tumor cell released
signals and significantly increased levels of the pro-inflammatory cytokine IL-1ß in the
tumors, resulting in tumor growth inhibition [38,49]. Another mechanism stimulating the
inflammasome pathway besides direct activation through the strain of ∆ppGpp Salmonella
typhimurium revealed, was demonstrated by the secretion of ATP from damaged cancer cells
attacked by ∆ppGpp Salmonella typhimurium, leading to NLRP3 inflammasome activation
in macrophages [38]. Moreover, in another study of ∆ppGpp Salmonella typhimurium,
researchers found evidence that the bacterial strain shows tumor-targeting ability and
that primary as well as even metastatic CRC could be suppressed in mice [50]. Based
on this background, the mechanism of activating the inflammasome by bacterial strains
can be considered as an efficient therapeutic strategy to make use of in bacteriotherapy in
CRC treatment.

Activation of Anti-Tumor T-cell Responses
Another mechanism that has been demonstrated to inhibit tumor development refers

to anti-tumor effectors T-cell responses. Here, Escherichia coli, an anaerobic bacteria strain,
was found to be indirectly involved in CRC clearance via activating as the host’s defense
mechanism, leading to T-lymphocyte production. These, in turn, greatly contribute to
tumor-protective activity by CD8+ and CD4+ T-cells acting as major effectors in the im-
munological response against tumors as previously shown in CRC mouse models [38].
Importantly, it was proven via depletion experiments that CD8+ T-cells were the only effec-
tors during the induction phase, thus responsible for tumor clearance, while both, CD8+

and CD4+, were involved in the memory phase. In addition, the anti-tumor T-cell effectors
(CD4+ and CD8+) were found to suppress newly set tumors, whereby CD8+ T-cells were
even able to destroy already established CRC [38]. Moreover, in another study CD4+ and
CD25+ regulatory T-cells have been shown to reduce the risk of colon cancer, underlining
the potential of bacteria triggered T-cell responses as a novel CRC treatment approach [51].

Activation of Cytokine-Triggered Tumor Necrosis
Tumor-colonizing bacteria describe specific anaerobic bacteria species that invade and

are able to grow in solid tumors because damaged circulation and necrosis found in tumors
present necessary condition for anaerobic bacteria to grow and replicate [52–56]. In a study
of Leschner et al. the administration of anaerobic Salmonella enterica serovar Typhimurium to
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cancer mouse models showed that through hemorrhaging a remarkable increase in bacterial
flushing into the solid tumor and subsequent necrosis could be detected, which is associated
with TNF-α secretion and its capability to destroy vascular endothelial cells. Based on this
background, activation of the innate immune system and subsequent TNF-α secretion can
play a pivotal role in tumor necrosis [56]. In addition to that, in another study, application
of Salmonella typhimurium, Shigella flexneri and Escherichia coli to cancer-bearing mice lead to
their accumulation and proliferation within the solid tumors, especially in necrotic regions
rather than viable tumor cells, whereby it has been shown that the number of neutrophilic
granulocytes as an active part of the innate immune system enhancing TNF-α secretion is
proportional to the area of necrosis. Moreover, bacteria were also then able to migrate into
vital tumors, finally resulting in an increased size of necrosis, highlighting the anti-tumor
properties of TNF-α by further enhancing and modulating the immune response at least in
this kind of cellular context [57]. These findings also further demonstrate the potential of
bacteria-mediated modulation of the innate immune system as a novel treatment strategy
in CRC therapy.

2.1.2. Bacterial Peptides

Peptides acting as anti-tumor agents, including several bacterial peptides, are mainly
characterized by having low molecular weight and hydrophobicity. These properties seem
to be of great importance for the peptides to migrate into the tumor, where cells partly
exhibit an altered surface compared to normal cells. Within the tumor, bacterial peptides
can unfold their anti-cancer and immune-modulating activity in different ways dependent
on their characteristics [26].

A: Bacterial Toxins
The use of bacterial peptides as bacterial toxins demonstrates another CRC treatment

approach. Bacterial toxins are substances and metabolites secreted by bacteria that have
been shown to suppress tumor growth in numerous studies [58]. They are synthesized by
almost all bacterial species and have already been identified for a large number of bacterial
strains. Under physiological conditions, bacteriocins help bacteria to protect themselves
from competing microorganisms by killing them [59,60]. So far, two types of bacterial anti-
cancer toxins have been identified: toxins that conjugate to surface antigens of malignant
cells and secondly toxins that conjugate to ligands of cancer cells [61]. Since CRC cells
present a great number of tumor-specific antigens on their surface, mainly functioning as
receptors, bacterial toxins represent a powerful tool to specifically bind them [60]. In the
following, we will present some of these bacterial toxins that have been demonstrated to be
effective against CRC (Table 1).

Enterotoxin
Enterotoxin (CPE) for example, which is produced by C. perfringens, a gram-positive

anaerobic bacterium, represents one of the most effective bacterial toxins used in CRC
therapy by binding to Claudin-3 and -4 surface receptors that are prevalent in malignant
cells, which finally leads to cellular osmotic balance breakdown and cancer cell lysis [62,63].
In addition, Pahle et al. found an optimized CPE expressing vector that targets Claudin-3
and Claudin-4 expression in SW480, HCT-116, SW620, Caco-2, HT-29 and PDX colon cancer
cells, demonstrating CPE as a gene transfer system that could be used as a therapeutic
agent in CRC treatment directed against Claudin-3 and -4 that causes fast tumor cell death,
as shown in vitro and in vivo [62,63]. Moreover, several other bacteriocins showing anti-
cancer properties have been found, such as Diphteria toxin (DT), Nisin, Colicin, Microcin
and Pediocin [64].

Diphteria Toxin
Diphteria toxin, consisting of two subunits A and B, is released by gram-positive

Corynebacterium diphtheria bacteria. Via subunit B, the bacterium is able to bind to cancer
cells, while the catalytically active subunit A is able to block the protein synthesis via
ADP-ribosylation of cytoplasmic elongation factor 2 (EF-2), finally resulting in cancer cell
death [65,66]. A non-toxic attenuated form of DT (CRM197) has been demonstrated to bind
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to HBEGF (heparin-binding epidermal growth factor) and to suppress cancer proliferation
and angiogenesis while inducing apoptosis in vivo. These anti-cancer effects of DT have
also been found in the treatment of colon cancer cell lines SW480, SW620, HCT116, CaCo-2
and HT-29 [67,68].

Nisin
Nisin, a polycyclic peptide secreted by the bacterial strain Lactococcus lactis, has shown

a significant cytotoxic effect on Caco-2 and HT-29 CRC cell types, whereby hole formation
in the cell membrane of target cancer cells was promoted, which finally lead to cytoplasmic
membrane depolarization and apoptosis [69]. Furthermore, Nisin has also been demon-
strated to prevent metastatic gene expression of MMP-2, MMP-9, cytolethal distending
toxins and the cycle inhibiting factor in CRC cell lines, namely LS-180, HT-29, SW480 and
Caco-2, further supporting Nisin’s role as an anti-cancer agent [70,71]. The application of
Nisin, combined with conventional therapy, has already been shown to help reduce the
therapeutic doses of various anti-cancer medications by increasing their cytotoxicity [71].

Colicin
The aforementioned bacteriocin colicin is produced by Enterobacteriaceae such as E.

coli. It is assumed that colicins take cytotoxic action on various malignant cells through
membrane hole formation, a non-specified DNase and RNase activity and inhibition of the
murein synthesis [72]. In previous research, the inhibitory effect of Colicin E1, E3, A, U on
growth of HT-29 CRC cells among other human cancer cell lines was demonstrated [73],
whereby HT-29 cells reacted insensitive to Colicin E1, while Colicin A treatment provoked
the highest cytotoxicity against HT-29 cells [74].

Microcin
According to studies that were carried out to evaluate the impact of Microcin E492,

secreted by gram-negative Klebsiella pneumonia, on different cancer cell lines such as HeLa,
Jurkat, RJ2.25 and also CRC cells, its anti-tumor activity could be demonstrated. Hereby the
main mode of action of Microcin E492 included pore formation in cancer cell membranes,
finally leading to apoptosis by binding to Toll-like-receptor (TLR) 4 [75,76]. Interestingly,
inhibition of normal cells such as bone marrow cells, splenocytes, KG-1 or human tonsil cells
has not been observed, demonstrating bacteria to selectively target malignant cells [75,77].

Pediocin
Another type of bacteriocin that has been shown to have lethal effects on CRC cells (HT-

29 and DLD-1) probably due to its hydrophobic nature, is the bacterial toxin pediocin, which
is derived from Pediococcus acidilactici (K2a2–3), a gram-positive bacterial strain that is able
to grow in a wide range of pH, temperature and osmotic pressure. These treatments enable
them to enter and grow in the intestinal tract [78]. The specific mechanism underlying
pediocin’s cytotoxic effect on cancer cells is not fully understood yet, but application
of sequence alignment has demonstrated great homology between Pediocin PA-1 and
Microcin E492. Since the latter has been studied in more detail and is known to interact
with TLR4 for induction of apoptosis, Pediocin PA-1 is also believed to interoperate with
TLRs in order to initiate cell death [79].

Phenazine
Phenazine displays another group of bacteriocin, nitrogen containing metabolites, such

as phenazine 1-carboxylic acid and phenazine 1,6-di-carboxylic acid (PDC) that are secreted
by many bacterial strains, including a remarkable number of Pseudomonas. Phenazines are
crucial for biofilm synthesis and help to protect bacteria from competitive microorganisms
because of their toxicity [80]. In previous studies, PDC secreted from Pseudomonas aeruginosa
was demonstrated to show substantial cytotoxic activity against CRC cells (HT29) among
other cancer cell lines (HeLa, MCF7, DU145) in a dose-dependent manner. Thereby, its
range of cytotoxic action was the greatest against colorectal HT29, HeLa and MCF7 [80,81].
In addition, PDC was observed to negatively affect both cancer cell viability and DNA
synthesis and to induce G1 cell cycle arrest, thus initiating apoptosis [81].
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Azurin
Azurin is another protein that is able to enter cancer cells and induce cell cycle arrest

and apoptosis. The copper-containing protein found in Pseudomonas aeruginosa and its
peptide p28 have even been studied in clinical trials of phase 1 already that demonstrated
p28’s anti-cancer toxicity and safety [82,83]. As a multi-targeting peptide, p28’s anti-
cancer activity is based on several mechanisms such as complex formation with p53
tumor suppressor, interferential action on the receptor of tyrosine kinase EphB2-mediated
signaling process, reduced activity of VEGFR-2 tyrosine kinase, prevention of angiogenesis
and interferential activity on P-cadherin protein expression [26,84]. These findings were
also supported by another study, where azurin was demonstrated to decrease CRC cell
viability by apoptosis induction, whereas non-cancer cells remained unaffected. This
finding further underlines the potential of azurin as a selective anti-cancer agent [85].

Exotoxin A
Exotoxin A (PE) is also derived from Pseudomonas aeruginosa and represents the most

toxic virulence factor of this bacterium [86]. The lethality of PE is based on its adenosine
diphosphate (ADP)–ribosylation activity, leading to inactivation of the eukaryotic elon-
gation factor 2 (EF-2) and thus inhibition of host cells protein biosynthesis [86,87]. These
toxic properties have been observed to act as useful anti-cancer agents, since the active
domain of PE has been found to specifically target tumor-related antigens [86]. Based
on this background, Shinohara et al. fusioned a mutated PE with the variable regions
of a monoclonal antibody directed against the human transferrin receptor to obtain a
single-chain immunotoxin, namely HB21(Fv)PE40, in order to analyze its efficacy against
murine metastatic CRC cells (KM12L4), and could demonstrate them to be eliminated
when systemic administration of HB21(Fv)PE40 was applied [88]. In another study, Shapira
et al. established another immunotoxin, namely SWA11-ZZ-PE38, which was created by
conjugating SWA11 with a modified derivate of PE (PE38) via an Fc-binding ZZ domain
from staphylococcal protein A to determine its efficacy against human CRC cells (HCT116,
HT-29, COLO320). The in vivo study revealed that SWA11-ZZ-PE38 is able to induce
apoptosis in human HT-29, COLO320 and HCT116 cell lines without being cytotoxic in
normal tissue. These results seem to be another promising treatment approach for CRC by
selectively and effectively targeting CRC cells without causing damage to vital tissue [89].

Listeriolysin O
Listeriolysin O (LLO) is a toxin produced by the facultative anaerobic bacteria Listeria

monocytogenes that can enter the cytoplasm of antigen presenting cells, because of LLO’s
hemolytic activity, penetrating the phagosomal membrane. In phase I and II of clinical
trials, L. monocytogens have been widely utilized as a vaccine vector to stimulate immune
responses to fight human cancer [90]. For example, Lm-LLO-E7, a recombinational form of
L. monocytogenes (rLm) producing the human papilloma virus-16 E7 protein that is expressed
in cervical cancer cells fusioned with LLO, has been demonstrated as being capable of
inducing a potent anti-tumor response [91]. In another study, LLO from L. monocytogenes
was fusioned to a HER2/neu oncogene expressing protein (ADXS31-142) that has been
shown to exhibit anti-tumor effects in a variety of human carcinomas, including the Colo205
CRC cell line [92].

B: Non-Ribosomal Peptides
Non-ribosomal peptides represent another class of peptides that can be synthesized by

bacteria, fungi as well as cyanobacteria and represent another kind of metabolite displaying
cancer protective properties, as well as against CRC, such as, for example, Lucentamycins,
Arenamides, Ohmyungsamycins, Mixirins or Urukthapelstatin A, which are described in
the following sections (Table 2) [52].
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Table 1. Collection of bacterial peptides proposed for CRC therapy.

Protein/Peptides Bacterial Source Mode of Action Refs.

Enterotoxin (CPE) Clostridium perfringens

Binds to Claudin-3/-4 surface receptors and leads to CRC
cell lysis in SW480, HCT-116, SW620, Caco-2, HT-29 and

PDX CRC cells.
[62,63]

Induces TNF-α-upregulation leading to decreased
Claudin-4 expression, disrupted tight junctions, reduced

EMT-, adherence- and metastasis-capacity in HT-29
CRC cells.

[93]

Subunit A blocks protein synthesis by ADP-ribosylation of
EF-2 leading to cell death. [65,66]

Diphteria toxin (DT) Corynebacterium diphteria Non-toxic CRM197 suppresses angiogenesis and
proliferation in SW480, SW620, HCT-116, Caco-2 and HT-29

CRC cells.
[67,68]

Nisin Lactococcus lactis

Leads to apoptosis via promoting hole formation in the cell
membrane of Caco-2 and HT-29 CRC cells. [69]

Prevents expression of MMP-2, MMP-9, CDTs and Cif in
SW480, HT-29, Caco-2 and LS-180 CRC cells. [70,71]

Increases cytotoxicity of anti-cancer agents resulting in
lower doses necessary for treatment. [70]

Acts cytotoxically through membrane hole formation, and
non-specified DN/RNase activity in HT-29 CRC cells. [72,73]

Colicin Escherichia coli Subunits A, E1, E3, U inhibit cell growth and promote
apoptosis in HT-29 CRC cells. [73,74]

Microcin Klebsiella pneumonia

Pore forming into cell membranes, thus leading to apoptosis
in CRC cells and other cancer cell lines such as HeLa. [75,76]

Subunit E492 shows a noticeable cytotoxicity especially in
HT-29 but also in SW620 CRC cells. [94]

Subunit E492 reduces tumor proliferation in a xenograft
model with SW620 CRC cells. [94]

Shows lethal effects on HT-29 and DLD-1 CRC cells. [78]
Subunit PA-1 interoperates with TLRs and initiates

cell death. [79]Pediocin Pediococcus acidilactici

Inhibits cancer cell proliferation as a carrier combination. [95]

Phenazine Pseudomonas aeruginosa
Subtype PDC weakens viability and DNA synthesis and

initiates cell cycle arrest leading to apoptosis in HT-29
CRC cells.

[80,81]

Influences p53/EphB2/VEGFR-2 signaling pathway and
prevents angiogenesis in CRC cells. [26,84]

Azurin Pseudomonas aeruginosa
Inhibits cancer cell mobility and shows strong anti-cancer

effect in HCT-116 CRC cells. [96]

Exotoxin A (PE) Pseudomonas aeruginosa

Inhibits EF-2 and protein biosynthesis via ADP-ribosylation,
induces apoptosis in HCT116, HT-29 and COLO320

CRC cells.
[86,87,89]

Subtype PE24-based amyloid injection leads to growth
arrest and metastasis prevention in CRC-diseased mice. [97]

Acts as a membrane-damaging cytotoxin in Caco-2
CRC cells. [98]

Listeriolysin O (LLO) Listeria monocytogenes
Shows hemolytic activity and anti-tumor properties in

Colo205 CRC cells. [90,92]

Lucentamycin
Lucentamycins (A-D)(3-methyl-4-ethylideneproline containing peptides) are isolated

from the bacterial strain Nocardiopsis lucentensis and represent another type of peptide
showing cytotoxicity against HCT-116 colon carcinoma cells [99]. However, not many
studies investigating lucentamycin’s interactions with cancer, especially CRC cells, have
been carried out yet.
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Arenamides
In addition, new types of cyclohexadepsipeptides, namely Arenamides A-C, were

found to be isolated from the marine bacterial species Arenamides Salinispora arenicola. In
previous research, Arenamides A and B have been demonstrated to block TNF-induced
activation, thus suppressing the pro-inflammatory NF-κB signaling pathway as well as
nitric oxide and prostaglandin E2 production. Moreover, cytotoxic activity against human
colon carcinoma cells (HCT-116) was observed [100].

Ohmyungsamycin
Other bioactive metabolites showing cancer cytotoxic action are the cyclic depsipep-

tides Ohmyungsamycin A and B that are derived from a marine bacterial strain (SNJ042)
belonging to Streptomyces sp. and are both comprising unusual amino acid units such as
N,N-dimethylvaline, β-hydroxyphenylalanine and N-methyl-4-methoxytrytophan [101].
In particular, Ohmyungsamycin A has been demonstrated to exhibit growth inhibiting
effects on CRC cells (HCT-116), while it did not affect the growth of fibroblast cells (MRC-5),
suggesting that it is able to selectively suppress the proliferation of human cancer cells [102].
Thereby the underlying mechanisms leading to its anti-cancer activity in CRC cells, namely
modulation of the Skp-p27 axis leading to MCM4-induced cell cycle arrest in G0/G1 phase,
finally causing apoptosis, have been revealed [102].

Mixirins
Mixirin is a cyclic acylpeptide that is derived from the marine Bacillus species. All

three types of mixirins, namely A, B and C, have been found to exhibit cytotoxicity against
the HCT-116 human colon tumor cell line, but further studies on mixirin, specifically
considering CRC, have not been carried out yet [103].

Urukthapelstatin
The cyclic thiopeptide Urukthapelstatin A is secreted by Mechercharimyces asporophori-

genens, a marine strain that belongs to the Thermoactinomycetaceae. Previous studies have
demonstrated the anti-cancer activity of Urukthapelstatin A as they found growth in-
hibition colon cancer (HCT-116) cells among other types of cancer, when treated with
Urukthapelstatin A, probably due to inhibition of DNA synthesis [104,105]. However,
further studies need to be made for validation.

Table 2. Collection of non-ribosomal peptides proposed for CRC therapy.

Protein/Peptides Bacterial Source Mode of Action Refs.

Lucentamycin Nocardiopsis lucentensis Shows cytotoxicity and induces apoptosis against
HCT-116 CRC cells. [99]

Arenamides Salinispora arenicola

Subtypes A and B block TNF, nitric oxide and
prostaglandin E2 and act cytotoxic on HCT-116 CRC

cells. Investigation for chemopreventive and
anti-inflammatory properties in HCT-116 CRC cells

is proposed.

[100]

Ohmyungsamycins Streptomyces sp.

Subtype A modulates Skp-p27 axis leading to cell cycle
arrest (G0/G1 phase), apoptosis and selectively targeted

reduction of proliferation in HCT-116 CRC cells.
[99,102]

Subtype A shows stronger activity against human
cancer cells compared to subtype B. [106]

Mixirins Marine Bacillus sp. Subtypes A, B and C act cytotoxic against cancer cells
and inhibit cell growth in HCT-116 CRC cells. [103]

Urukthapelstatin Mechercharimyces
asporophorigenens

Subtype A inhibits DNA synthesis, growth and
proliferation of HCT-116 CRC cells. [104]

Altogether, the efficacy of bacterial toxins as well as non-ribosomal peptides, acting
as cytotoxic agents in order to suppress cell proliferation, offer a great opportunity as
selective anti-tumor agents because they can interfere with different cancer-promoting
signaling pathways. Moreover, the cancer-inhibiting mechanisms have already been shown
across different CRC cell lines in vitro and already in a few animal models (Tables 1 and 2).
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However, these studies should be extended to gain further insights and to initiate clinical
trials in the future.

2.1.3. Bacteria as Carriers for Therapeutic Agents

Besides using bacteria and their metabolites as directly targeting cytotoxic anti-cancer
agents, they have also been demonstrated to be used as therapeutic carriers in the treatment
of CRC. Several studies have shown that bacterial carriers are not only able to selectively
target cancer cells but also metastases [31,107]. Using imaging techniques such as bioilu-
minescence has been exhibited as a non-invasive method making it possible to detect and
monitor tumors, including CRC, and even metastases by generating bioiluminescent cancer-
colonizing bacteria offering novel opportunities in cancer diagnosis and treatment [29,31].
Moreover, using Lysteria monocytogenes as a vector for an anti-cancer vaccine has been
shown to promote a remarkable amplification of its anti-cancer effects, whereby the in-
tracellular microorganism is able to pass intestinal membranes to then trigger immune
responses by activating CD8+ and CD4+ T-cells. In addition, the use of bacterial vectors can
be considered as a safe treatment method due to clinical trials [27,28]. Another bacterial
microorganism used as a carrier in the treatment of CRC is represented by the species of
Clostridium novyi-NT, a non-toxic variant of the superior cancer-colonizing strain Clostrid-
ium novyi. The application of C. novyi-NT spores to tumor mouse models has even been
shown to sprout within avascular regions and thus eradicate CRC cells. In combination
with conventional chemotherapy, C. novyi-NT administration even exhibited hemorrhagic
necrosis within 24 h after application, demonstrating a synergistic interaction against CRC
cells and revealing C. novyi-NT as a promising bacterial carrier [30,108]. Therefore, using
bacteria as therapeutic carriers in order to detect, target and fight viable cancer cells and
metastases represents a powerful tool in the treatment of CRC.

2.1.4. Bacteria-Mediated Anti-Angiogenesis Therapy

Another treatment strategy using bacteria is demonstrated by anti-angiogenesis ther-
apy, going hand in hand with tumor growth suppression. The formation of new blood
vessels, so called angiogenesis, is crucial for solid tumors to grow and metastasize. There-
fore, blocking angiogenesis represents another promising target in cancer treatment [40,109].
In previous research, a genetically attenuated bacteria strain of Salmonella sp. (VNP20009)
was used to administer as a combination therapy together with angiogenesis inhibitor rhEn-
dostatin in tumor mice models with the aim of targeting angiogenesis, thus tumor growth
and proliferation [110]. Since separate application of only bacteria or only rhEndostatin
have shown little impact on tumor proliferation, the combination of both exhibited great
effects in targeting the tumors and suppressing their growth, indicating unique metabolic
properties of bacteria that help to complement or even enhance anti-angiogenesis effects
of systematically administered agents in cancer therapy [110]. In other studies, bacterial
strains, namely Bifidobacterium adolescentis [111] and Bifidobacterium longum [112], were used
as Endostatin vectors for targeting tumor angiogenesis, showing significant results in tumor
growth inhibition [111,112]. Moreover, Niethammer et al. have found evidence that an oral
anti-angiogenic bacterial DNA vaccine, carried by attenuated bacterial strain Salmonella
typhimurium and directed against VEGFR-2, displayed remarkable anti-cancer effects in
different tumor types, including CRC [113].

2.1.5. Bacterial Biofilms

Biofilm is an ancient type of multicellular life, more precisely it describes a community
of microbes that is either attached to a surface or encompassed in an extracellular matrix,
giving bacteria resistance to drugs and hosts defense mechanisms [114,115]. Biofilms that
are, for example, found in bacterial pathogens such as Salmonella tyhimurium, Pseudomonas
aeruginosa or Staphylococcus aureus are responsible for causing many chronic diseases and
thus play an important role in their pathogenesis [116,117]. Salmonella tyhimurium and
other infections have been linked to significant tumor hemorrhage. When hemorrhage
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is activated, T-cell production is induced as an important feature for the formation of
biofilms [116]. Besides the pathogenic role of biofilms in a wide range of diseases [116,117],
their potential as a novel treatment strategy in cancer therapy has just been discovered [118].
Moreover, it has been reported that metastasis can be prevented through bacterial biofilm
formation burying cancer cells during the SOS response [118]. These findings indicate
bacterial biofilms being able to influence CRC formation and progression by altering cancer
metabolome and regulating cellular proliferation, to have great potential as an effective
anti-cancer agent in CRC treatment [118]. On top of that, previous research found evidence
that the bacterial macromolecules required for biofilm formation (proteins and DNA) are
helping to block cancer cells to metastasize by simply coating them [119]. Regarding
metastasis, polysaccharides produced by Streptococcus agalactiae have been revealed to
prevent cancer cells from adhering to endothelial cells, thus blocking an essential stage
of metastasis and disease progression [120]. However, the opportunities to use bacteria
biofilm in the treatment of CRC, especially for metastasis distraction, need to be further
investigated.

2.1.6. Maintaining Microbial Equilibrium

When the microbial equilibrium is disrupted, pathogenic microorganisms may be
prevalent in the gut, potentially leading to the pathogenesis of CRC. Therefore, altering the
bacterial composition and reestablishing, if disrupted, the critical balance between different
bacteria species could represent a new therapeutic approach helping to treat CRC [34]. The
role of microbiota in the development of CRC has increasingly emerged since several stud-
ies found significant differences in the composition of the intestinal microbiome between
CRC patients and healthy individuals, whereas specific microbes and bacterial strains that
are enriched in CRC pathogenesis could be, at least in part, identified [121,122]. In general,
CRC patients often show a reduced microbial diversity compared to healthy individuals,
whereas bacterial strains including Streptococcus bovis, Helicobacter pylori, Bacteroides frag-
ilis, Enterococcus faecalis, Clostridium septicum, Fusobacterium spp. and Escherichia coli are
suspected to play a critical role in carcinogenesis of CRC [121,123–125]. It is assumed that
these specific bacteria trigger CRC by different mechanisms, such as increased release of
bacterial toxins and pro-carcinogenic compounds leading to mutagenesis, reduced bacterial
synthesis of health-beneficial metabolites, destruction of the epithelial barrier and microbi-
otic alterations and dysbiosis, which finally promote abnormal immune activity leading
to chronic inflammation, stimulating CRC development and progression [123,126,127].
Although it is still not fully understood if the disruption of microbial balance and dysbiosis
acts as a cause or consequence of CRC tumorigenesis and which factors interact with each
other and contribute to CRC development, the model of bacteria-induced CRC mecha-
nisms has greatly contributed to finding new options in CRC therapy. These approaches
include the supplementation of inflammation-protective microbial fermentation products,
elimination and suppression of bacteria-released toxins with inhibitor molecules, enhanc-
ing anti-tumor treatment efficiency by using specific bacteria such as Bifidobacterium, as
well as consumption of probiotica [123]. Probiotics have the ability to direct cells into a
vital state by modulating the immune system, lowering blood cholesterol and decreasing
colitis [35], whereby each probiotic has a distinct function that could be beneficial for CRC
prevention [35]. For example, probiotics have been shown to play a pivotal role in reducing
pro-inflammatory cyclooxygenase-2 expression, which is involved in tumor angiogenesis,
hence contributing to carcinogenesis suppression [128]. In addition, anti-inflammatory
properties of probiotics were also shown by the down-regulation of the master regulator
of inflammation NF-κB and its associated signaling pathways. This further highlights the
major potential of probiotics in reducing inflammation through NF-κB modulation and
thus preventing inflammation-associated diseases such as CRC [44,45,128,129]. Moreover,
Sivan et al. showed the great impact of probiotics on increasing the anti-cancer activity
of anti-PDL1 medicine [130], demonstrating that intestinal bacteria can remarkably affect
both immunotherapy and chemotherapy in order to promote anti-cancer effects. Moreover,
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Lactobacillus acidophilus represents another probiotic species that has been shown to reduce
the occurrence of colorectal tumors as well as the size of tumors in mice, whereby the
bacteria has been discovered to have anti-cancer effects through enhancing serum levels of
IFN-, IL-10 as well as the number of CD4+ and CD8+ cells, while drastically lowering serum
levels of CEA and CA19-9 tumor markers [33]. In addition, Lactobacillus brevis SBL8803,
which has been identified in fermented malt, was also shown to exhibit anti-colon cancer
properties. Hereby, polyphosphate actin as an anti-cancer chemical is produced by L. brevis
8803 that has been demonstrated to promote apoptosis in SW620 cells by activating the ERK
pathway, whereby it has been proposed to act as a less toxic anti-tumor agent compared
to standard cancer medicines [131]. Another species of Lactobacillus, showing anti-cancer
properties is represented by Lactobacillus casei BL23. In a study model of colon cancer trig-
gered by azoxymethane and dextran sodium sulfate, Lactobacillus casei was able to modify
the immune response and thereby to reduce adenoma formation. Together the study’s
findings revealed that L. casei BL23 was able to protect mice from CRC by suppressing
tumor formation and proliferation as well as showing a great immunomodulatory impact,
highlighted by the downregulation of IL-22 and overexpression of Caspase-7, Caspase-9
and Bik [132]. Besides Lactobacillus, Bifidobacteria as another probiotic family, in particular
Bifidobacterium longum, Bifidobacterium infantis, Bifidobacterium adolescentis and Bifidobacterium
breve have been recognized to act as CRC suppressors, since they are able to fight CRC by
modulating the immune response, binding and degrading potential carcinogens as well
as maintaining a healthy balance in the intestinal microflora, producing anti-tumorigenic
or anti-mutagenic agents in the colon and altering metabolic activities of the intestinal
microflora [133,134]. For instance, in previous research, it has been shown that CRC cell
lines such as Caco-2, HT-29 and SW480 were inhibited by butanol extract from B. adolescentis
SPM0212. Furthermore, B. adolescentis SPM0212 was demonstrated to activate macrophages
and dramatically enhance the production of TNF and nitric oxide, boosting the immune
response activity to control immunological modulation and tumor cell death [135]. Overall,
on the one hand probiotics have been shown to help prevent CRC development and to
keep the intestinal micro-ecology in balance. On the other hand, they have been shown to
be effective as CRC proliferation suppressors and anti-cancer immune modulators.

3. Microbiota in CRC
3.1. Influence of Microbiota on Drug Metabolism

With a bacteria-to-cell ratio of roughly 1:1 in the human body, microbes encode for
150 times more genes than the human genome [19]. The discovery of microbiota-specific
metabolic signatures contributes to a better knowledge of the relation between bacteria and
human cells and several studies have demonstrated that microbiota-dependent metabolites
have a great impact on the immune function, therefore better understanding could aid in
the prediction of drug effects and outcomes in their application.

Han and colleagues used a library of 833 metabolites to describe the metabolic identi-
ties of 178 gut bacteria with mass spectrometry and a machine learning workflow by using
murine serum, urine, feces and caecal contents [136,137]. In this study, they could precisely
map genes according to bacteria’s metabolism and their phenotypic variation as well as as-
sociate metabolites with microbial strains. For example, Firmicutes and Actinobacteria, which
are two phylogenetically distant strains were found to produce high levels of ornithine,
which is important for the regulation of several metabolic processes, whereas Enterococcus
faecalis and Enterococcus faecium were demonstrated to accumulate high levels of tyramine
that is known to modulate neurological functions. On the other hand, C. cadaveris has been
shown to act as a consumer instead of a producer and to consume high levels of vitamin B5
that is linked to inflammatory bowel diseases [136,138,139].

These observations highlight the great potential of better knowledge about microbiota-
dependent metabolites in drug therapy, because orally delivered chemicals are mainly
absorbed in the gut and therefore represents the site where the majority of metabolic
changes of medication takes place [137].
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Because medications have a significant impact on microbiota composition and bal-
ance, it is critical to bring up the interacting relationship between drug components and
the microbiome [140]. Anti-diabetics, proton pump inhibitors [140] and nonsteroidal
anti-inflammatory medications are all representations of drug-induced toxicity on microor-
ganisms [33]. However, bacteria have also been discovered to have the ability to digest
medicines. In a previous study, Maier et al. applied 1197 medicines from various thera-
peutic classes to 40 distinct bacteria species, excluding antibiotics, in an attempt to widely
and thoroughly address these effects [140]. The researchers found that almost 30% of the
substances examined hindered the proliferation of at least one bacterial species, therefore
they hypothesized that antibiotic resistance may also arise as a result of changes in the mi-
crobiota caused by non-antibiotic exposure [140]. Genetic screens, and enzymatic analysis
to find enzymes promoting specific drug conversions, have been used to investigate the
reasons and effects of drug-microbiota interactions [141]. Recently, the metabolism of gut
microbiota has gained more attention since it may explain why individuals suffering from
the same disease and undergo the same treatment, show different therapeutical outcomes.
Moreover, it shows the complex and challenging task to find an efficient treatment strategy
for every individual. In order to find appropriate drugs for every patient, machine-learning
frameworks using network-based analyses and data to identify drug biomarkers predicting
drug responses increasingly take place [142]. With machine learning models and artificial
intelligence, individual-specific cancer therapy can be developed to help improve thera-
peutic outcomes [142,143]. Furthermore, identifying hazardous by-products of bacterial
medication aids in the prediction of potential adverse effects in patients undergoing ther-
apy. With the wide spectrum of impacts of bacteria-induced chemical metabolism, such
as pharmacological activation [144], inactivation [145] or toxicity [141], pinpointing the
bacteria or their characteristics causing a specific metabolic effect is currently one of the
most challenging aspects of treatments. For example by influencing the TNF response or
ROS production [146], metabolic processes of glucuronidation conjugating pharmaceu-
ticals to glucuronic acid (GlcA) in the liver, inactivates and detoxifies medicines. These
glucuronides are then taken to the gut and are eliminated from the body [147]. However,
once in the colon, these compounds can be reactivated by gut bacterialglucuronidases
(GUS) enzymes by removing the GlcA, resulting in local acute toxicity [148]. Furthermore,
as customized medicine is becoming increasingly important, research is currently being
conducted into the extent to which individual drug metabolism can be harnessed. Javdan
et al. created a technique to find metabolites formed by microbiome-derived metabolism
(MDM) enzymes in a series of 23 orally applied medicines in human healthy donors in
order to describe metabolic interactions between microbiota and therapeutical agents [149].
This study included different methodologies, including microbial community cultures,
small-molecule structural assay, quantitative metabolomics, metagenomics, mouse col-
onization and bioinformatic analysis, making it a very extensive and technically heavy
approach. The authors demonstrated the efficacy of this technique in identifying MDM
enzymes in a high throughput manner utilizing medicines from several groups with vary-
ing mechanisms of action [149]. Zimmermann et al. used a related attempt to assess the
in vitro ability of 76 naturally occurring bacteria in the human gut to metabolize 271 orally
administered pharmaceuticals from various groups based on their mode of action. Sur-
prisingly, at least one of the microbes studied was shown to metabolize up to two-thirds
of the medications tested [150]. Furthermore, a single microbe had the ability to digest
up to 95 distinct medicines and they were able to discover distinct drug-metabolizing
gene products that are accounting for the conversion of medicines into metabolites using
metabolomics, mass spectrometry and DNA sequence analysis [150]. Finally, in silico
techniques have been created to enable the characterization of pharmaceuticals and their
metabolites by certain bacterium species [140] as well as the prediction of toxicity events
using data on bacteria composition, drug activity and food preferences [151]. When it
comes to medication metabolism in the human body, more evidence has pointing out the
importance of gut microbiota, as bacteria and their metabolites can affect pharmacokinetics
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and pharmacodynamics, which is a significant finding in context to therapy. In the next
chapter, we will focus on how the microbiome affects traditional CRC therapy.

3.2. Influence of Microbiota on Conventional CRC Therapy

In conventional CRC therapy, chemotherapeutic agents and radiation are used and,
due to their insufficiency, co-treatment with supplements, phytopharmaceuticals or feces
transplantation, with its influence on the microbiome, are becoming increasingly inter-
esting. Chemotherapeutics have been utilized for decades to treat a variety of human
tumors and still represent typical first-line treatment for CRC [152], but are also used in
combination with fluoropyrimidine-based substances and oxaliplatin as well as irinote-
can [153] at the advanced, non-resectable CRC stage. Nonetheless, a substantial number of
patients are likely to experience treatment-related morbidity and mortality due to these
medications [152]. Given that CRC develops in close neighborhood to gut bacteria, new
research has focused on how the gut microbiota influences the efficacy and toxicity of
existing chemotherapeutic treatments [146]. Traditional CRC medicines such as irinotecan,
5-FU and cyclophosphamide have been demonstrated to alter the microbiome diversity of
mice in pre-clinical models as well as in human patients. However, it is still unclear how
this affects the prognosis, as some research revealed conflicting results when it comes to
the role of microbiota in therapy. For example, in an animal experiment, germ-free mice
were much more resistant [154] to powerful anti-cancer agent irinotecan [155] and had
a higher lethal dose than holoxenic mice [154]. This could be due to the development
of metabolites that are harmful to drugs as a consequence of bacterial metabolism. The
authors have not thoroughly investigated the ultimate cause of death of these mice and
did not identify the crucial bacterial species that accounted for this phenomenon. How-
ever, interestingly, irinotecan’s major side effect of diarrhea correlating with intestinal
damage was very rarely observed in germ-free mice compared to holoxenic animals [154],
while irinotecan-treated patients often show severe diarrhea as a side effect. In their liver,
irinotecan is converted to its active form, human topoisomerase I poison SN-38, and then
inhibited by DP-glucuronosyltransferases by adding GlcA (SN-38-G) [156]. This inactive
compound is revived by GUS in the colon, resulting in acute poisoning. Jariwala et al.
discovered the GUS enzymes responsible for SN-38 reactivation in the human gut using
a combination of proteomics and bioinformatic analysis on human feces samples under
the consideration that SN-38 is a harmful metabolite of irinotecan [148]. Meanwhile, it is
known that removing GlcA from SN38-G causes SN38 reactivation, leading to the described
disadvantages for the patients. Inhibition of the GUS enzyme synthesis thereby minimizes
intestinal damage and maintains irinotecan’s anti-cancer activity [156]. These findings im-
ply that the presence of some bacteria is responsible for an increase in treatment-associated
adverse effects leading to the assumption that gut microbiome can influence therapeutic
efficacy. Surprisingly, bacteria appear to have a dual function in cancer treatment, with
studies reporting a synergistic impact of microbiota and therapeutic efficacy, while some
others demonstrate the presence of bacteria as an barrier for the efficacy of drug [153]. With
regard to diseases of the digestive organs, research is constantly being conducted into the
potential effects of nutritional supplements. More than a decade ago, it was shown that
supplementing a high-inulin or oligofructose diet inhibited the growth of a transplantable
tumor in a mouse model. Inulin and oligofructose are fructans that have been found to
increase Bifidobacteria proliferation in the stomach. The inclusion of these supplements to
the animals’ food increased the efficacy of six different chemotherapy medicines, namely
5-FU, doxorubicine, vincristine, cyclophosphamide, methotrexate as well as cytarabine,
implying a prebiotic impact of inulin and oligofructose [157]. An auspicious approach is
offered by phytopharmaceuticals, safe secondary plant compounds with numerous health-
promoting effects ranging from anti-inflammation to tumor containment. The treatment
of CRC cells with resveratrol [7,158,159] or the components of Curcuma longa (turmeric)
curcumin [160] and calebin A [13,161–163] is particularly promising, as these substances
can extensively modulate tumor processes. In in vivo-like models, it was shown that all of
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the three phytopharmaceuticals mentioned above enhance the effect of the cytostatic drug
5-FU [163], and since they alter not only the CRC cells but also the immediate environment
as part of their anti-tumor effect, it is obvious that they can also have an influence on the
intestinal microbiome.

Another interesting approach is fecal microbiota transplantation (FMT), firstly intro-
duced in 1958 for treatment of Clostridium difficile infection (CDI) [164]. Here, up to 80% of
all CDI cases could be treated by assisting in the restoration of a beneficial microbiome in
infected patients. In addition, FMT was found to be successful in a variety of other illnesses,
including inflammatory bowel diseases, diabetes or even autism, thus it became a viable
therapy option [165]. The benefits of this method were also addressed as a way to mitigate
undesirable effects from radiation treatment due to its safety. For CRC treatment, radia-
tion is utilized as a standard therapeutic strategy in conjunction with chemotherapy [6],
where patients may have a variety of severe adverse effects, such as bone marrow and
gastrointestinal damage, thus bacteria have been shown to reduce these adverse effects
of radiation treatment in pre-clinical trials and, furthermore, in various pre-clinical can-
cer mouse models, the gut microbiota has been found to influence even the efficacy of
radiation [166,167]. Furthermore, worth mentioning, it was shown that applying certain
bacteria such as Lactobacillus rhamnosus to mice undergoing radiotherapy had a protective
impact on the intestinal mucosa of the tested animals [168]. Moreover, probiotics were
found to reduce radiation-induced gastrointestinal damage in cancer patients undergoing
irradiation in clinical investigations such as diarrhea [150].

The future of cancer therapy will undoubtedly lie in the investigation of the dual
function of microbiotica in medication outcomes: on the one hand, though bacteria is able
to exacerbate therapy side effects as a result of their metabolism, on the other hand the
existence of microorganisms is critical for the efficacy of cancer therapeutical agents [63,166],
playing a special role in CRC and its treatment because of the bacteria-rich digestive organs.

4. Discussion and Perspectives

The use of bacteria in cancer therapy is often overlooked, although there is great
evidence that this kind of treatment represents a promising chance to cure patients. In fact,
bacteria and their different compounds can act as a double-edged sword when it comes to
CRC, since specific species have been demonstrated as cancer-stimulating and triggering
agents, whereby other bacterial strains show highly selective anti-cancer properties without
cytotoxicity to vital tissue.

Moreover, many of these bacterial agents have only been investigated in pre-clinical
trials and detailed information about their toxins and metabolites is still limited, thus further
research on their mode of action and properties in general is needed. In addition, the risk
of uncontrollable complications of therapeutic bacteriotherapy due to infections represents
another limitation for bacteriotherapy to reach full acceptance in CRC treatment. However,
several attempts have been made to overcome these issues, for example, by attenuating
or even eradicating toxic compounds of bacteria as well as approaches to modify specific
strains to reduce the risk in treatment application. Besides using bacterial agents or their
toxins themselves in CRC therapy, specific bacteria have also been demonstrated to act as
potential drug carriers due to their unique chemical characteristics such as low molecular
weight and hydrophobicity together with their tumor- and metastasis targeting properties,
while showing less side effects than conventional cancer treatment. Additionally, bacteria
are not directly coupled to the specific extracellular or intracellular receptors so that bacterial
anti-cancer peptides are able to prevent various resistance processes [169]. As another
downside of bacteriotherapy the short half-life of bacterial peptides has to be mentioned,
displaying a major problem in the application. However, their chemical modifications
have already been worked on, such as the substitution of D-amino acids, cyclization or
the replacement of labile amino acids among other methods to improve the half-life and
stability to make them more efficient for therapy [170–172].
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Altogether, it is of great importance to understand that bacteria and bacterial agents in
application as well as the composition of our microbiome is a matter of great complexity
and can hardly be considered separately. Therefore, better understanding of bacterial
interactions, their metabolism in context of drug administration as well as effects of our
microbiome are necessary and further use of artificial intelligence and machine learning is
needed to develop customized high-efficiency therapy for individuals suffering from CRC.

5. Conclusions

Overall, bacteria as a novel treatment strategy in CRC and are of major potential in
many aspects, although bacteriotherapy alone may not exert all the therapeutic extent.
Therefore, using bacteriotherapy in the form of preventive, concomitant or as a kind
of anti-cancer agent carrier therapy as well as utilizing the individual microbiome to
develop the most efficient therapy for every individual might help to exploit the full
potential of bacteria-mediated therapy in the fight against CRC. However, more clinical
trials and in vivo studies are necessary as well as further identification of microbiota-specific
features to establish bacteriotherapy as a prestigious strategy in CRC treatment, whereas
the complexity of bacteria and the microbiome together with associated interactions in
therapeutic applications has to be further discussed as a whole in the future.
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Abbreviations

5-FU 5-fluorouracil
Bad Bcl-2-Antagonist of Cell Death
Bak BCL2 Antagonist/Killer 1
Bax Bcl-2-associated X protein
Bcl-1 B-cell lymphoma 1
CD cluster of differentiation
CDI Clostridium difficile infection
CDT cytolethal distending toxin
Cif cycle inhibiting factor
CPE C. perfringens enterotoxin
CRC colorectal cancer
DT diphteria toxin
EF elongation factor
FMT fecal microbiota transplantation
GlcA glucuronic acid
GUS gut bacterial-glucuronidases
IFN interferon
IL interleukin
LLO Listeriolysin O
MDM microbiome-derived metabolism
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MMP matrix metalloproteinase
NF-κB nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells
PCA phenazine 1-carboxylic acid
PDC phenazine 1,6-di-carboxylic acid
PE Pseudomonas aeruginosa endotoxin
TNF tumor necrosis factor
TNF-R Tumor necrosis factor receptor
TLR Toll-like receptor
VEGF Rvesicular endothelial growth factor receptor
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