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ABSTRACT

Extreme and unusual ecosystems such as isolated ancient caves are considered as
potential tools for the discovery of novel natural products with biological activities. Acti-
nobacteria that inhabit these unusual ecosystems are examined as a promising source for
the development of new drugs. In this study we focused on the preliminary estimation of
fatty acid composition and antibacterial properties of culturable actinobacteria isolated
from water surface of underground lakes located in Badzheyskaya and Okhotnichya
caves in Siberia. Here we present isolation of 17 strains of actinobacteria that belong
to the Streptomyces, Nocardia and Nocardiopsis genera. Using assays for antibacterial
and antifungal activities, we found that a number of strains belonging to the genus
Streptomyces isolated from Badzheyskaya cave demonstrated inhibition activity against
bacteria and fungi. It was shown that representatives of the genera Nocardia and
Nocardiopsis isolated from Okhotnichya cave did not demonstrate any tested antibiotic
properties. However, despite the lack of antimicrobial and fungicidal activity of
Nocardia extracts, those strains are specific in terms of their fatty acid spectrum. When
assessing fatty acid profile, we found that polyunsaturated fatty acids were quantitatively
dominant in extracts of Nocardia sp. and Streptomyces sp. grown in different media.
Saturated fatty acids were the second most abundant type in the fatty acid profile. It
was due to palmitic acid. Also, a few monounsaturated fatty acids were detected. The
obtained materials can become a basis for development of approaches to use bacteria
isolated from caves as a biological sources of bioactive compounds to create medical
and veterinary drugs.
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INTRODUCTION

The rapid rise of antibiotic resistance to current antibiotics amongst pathogenic bacteria
represents a large-scale issue in the field of modern medicine and healthcare (Stanton,
2013; World Health Organization, 2015). There are great difficulties in medical treatment
of hospital-acquired infections both in developed and developing countries, which leads
to increase of morbidity and spread of mortality (Khan, Ahmad & Mehboob, 2015).
Multiple antibiotic resistance is observed in different pathogenic microorganisms such
as methicillin-resistant Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae,
Pseudomonas aeruginosa, Acinetobacter spp., etc. (Magiorakos et al., 2012). Moreover,
treatments become more complicated due to low efficacy of existing antibiotics and

a limited number of developments of novel chemically synthetized therapeutic agents
(Grabowski & Schneider, 2007; Grabowski ¢ Kyle, 2007).

Natural products are still referred to promising biotechnological and pharmaceutical
agents for development of and potential new drugs (Newman ¢ Cragg, 2016). It is
known that actinobacterial sources are estimated as about 45% of all microbial bioactive
metabolites with 7,600 of these compounds (80%) being produced by the Streptomyces
species (Hamedi, Poorinmohammad & Wink, 2017). Hence, actinobacteria are a rich and
tremendous source for screening of novel metabolites with potential pharmaceutical
applications (Goodfellow & Fiedler, 2010; Bérdy, 2012). Along with synthesis of natural
compounds, actinobacteria are also an important source of fatty acids. Composition of
cell-wall fatty acids is used for chemotaxonomy of actinobacteria. It also plays a vital
role in resistance of pathogenic actinobacteria as a protection mechanism during therapy
(Hamedi, Poorinmohammad & Wink, 2017).

Even though Streptomyces species undergo a complex life cycle with distinctive
developmental and morphological stages (Hamedi, Poorinmohammad ¢ Wink, 2017,
Bentley et al., 2002), the cell wall is like that of other Gram-positive bacteria, composed of
a simple peptidoglycan mesh surrounding the cytoplasmic membrane. By contrast, cell
walls of Mycobacterium spp., as well as species of related genera including Corynebacterium,
Gordonia, Nocardia and Rhodococcus, are formed by a thick meso-diaminopimelic acid-
containing peptidoglycan covalently linked to arabinogalactan, which is in turn esterified
by long-chain a-alkyl, b-hydroxy fatty acids called mycolic acids (Brennan, 2003; Schaechter,
2009). Also, a number of fatty acids possess both biological and antibiotic activity, such
as pteridic acids, which induce formation of adventitious roots in hypocotyl of kidney
beans and are produced by strain of S. hygroscopicus. Another example of a fatty acid with
biological activity is presented by antifungal antibiotic clethramycin, etc. (Singh, Gupta ¢
Passari, 2018; Igarashi et al., 2003).

Besides, actinobacteria are able to produce various types of biosurfactants that
have antibacterial activity (Seghal Kiran et al., 2010) and play an important role in
bioremediation (Alvarez et al., 2017). However, the secondary metabolism of actinobacteria
is still underexplored. By virtue of genome analysis, it was estimated that actinobacteria
have a number of cryptic biosynthetic gene clusters. Thus, this phylum can produce
considerably higher numbers of lucrative secondary metabolites than it was expected
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during traditional screenings of secondary metabolites (Bachmann, Van Lanen ¢ Baltz,
20145 Derewacz et al., 2014a; Undabarrena et al., 2017). However, the approach of one
strain-many compounds (OSMAC) is still relevant for discovery of new natural products
(Rateb et al., 2011a; Hewage et al., 2014). Using different production media and conditions
for cultivation of microorganisms, it is possible to activate expression of some silent
biosynthetic genes (Rateb et al., 2011D).

Originally, actinobacteria were known as a group of soil microorganisms producing a
number of biologically active compounds. However, biotechnological capacity of classical
or terrestrial environment microorganisms is reduced or exhausted in the light of the rising
problem of antibiotic resistance, descending trends of classical screening new biologically
active compounds, and low level of successful clinical trials of new drugs. According to
the main classical hypothesis, the problem of antibiotic resistance can be partially solved
by screening of novel and unstudied sources for isolation of novel microorganisms, their
metabolic pathways and use of modern approaches of molecular biology, and, as a result,
new natural products with biological activity (Bérdy, 2012).

Exploration of unusual and extreme ecosystems and habitats is one of the most promising
ways for screening and isolation of rare strains of actinobacteria. These studies may
increase the frequency of revealing new chemical molecules with biological activity, hence,
development of novel medicines (Hamedi, Mohammadipanah & Ventosa, 2013; Yuan et
al., 20145 Liao et al., 2016). Extremophilic microorganisms have specific mechanisms of
adaptation to extreme conditions by producing unique secondary metabolites that promote
their survival (Sdnchez et al., 2010).

One of representative examples of unusual and extreme ecosystems is ecosystem of
ancient caves rich with microorganisms (De Lurdes ¢ Enes Dapkevicius, 2013; Man et al.,
2015; Lavoie et al., 2017). Caves are nutrient-limited ecosystems characterized by stable
temperatures, relatively high humidity coupled with oligotrophic conditions, and the
absence of light (Northup, Kathleen ¢ Lavoie, 2001; Schabereiter-Gurtner et al., 2002).

As it was mentioned in a number of studies, actinobacteria is one of the dominant
groups of microorganisms among cave microbial communities in different underground
environments (Herzog Velikonja, Tkavc & Pasic, 2014; Wu et al., 2015; Lavoie et al., 2017).
However, both microbial diversity of Siberian caves and biotechnological potential of
natural products produced by those bacteria are still underexplored. There are several
ancient caves located in Siberia that are characterized by low temperatures, great length,
and long history. Previously, we published materials describing some biotechnological
properties of several actinobacteria strains isolated from moonmilk speleothem collected
in Bolshaya Oreshnaya cave (Axenov-Gribanov et al., 2016). In this study, we focused
on preliminary estimation of fatty acids composition and antibacterial properties of
culturable actinobacteria in water surfaces of underground lakes located in Badzheyskaya
and Okhotnichya caves. We hypothesized that the microbial community of Siberian caves
is an underexplored source for screening of new antibiotic-producing microorganisms
such as actinobacteria, and can be a promising source for development of novel natural
products.
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Table 1 Brief comparative description of Badzheyskaya and Okhotnichya caves.

Badzheyskaya cave Okhotnichya cave
Type Karstic
Length, m 6,000 5,700
Amplitude, m 170 77
Depth 170 77
Average temperature, °C 3-5 1.26
Period of formation Paleozoic era (Ordovic) Upper Proterozoic era
Year of discovery 1964 2006
Current recreational load Low High

MATERIAL AND METHODS

Cave description, sampling sites, and isolation of actinobacteria

The karstic cave Badzheyskaya is located near Stepnoy Badzhey village in Krasnoyarsk
region (55°14'32”N 93°46/32"E) (Dublyanskiy, 1979; Ananyeva, Ananyev & Zadisensky,
2013). Badzheyskaya cave is the largest enclosure of conglomerates in the world formed in
the Quaternary period. Badzheyskaya cave shows a great number of peculiar and various
passages, groths and galleries and it has an underground lake and siphons. There is an
abundance of clayey substances, peddle stones, and blocks of conglomerates. The cave has
sparse speleothems including a small number of moonmilk speleothem, stalactites, and
stalagmites. The known dimensions of the Badzheyskaya cave is 6,000 m in length, 170 m
deep and 170 m wide. The average annual temperature in the cave fluctuates from 3 to
5 °C (Khizhnyak et al., 2003).

Okhotnichya cave is a karstic cave located in the Irkutsk region (52°8'18"N;
105°27'49"E). The cave length is 5,700 m. The amplitude of the cave is 77 m (Osintsev,
2010). Okhotnichya is the third in length among the known caves in Baikal region (Bazarova
et al., 2014). It was formed in the Upper Proterozoic era. The cave is described by a variety of
galleries and multifarious formations, namely stalactites, stalagmites, corallite, cave pearls,
red-brown clays, and also, a great number of osteological remnants. Moreover, there are
three small ponds and a longstanding glacier in the cave. The average annual temperature
is 1.26 °C. Also, bats were found in the cave (Klementyev, Korshunov ¢ Osintsev, 2007).
Table 1 gives a brief comparative description of the studied caves.

For actinobacteria isolation, 10 mL of water from surface of underground lakes in
Badzheyskaya and Okhotnichya caves were collected in triplicate by sterile syringes in
2014. The obtained samples were transported to the laboratory in thermostatic conditions
(3-5 °C), where we added equal volume of sterile 40% glycerol to each. The obtained
samples were stored at —20 °C before isolating the strains.

Actinobacteria strains were isolated by triplicate plating 100 uL of each water samples on
solid nutrient media. To isolate the actinobacteria strains, we used MS mannitol soy flour
agar (soy flour —20 g, D-mannitol —20 g, agar —20 g, tap water —1 L, pH 7.2) (Kieser et al.,
2000) supplemented with the antibiotics cycloheximide (50 ug/mL) and phosphomycin
(100 ug/mL). Aliquots of collected samples (500 uL) were preheated for 5 min at 50 °C to
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activate spore germination and inactivate vegetative cells of other bacteria. The plates were
incubated for 30 days at 28 °C and assessed for appearance of actinobacterial colony every
day. Actinobacteria-like strains were selected based on colony morphology: solid density
of colonies, growth inside of the agar media and steady border of the colonies (Kieser et
al., 2000). The colonies were transferred from the primary plates to the fresh MS plates.
Pure cultures were obtained for all colonies identified as actinobacteria on the primary
plates. Several isolated strains were deposited in the Russian Collection of Agricultural
Microorganisms (RCAM), St. Petersburg, Russia (Act 471/12 of 15.12.2017).

16S rRNA gene sequencing and phylogenetic analysis

For isolation of total DNA, strains were grown in 10 mL of TSB medium at 28 °C for 3
days at 180 rpm. Total DNA was isolated using the salting out procedures as described in
(Kieser et al., 2000). To identify the isolates, the 16S rRNA gene was amplified by PCR with
the actinobacteria-specific and universal primers. Actinobacteria-specific primers were:
F-Act-235(CGC GGC CTA TCA GCT TGT TG) and R-Act-878(CCG TAC TCC CCA GGC
GGG G) (Stach et al., 2003). Universal eubacterial primers included: 8F (AGA GTT TGA
TCC TGG CTC AG) and 1492R (TAC GGY TAC CTT GTT ACG ACT T) (Shieh, Martin
& Millar, 1998). The PCR reaction was performed using the ScreenMix 5X PCR kit (Kat.
PK041L, Evrogen, Russia). PCR was performed in a TGradient Thermocycler (Biometra,
Gottingen, Germany) in the volume of 25 uL. The PCR parameters were as follows: initial
denaturation at 95 °C for 5 min, followed by 25 cycles of 95 °C for 40 s, 49-52 °C for 25 s,
and 72 °C for 110 s, and final elongation at 72 °C for 5 min.

The PCR products were purified using QIAquick Gel Extraction Kit (Qiagen, Venlo, The
Netherlands) and sequenced with the use of actinobacteria-specific or universal primers.
Mixture of PCR product with amplification primers were sent to the Syntol company
(Moscow, Russia) to sequencing of PCR products by Sanger methods (Sanger, Nicklen
¢ Coulson, 1977). Forward and reverse sequences were assembled with Bioedit software
(version 7.2.5). The obtained sequences were deposited in the GenBank with the following
numbers: MG971344-MG971360 (Table 2) and aligned with the bacterial 16S rRNA gene
sequences from the EZtaxon database (Kim et al., 2012; Table S1).

For phylogenetic analysis, the sequences were aligned using the MEGA software (version
7.0) (Kumar, Stecher & Tamura, 2016). The evolutionary history was inferred using the
maximum parsimony method. The percentage of replicate trees, in which the associated
taxa clustered together in the bootstrap test (1,000 replicates), is shown next to branches
(Felsenstein, 1985).

Cultivation and extraction

The isolated strains were cultivated in 30 mL of production medium in 250 mL shake flasks
with baffles for 5 days at 28 °C at 180 rpm shaking rate. Four different liquid media were
chosen to estimate the metabolite production and fatty acids content. All chemicals used in
this research were manufactured by Sigma-Aldrich (St. Louis, MO, USA), MP-biomedicals
(Illkirch, France), and Bacto (France). These media are: NL19 (soy flour — 20 g, D-mannitol
—20 g, tap water — 1 L, pH 7.2), ISP2 (yeast extract — 4 g, malt extract — 30 g, starch—4 g,
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Table 2 Actinobacteria strains isolated from water of underground lakes in Badzheyskaya and Okhotnichya caves.

Cave  Strain Accession Close strains Accession Identity, Query
number number % cover, %
of isolates of isolates
in NCBI in NCBI
database database

Streptomyces globosus strain T30 KU324456.1
Streptomyces sp. -, . . N
3 5 -1- 5 . 100 100
IB2014188-1 MG971353 Streptomyces flavogriseus strain SN1301-1-14 KT597554.1
Streptomyces sp. MOLA 1600 KM274042.1
Streptomyces sp. strain W30 KY402241.1
Streptomyces sp. - .
3 5 51. 100 100
IB2014188-2HS MG971351 Streptomyces atratus strain T11 KU324451.1
Streptomyces yanii strain BCCO 10 KP718604.1
Streptomyces sp. SIB 16S KF939599.1
Streptomyces sp. .
35 . : 5. 100 100
IB2014188-2 MG971352 Streptomyces sp. 30G KF772625.1
Streptomyces yanii strain HHI1 KJ573062.1
Streptomyces sp. MOLA 1610 KM274041.1
Streptomyces sp. . .
5 : . KR81 2.1 99 99
IB2014188-3HS MG971349 Streptomyces sp. JSM 147831 R81778
Streptomyces cyaneofuscatus strain CB2]7 KJ531615.1
Streptomyces sp. 25BA11Y12 KF366674.1
Streptomyces sp. . . . -
3 5 . 99 99
IB2014188-3 MG971350 Streptomyces atroolivaceus strain 3H1 KF554170.1
Streptomyces atroolivaceus strain Ca709 KF317994.1

< Streptomyces scabiei isolate IDO1-16¢ DQ861638.2

>~

% }SgZeg ZT‘)’?—ZSPSII; MG971348 Streptomyces scabiei ?tmin RL-34 NR_025865.2 95 99

_a: Streptomyces sp. strain NLSt2 KX950889.1

2 Streptomyces deccanensis strain QY-3 MG751325.1

s Streptomyces sp. . . .

1971354 . MG575211.1 96 100
1B2014188-4 MG971354 Streptomyces sp. strain KL33 G575
Streptomyces neyagawaensis strain ATCC 27449 NR_025868.2
Streptomyces sp. strain USC-16007 MF773763.1
Streptomyces sp. . .
3 . (613504. 100 100
IB2014188-6HS MG971346 Streptomyces sp. strain JXJ 0170 KY613504.1
Streptomyces lunaelactis strain 121 MG009011.1
Streptomyces sp. strain USC-16024 MF773780.1
Streptomyces sp. . .
3 . - MF .1 97 99
1B2014188-6 MG971347 Streptomyces sp. strain USC-16014 773770
Streptomyces nigrescens strain USC008 KX358631.1
Streptomyces sp. ACT4(2014) KJ187410.1
Streptomyces sp. . . .
31971345 973961. 95 98
IB2014188-7 MG971345 Streptomyces pratensis strain EA5 KU973961.1
Streptomyces cavourensis strain xsd08096 FJ481053.1
Streptomyces anulatus strain TCA20000 KC462526.1
Streptomyces sp. .
& . 100 100
IB2014188-8 MG971344 Streptomyces sp. QLS20 JQ838127.1
Streptomyces sp. QLS56 JQ838100.1
) Nocardia cummidelens strain AQ11 MF928385.1
Nocardia sp. MG971356  Nocardia sp. LCO57 JQO14421.1 99 98

IB2014188-1HS

Nocardia cummidelens strain DR02

MF928296.1

(continued on next page)
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Table 2 (continued)

Cave  Strain Accession Close strains Accession Identity, Query
number number % cover, %
of isolates of isolates
in NCBI in NCBI
database database

. Nocardia cummidelens strain AQI1 MF928385.1
Nocardia sp. MG971360 Nocardia cummidelens strain DR02 MF928296.1 99 98
1B2014179-1 . ’
Nocardia sp. [SZCL7 KU643201.1
J Nocardia sp. DP_00094 KM274110.1
Nocardia sp. o L.
MG 5 3 . 98 99
IB2014179-2HS MG971359 Nocardia ignorata LN867132.1
Nocardia soli strain en43 KP137544.1

S, J Nocardia sp. 01-Gi-008 GU574061.1

< Nocardia sp. . . .

2 MG97135 KSI KC113164.1 100 100

£ IB2014179-3HS 1G971358 Nocardia soli strain KS J

§O Nocardia cummidelens strain HBUM174688 FJ532399.1

o y Nocardia fluminea LN774198.1

Nocardia sp. .
MG97135 . ) 98.1 98 99
B2014179-4 1G971357 Nocardia sp. QLS54 JQ838098
Nocardia sp. 01-Gi-008 GU574061.1
Nocardiopsis dassonvillei subsp. albirubida NRC2AzA ~ 1.C366927.1
Nocardiopsis s Nocardiopsis dassonvillei subsp. albirubida strain MG661750.1
psis sp- MG971355  OAct926 99 99

1B2014179-5

Nocardiopsis dassonvillei subsp. albirubida strain VIT =~ EU430536.1
E-062983

tap water — 1 L, pH 7.3), SGG (starch soluble — 10 g, glucose — 10 g, glycerol — 10 g,
cornsteep powder— 2.5 g, bacto peptone — 5 g, yeast extract —2 g, NaCl — 1 g, CaCO3 — 3
g, tap water — 1 L, pH 7.3). To compare production efficiency of secondary metabolites
of strains cultivated in above rich media, we used minimal medium (MM) that contained
only glucose as a carbon source. Composition of this medium is as follows: L-asparagine
-0.5 g, K;HPO4 - 0.5 g, MgSO4 x 7H,0 - 0.2 g, FeSO4 x 7H,0 - 0.01 g, glucose — 10 g,
distilled water — 1 L, pH 7.0- 7.2).

Extraction of secondary metabolites

The grown cultures were centrifuged at 3,000 rpm for 10 min to separate the biomass and
cultural liquid. Then, secondary metabolites were extracted from the cultural liquid with
equal volume of ethyl acetate. To extract natural products from the biomass, we used 10 mL
of acetone:methanol mixture (ratio 1:1). The extraction was performed during 1 h on a
rotator at 100 rpm at room temperature. The obtained crude extracts were evaporated in
vacuo using IKA RV-8 rotatory evaporator (IKA, Staufen, Germany) at 40 °C and dissolved
in 0.5 uL of methanol (Axenov-Gribanov et al., 2016).

Extraction of fatty acids from cultural liquid

FA were extracted from cultural liquid according to the modified assay described in
(Matyash et al., 2008). For this part of our study, we added 0.5 volume of extracting
mixture MTBE:MeOH:H,O (ratio 10:3:2.5) to 1 volume of cultural liquid; the mixture
was incubated in S4 Skyline shaker (Elmi, Latvia) for 1 h at room temperature and
then centrifugated at 1,000 rpm for 10 min. The upper phase was transferred to the
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http://www.ncbi.nlm.nih.gov/nuccore/LN774198.1
http://www.ncbi.nlm.nih.gov/nuccore/JQ838098.1
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rotor evaporator flask. Then, we added 10% of extracting mixture to the lower phase,
and extracted FA again. The obtained upper phase was combined with the first fraction
and evaporated in vacuo at 40 °C using a rotatory evaporator. The concentrated extract
in amount of 1-2 mL was transferred into glass vials. Rotor evaporator flasks were
washed three times with the mixture of CHCl3:MeOH:H,O (ratio 60:30:5), and their
content was transferred to glass vials with semidry extracts. Finally, the obtained mixture
was totally evaporated using a flow nitrogen evaporator at 40 °C and dissolved in
CHCl3:methanol:water (ratio 60:30:5) solution in final concentration 1 mg/100 uL.

Extraction of fatty acids from cell biomass

FA were extracted from cell biomass according to the modified assay described in (Lewis,
Nichols & McMeekin, 2000). Bacterial cells obtained after centrifugation were frozen
overnight at —80 °C. Then, the cells were defrosted and washed three times with 5-7
mL of 0.9% NaCl solution with simultaneous intensive shaking on vortex. Then, the
samples were placed in a sonic bath for 10 min with further centrifugation at 3,000 g for
10 min. Supernatant was discarded each time to obtain the washed cell biomass. Then, the
procedure of FA isolation was similar to the one described above for FA extraction from
cultural liquid.

Estimation of fatty acids composition

We used gas chromatography to analyze fatty acid composition of the total fatty acid
extracts of isolated strains. Fatty acid methyl esters (FAMEs) were identified using a
“Chromatek-Crystall-5000.2” with a 2D sample injector (Chromatek, Yoshkar-Ola,
Russia) gas chromatograph with a flame-ionization detector and a Zebron ZB-FFAP
capillary gas chromatographic column. An isothermal column configuration was used. The
temperature of detector and evaporator was 240 °C. The internal standard was C 22:0 FA.
Chromatek-Analytik-5000.2 software was used for data recording and integration. FAMEs
were identified with standard mixtures Supelco 37 FAME mix (Sigma Aldrich, St. Louis,
MO, USA) and by comparing the equivalent lengths of carbon chains and table constants
according to (Cabrini et al., 1992; Gago et al., 2011).

Antimicrobial activity assay of extracts from isolated strains
Antimicrobial activities of the extracted metabolites were tested using the disk diffusion
method (Burdass, Grainger ¢ Hurst, 2001). 100uL of bacterial and fungal 12-h test cultures
were plated and dried on solid LB (for bacteria) and YPD (for fungi) media. Thirty uL
of each crude extract dissolved in methanol was loaded on 5 mm diameter paper discs,
and the disks were dried naturally. Paper disks loaded with 30uL of pure methanol were
used as a negative control. Then, the disks were placed on solid LB or YPD agar media.
The plates were incubated 12-24 h at 37 °C for bacteria and 30 °C for fungi (Pinheiro
et al., 2018). Several bacterial and fungal test cultures, such as Bacillus subtilis ATCC
66337, Staphylococcus carnosus ATCC 51365, Pseudomonas putida KT 2440, Escherichia
coli ATCC25922, Saccharomyces cerevisiae BY4742 and Candida albicans DSM1665 were
chosen to test antibiological properties. The test cultures were obtained from Leibniz-
Institute DSMZ-German Collection of Microorganisms and Cell Cultures (Braunschweig,
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Germany). The activity against C. albicans was estimated in intergovernmental veterinary
laboratory of the federal service for veterinary and phytosanitary supervision (Irkutsk). The
zones of inhibition around paper disks were measured manually with accuracy £1 mm.

RESULTS

Isolation and phylogenetic analysis of actinobacteria from water
surface of underground lakes in Siberia

A total of 17 culturable actinobacteria strains were isolated from water surface of
underground lakes in Badzheyskaya and Okhotnichya caves based on their morphological
characteristics. Twelve out of 17 strains were isolated from Badzheyskaya cave, and the
other five strains were isolated from Okhotnichya cave (Table 2).

The 16S rRNA gene sequence-based phylogenetic analysis revealed that 10 out of 11
strains isolated from Badzheyskaya cave belonged to the genus Streptomyces. Also, we
isolated one strain of the Nocardia genus from this cave. Five other strains were isolated
from Okhotnichya cave and they belonged to Nocardia and Nocardiopsis genus. Thus, in
Badzheyskaya cave, a group of actinobacteria that belonged to Streptomycetaceae family
was found as a dominant group of culturable actinobacteria, unlike in Okhotnichya cave,
where the dominant group of culturable actinobacteria was presented by representatives of
Nocardiaceae and Nocardiopsaceae families. As Fig. 1 shows, the obtained actinobacterial
isolates are clustered with reference sequences of related species. Some of our strains
(Streptomyces sp. 1B2014188-6HS and Streptomyces sp. [B2014188-7) showed a close
similarity to actinobacteria previously found in caves, such as Streptomyces lunaelactis
strain (Table 1, Table S1, Fig. 1). This species was isolated from a moonmilk speleothem
collected in Grotte des Collemboles’ (Comblain-au-Pont, Belgium) and described as a
novel producer of ferroverdin A (Maciejewska et al., 2015). Another strain—Streptomyces
sp. IB2014188-4HS—showed a close similarity with Streptomyces scabiei. The latter is
known as a phytopathogen (Bignell, Fyans ¢~ Cheng, 2014). All close representatives of
Nocardia sp. were presented by nonpathogenic forms. A species close to the isolated strains
of Nocardiopsis was Nocardiopsis dassonvillei. The latter is reported to be a rare infection
agent for humans. This agent has been implicated in cutaneous, pulmonary, eye, nasal and
disseminated infections (Bennur et al., 2015; Shivaprakash et al., 2012).

Also, we compared the sequences of the isolated strains with other representatives of
Streptomyces, Nocardia and Nocardiopsis genera from other caves and water substrates. As
Figs. S1-53 show, our strains related to Nocardia and Nocardiopsis genera did not form
tight different clades and were characterized by low similarity to other species registered
in Ez Taxon database (Table S1). Representatives of Streptomyces strains isolated from
Siberian caves form clades with other representatives of strains previously found in water
sources (in case of Streptomyces sp. IB2014188-6). Also, some of isolated strains form
subclades in the tree. However, in general the absence of tight clades of isolated strains
could be explained by ecology of isolated actinobacteria and their common distribution in
environment (Schaechter, 2009).
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Figure 1 Maximum parsimony analysis of strains isolated from Badzheyskaya and Okhotnichya caves.
The evolutionary history was inferred using the Maximum Parsimony method. Tree #1 out of 10 most
parsimonious trees (length = 169) is shown. The consistency index is (0,829060), the retention index is
(0,983065), and the composite index is 0,866726 (0,815020) for all sites and parsimony-informative sites
(in parentheses). The percentage of replicate trees in which the associated (continued on next page...)

Full-size G DOI: 10.7717/peer;j.5832/fig-1
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Figure 1 (...continued)

taxa clustered together in the bootstrap test (1,000 replicates) are shown next to the branches. The MP tree
was obtained using the Subtree-Pruning-Regrafting (SPR) algorithm with search level 1 in which the ini-
tial trees were obtained by the random addition of sequences (10 replicates). The tree is drawn to scale,
with branch lengths calculated using the average pathway method and are in the units of the number of
changes over the whole sequence. The analysis involved 70 nucleotide sequences. All positions contain-
ing gaps and missing data were eliminated. There were a total of 404 positions in the final dataset. Evo-
lutionary analyses were conducted in MEGA7. Supplement: Green & bold strains—strains isolated from
Badzheyskaya cave; Gray & bold strains—strains isolated from Okhotnichya cave.

Analysis of biological activity of isolated strains

Antibiotic activities of the isolated strains are presented in Table 3 and Tables S2-S5.
Ten (59%) out of 17 tested isolates showed antibiotic activity against at least one tested
bacterial or fungal culture. The other seven (41%) strains (Streptomyces sp. 1B2014188-
3HS, Nocardia sp.IB2014188-1HS, Nocardia sp. IB2014179-1, Nocardia sp. 1B2014179-2HS,
Nocardia sp. IB2014179-3HS, Nocardia sp. IB2014179-4, and Nocardiopsis sp. IB2014179-5)
did not inhibit growth of any tested microorganisms under the employed conditions of
cultivation. Among the seventeen isolates, only three strains (Streptomyces sp.IB2014188-4,
Streptomyces sp.IB2014188-2HS and Streptomyces sp. IB 2014188-1) grown in SGG and ISP2
media appeared to have a broad spectrum of antibiotic activity against all test organisms.

Eight (80%) out of ten mentioned active strains cultivated in the tested media
inhibited growth of both Gram-positive and Gram-negative bacteria. Crude extracts
obtained from the strains Streptomyces sp. IB2014188-1, Streptomyces sp. 1B2014188-
2HS, Streptomyces sp. 1B2014188-4 and Streptomyces sp. 1B2014188-7 were found to
inhibit all Gram-positive and Gram-negative bacteria when they were grown in ISP2
medium. Five strains (Streptomyces sp. IB2014188-2HS, Streptomyces sp. IB2014188-2,
Streptomyces sp. IB2014188-4, Streptomyces sp. IB2014188-7 and Streptomyces sp. IB2014188-
8) demonstrated inhibitory effects against B. subtilis, S. carnosus, E. coli and P. putida after
cultivation in SGG medium. In addition, two strains—Streptomyces sp. IB2014188-4HS
and Streptomyces sp. IB2014188-6—were active against all bacteria while cultivated in NL19
medium and MM medium, respectively.

One extract of the strain Streptomyces sp. IB2014188-1 obtained from SGG medium
was able to inhibit growth of all tested Gram-positive microorganisms but did not inhibit
growth of Gram-negative bacteria. Growth of B. subtilis was hindered by three strains,
including Streptomyces sp. IB2014188-1 and Streptomyces sp. IB2014188-4HS grown in MM
medium and Streptomyces sp. 1B2014188-6HS grown in NL19 medium. We did not find
specific ability of strains to inhibit growth of Gram-negative bacteria.

Eight out of ten mentioned active strains cultivated in the tested media inhibited
growth of fungi. Four of them, including Streptomyces sp. IB2014188-2HS, Streptomyces
sp. IB2014188-3, Streptomyces sp. IB2014188-4HS and Streptomyces sp. IB2014188-4 were
active to inhibit growth of both S. cerevisiae and C. albicans. Streptomyces sp. IB2014188-3
strain was able to inhibit growth of fungi but did not inhibit growth of bacteria under all
tested conditions.
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Table 3 Antibiotic activity of isolated strains grown on NL19, ISP2, SGG and MM media.

Strain Medium Test cultures
B. subtilis S. carnosus E. coli P. putida S. cerevisiae C. albicans
NL19
Streptomyces sp. B ISP2 CL, BM CL, BM CL, BM CL, BM CL
2014188-1 SGG CL CL CL
MM CL CL
NL19 BM
Streptomyces sp. IB ISP2 CL, BM CL, BM CL, BM CL, BM CL, BM* CL, BM
2014188-2HS SGG CL CL, BM CL CL CL', BM BM
MM
NLI19
Streptomyces sp. 1B ISP2
2014188-2 SGG CL CL CL CL CL
MM
NL19 CL*, BM* BM
Streptomyces sp. 1B ISP2 BM*
2014188-3 SGG CL', BM
MM BM BM
NL19 CL CL CL CL
Streptomyces sp. 1B ISp2 CL
2014188-4HS SGG
MM CL
NL19 CL CL, BM CL, BM CL, BM CL CL
Streptomyces sp. 1B ISP2 CL, BM CL, BM CL, BM CL, BM CL*, BM
2014188-4 SGG CL CL, BM CL, BM CL, BM CL%, BM* CL, BM
MM CL, BM CL, BM CL, BM CL CL, BM
NL19 CL BM
Streptomyces sp. 1B ISP2
2014I188-6HS SGG
MM BM BM BM
NLI19
Streptomyces sp. 1B ISP2
2014I88-6 SGG
MM CL CL CL CL
NL19 CL, BM CL CL
Streptomyces sp. 1B ISP2 BM BM
2014188-7 SGG CL CL CL CL
MM CL, BM
NL19
Streptomyces sp. 1B ISP2
2014188-8 SGG CL, BM CL, BM CL, BM CL, BM
MM

Notes.
CL, cultural liquid extract; BM, biomass extract.
2zone of inhibition more than 20 mm.
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Figure 2 Differences of quantity of total (n — 4) and (n — 6) PUFA in cell biomass of Nocardia sp. and
Streptomyces sp. isolated from underground lakes.
Full-size Gal DOI: 10.7717/peer;j.5832/fig-2

Along with cultivation of strains in nutrient-rich liquid media, growth of strains in poor
MM media led to synthesis of fungicidal compounds. MM medium extracts obtained from
three Streptomyces strains (Streptomyces sp. I1B2014188-3, Streptomyces sp. IB2014188-7
and Streptomyces sp. IB2014188-4) showed activity against yeasts. Also, some specific
activity intended to hinder growth of C. albicans was found. Thus, strains Streptomyces
sp. IB2014188-1, Streptomyces sp. IB2014188-2 and Streptomyces sp. IB2014188-7 inhibited
growth of pathogenic C. albicans but did not inhibit growth of S. cerevisiae. Also, a multiple

activity of strains against fungi was observed in minimal nutrient media.

Estimation of fatty acid composition in isolated strains

In this study we estimated 60 parameters for each extract. Here, we present the summary
data. When assessing the fatty acid (FA) profile, we found that polyunsaturated fatty acids
(PUFA) were dominant quantitatively in the extracts of Nocardia and Streptomyces grown
in different media. Saturated fatty acids (SFA) were the second most abundant type in the
fatty acids profile. It was due to palmitic acid. Also, a few monounsaturated fatty acids
(MUFA) were detected (Figs. 2—7; Table S6).

It was determined that fatty acid profiles of Nocardia and Streptomyces strains were
significantly different. Primarily, it is linked to the cell wall composition of those
microorganisms and their biosynthetic capabilities. Significant differences of total PUFA
due to dominant class (n —4) PUFA and minor (n—6) PUFA were shown for extracts
from cell biomass. Total amount of (n —4) PUFA in cell biomass of Nocardia genera
was 30.74-51.07%, while total amount of (n —6) PUFA was 0.51-4.16%. Regarding
representatives of Streptomyces genera, it was demonstrated that total amount of (n—4)
and (n—6) was lower and varied in the range 23.12-41.33% for (n—4) and in the range
0.44-1.83% for (n — 6). It was established that PUFA prevailed in the FA profile of the
investigated bacteria. Besides, the fatty acids (n —4) family prevailed in the PUFA because
of C22:5 (n—4). In terms of amount, SFAs took the second place (Fig. 2).
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Figure3 Assessment of (n — 9) and (n — 3) content of PUFA in cultural liquids of Nocardia and Strep-
tomyces.
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FA profile of cultural liquids of Nocardia and Streptomyces was characterized by SFA
dominance. The SFA level for Nocardia was 40.75-63.85%, while for Streptomyces it was
17.22-62.69%. The second most abundant class was MUFA. MUFA levels in representatives
of Nocardia sp. varied in the range 13.75-47.01% of overall fatty acid content. For
Streptomyces spp. strains, it varied in the range 3.71-47.01% of the overall fatty acid
content. Also, it should be noted that we detected significant amount of MUFA —C18:1
(n—9), oleic acid, and C16:1(n—7), palmitoleic acid. Figure 3 shows FA profile of cultural
liquid of the isolated Nocardia and Streptomyces strains. Differences between those two
genera were determined in terms of (n—9) and (n—3) PUFA (Fig. 3).

Assessing the fatty acid content in cultural liquid of Nocardia strain cultivated in
different media, we found transgression of FA profiles. Thus, the FA profile obtained in
case of bacterial growth in NL-19 medium significantly differs in terms of SFA and short
chain fatty acids (SCFA) (Fig. 4).

FA profile of Nocardial cell walls grown on NL-19 medium was also different from FA
profile of bacteria grown in other media (Fig. 5). Increased level of dominant (n —4) PUFA
as well as (n— 3) PUFA and (n— 6) PUFA was detected in that medium. At the same time,
after analysis of FA levels of cultural liquid of Streptomyces it was established that the FA
profile was greatly different as compared with samples grown in MM medium (Fig. 6).

Analysis of medium effects on the FA profile of cell biomass in Streptomyces revealed
that bacteria growth on MM and ISP2 media is characterized by common FA profile in
comparison to FA profile of bacteria cultured in NL-19 and SGG media. The latter pair has
the minimal transgression (Fig. 7).

Thus, it was shown that despite the lack of antimicrobial and fungicidal activity of
Nocardia extracts, those strains were exceptional in terms of their FA spectrum. Nocardia
isolated from underground lakes of the caves contained high levels of PUFA from different
classes, mainly (n —4) and SFA, in cultural liquid. PUFA was dominant in cell biomass.
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Figure 5 Discriminant analysis of FA profile based on major sums of different classes of FA (SCFA,
SFA, MUFA, (n —9) PUFA, (n —7) PUFA, (n — 6) PUFA, (n —4) PUFA, (n — 3) PUFA, PUFA) in cultural
liquids of Nocardia after cultivating in different nutrient media.
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Even though many fatty acids possess antimicrobial activity, we cannot link antibiotic
activity of the strains with the particular type of fatty acids. The activity of Streptomyces
strains might be linked to both major and minor fatty acids including MUFA (Agoramoorthy
et al., 2007, Golgbiowski et al., 2014). The most abundant monounsaturated fatty acids are
palmitoleic and oleic acids. They are precursors of polyunsaturated fatty acids of the (n—7)
and (n—9) families, respectively.

We found that oleic acid 18:1 (n—9) prevailed in MUFA. The level of oleic acid ranged
11.89-19.88% of total FA in medium MM in the strains Streptomyces sp. 1B2014188-2,
Streptomyces sp. 1B2014188-1, and Streptomyces sp. IB2014188-3. It was the highest level
of FA in comparison with other media. At the same time, concentration of oleic acid
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18:1 (n—9) was 18.58% of total FA in strain Nocardia sp. IB2014179-3HS grown in SGG
medium.

It should be noted that the cultural liquid of strains Streptomyces sp. IB2014188-6HS
and Streptomyces sp. IB2014188-4HS grown on SGG medium contained another MUFA
—palmitoleic acid, C16:1 (n—7) in levels 22.04% and 19.91% of total FA, respectively. The
high content (21.45%) of that fatty acid was noted for the Streptomyces sp. IB2014188-4HS
strain grown in MM medium.

During the present study it was shown that the obtained strains extracellularly synthesize
linolenic acid C18:3 (n— 3) that is essential for humans. For the strains Streptomyces sp.
[B2014188-1HS, Streptomyces sp. IB2014188-2HS, Nocardia sp. IB2014179-1HS, Nocardia
sp. IB2014179-2HS and Nocardia sp. 1B2014179-3HS grown in NL-19 medium, the linolenic
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acid level was 23.70-26.19% of total FA; it was the highest level in comparison with other
media. Besides, the level of linoleic acid in the strains Streptomyces sp. 1B2014188-2,
Streptomyces sp. IB2014188-3, Nocardia sp. 1B2014179-1, Nocardia sp. IB2014179-4 grown
in the same medium was 13.51-25.31% of total FA in comparison with other PUFA.

DISCUSSION

In this study we estimated the diversity of culturable actinobacteria strains that inhabit
water surface of underground lakes in Badzheyskaya and Okhotnichya caves. This is the
first study for those Siberian caves. Here, we analyzed their antimicrobial properties and
fatty acids composition.

Dominance of culturable strains related to the genus Streptomyces in Badzheyskaya
cave found in this study is not surprising, since previous investigations show high
occurrence of this genus all over the world (Hamedi, Poorinmohammad ¢ Wink, 2017)
and especially in underground environments (De Leo et al., 2012; Nimaichand et al., 2015;
Maciejewska et al., 2016). Members of this genus the Streptomyces genus are capable of
using various mechanisms of competition including rapid limited-nutrient utilization
combined with interference competition (Vaz Jauri et al., 2013; Schlatter ¢ Kinkel, 2014).
Also, they produce most of antibiotics and natural products used in pharmacy and medicine
(Goodfellow & Fiedler, 2010; Bérdy, 2012; Riquelme et al., 2017).

However, the absence of culturable Streptomyces in Okhotnichya cave could be explained
by specific hydrochemistry composition or high levels of iron or sulfur in the lake water,
and low level of oxygen. The above data characterizing this hypothesis are not officially
presented in the literature due to location and limited knowledge about this lake and its
ecosystem. The fact that we isolated Nocardiopsis representatives in this water may indirectly
confirm it. It is well known that this bacteria genus prevails as free-living entities in different
ecosystems, including extreme conditions, such as hypersaline habitats on account of their
salt-, alkali- and desiccation-resistant behavior (Bennur et al., 2015). Also, there is another
open question driven by the paradox that in the water surfaces of underground lake in
Okhotnichya cave (the cave with high recreation load) we did not find widely spread
representatives of Streptomyces. As a preliminary hypothesis, this could be explained by
unique microbial regulatory mechanisms of the caves, or microclimate parameters and the
abiotic factors mentioned above.

Among the culturable diversity of Okhotnichya cave, genus Nocardia was found as a
dominant. Also, a representative of Nocardiopsis genera was isolated. Isolation of Nocardia
and Nocardiopsis strains has been previously mentioned for the cave environments (Groth
et al., 1999; Jurado et al., 2010; Cheeptham et al., 2013; Jurado et al., 2014). It has been
shown that Nocardia species inhabit both aquatic and terrestrial ecosystems (Bérdy, 2012).
Representatives of the Nocardia and Nocardiopsis strains isolated in this study did not
demonstrate any antibiotic activities in vitro. We suggest that it can be explained by
inappropriate cultivation conditions of these genera, namely: short period of cultivation
or media composition that resulted in low metabolic activity (Vartoukian, Palmer ¢ Wade,
2010).
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During the last 30 years, only few compounds have been isolated and identified from
cave-dwelling actinobacteria. These compounds are: cervimycins A-D, xiakemycin
A, hypogeamicin A, etc. Cervimycins are tetracyclic polyketides from Streptomyces
tendae. They are characterized by antibacterial activities against multi-drug-resistant
staphylococci and vancomycin-resistant enterococci (Herold et al., 2005). Xiakemycin A is
a pyranonaphthoquinone antibiotic derived from Streptomyces sp. CC8-201 that possessed
strong inhibitory activities against Gram-positive bacteria and showed cytotoxicity activity
to a number of human cancer cells including lung cancer A549 cells, breast cancer MCEF-7
cells, and hepatoma HepG-2 cells (Jiang et al., 2015). Hypogeamicin A presents a new
S-bridged dimeric pyronaphthoquinone that was isolated from a rare actinobacteria strain
Nonomuraea specus and demonstrated cytotoxic activity to the colon cancer derived cell
line TCT-1 at low micromolar ranges (Derewacz et al., 2014b). Also, the strain Streptomyces
sp. JS520 isolated from a cave in Serbia was able to produce undecylprodigiosin, which
is characterized by antioxidative and UV-protective properties and inhibited growth of
Gram-positive bacteria species and pathogenic C. albicans (Stankovic et al., 2012). M.
Maciejewska with co-authors isolated actinobacteria of the genus Streptomyces from
moonmilk deposits. These isolates inhibited growth of Gram-positive, Gram-negative
bacteria and fungi (Maciejewska et al., 2016), and this activity was associated with activity
of ferroverdin A.

Taking into consideration a limited number of elucidated compounds from cave-
dwelling microbiota, there is a great number of metabolites whose chemical structure has
not yet been determined (Tomova et al., 2013; Cheeptham et al., 2013). Also, in addition to
antibiological activity it is important to estimate the ability of underground actinobacteria
strains to produce FA. FA are aliphatic monobasic carboxylic acids that can be found in
fat, oils, and waxes in etherified form. FA can be divided into three groups: saturated,
monounsaturated, and polyunsaturated. SFA do not have double bonds, and they can be
synthesized in animal body. They are myristinic acid (C14), palmitic acid (C16), stearic
acid (C18). MUFA have one double bond, and they are essential because the desaturase
enzyme participates in the synthesis of double bond. They are palmitoleic acid (C16:1) and
oleic acid (C18:1). PUFA have more than one double bonds, and they are essential. They are
arachidonic acid (C20:4(n —6)), eicosapentaenoic acid (C20:5(n — 3)), docosahexaenoic
acid (C22:6(n—3)). PUFA are important for organisms for the following reasons: on the
one hand, they modify physical characteristics of biological membranes adapting them to
environmental conditions, and on the other hand, their oxidized derivatives regulate many
cellular and tissue physiological processes.

The results of the present study demonstrate new producers for synthesis and extraction
of n—4, n—7, n—9 PUFA, which often have antimicrobial activity (Huang et al., 2010;
Choi et al., 2013). Also, it should be noted that as previously mentioned by Georgel et al.
(2005), antimicrobial activity of free fatty acids is significantly higher than the activity of
natural antimicrobial peptides in vitro (Georgel et al., 2005). Thus, the obtained materials
may become a basis for development of innovative approaches to utilize bacteria isolated
from caves as a biological source of biologically active compounds to create medical and
veterinary drugs.
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CONCLUSION

In this study we isolated 17 culturable actinobacteria strains collected in underground lakes
of Badzheyskaya and Okhotnichya caves. We analyzed their actinobacterial diversity and
found the absence of Streptomycetes strains in the underground lake of Okhotnichya cave
that could be determined by specificities of ecosystem. Also, we estimated antimicrobial
properties and composition of bacterial fatty acids under different cultivation conditions.
We showed multiple antibacterial and antifungal activities of the isolated Streptomyces
strains and the absence of antimicrobial activity of rare strains in tested conditions. At the
same time, despite the lack of antimicrobial and fungicidal activity of Nocardia extracts,
those strains characterized by ability of extracellularly synthesized linolenic acid that

is essential for humans. Nocardia sp. isolated from cave underground lakes contained
high levels of PUFA from different classes, mainly (n —4) and SFA in cultural liquid as
well as dominant PUFA in biomass. The quantitative content of FA in cultural liquid of
isolated strains demonstrated that the class of polyunsaturated fatty acids prevailed over
the saturated fatty acids, and monounsaturated fatty acids.

Thus, this is the first study of cultivated actinobacteria for those caves, where we showed
that strains of actinobacteria isolated from water surface of underground lakes represent a
promising source for development of novel drugs, and these results are highly pertinent in
the light of global problems caused by development and spread of antibiotic resistance.
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