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This study is aimed at screening potential therapeutic ingredients in traditional Chinese medicine (TCM) and identifying the key
rheumatoid arthritis (RA) targets using computational simulations. Data for TCM-active ingredients with clear pharmacological
effects were collected. Absorption, distribution, metabolism, excretion, and toxicity were evaluated. Potential RA targets were
identified using the Gene Expression Omnibus (GEO) database, protein–protein interaction network, and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analyses and potential TCM ingredients using AutoDock Vina. To
examine the mechanisms underlying small molecules, target prediction, Gene Ontology, KEGG, and network modeling
analyses were conducted; the effects were verified in rat synovial cells using cell proliferation assay. The activities of tumor
necrosis factor TNF-α and IL-1β and alterations in cellular target protein levels were detected by ELISA and Western blotting,
respectively. In total, data for 432 TCM active ingredients with clear pharmacological effects were obtained. Five critical RA-
related genes were identified; CCL5 and CXCL10 were selected for molecular docking. Target prediction and network-based
proximity analysis showed that dioscin could modulate 22 known RA clinical targets. Dioscin, asiaticoside, and ginsenoside Re
could effectively inhibit in vitro cell proliferation and secretion of TNF-α and IL-1β in RA rat synovial cells. Using
bioinformatics and computer-aided drug design, the potential small anti-RA molecules and their mechanisms of action were
comprehensively identified. Dioscin could significantly inhibit proliferation and induce apoptosis in RA rat synovial cells by
reducing TNF-α and IL-1β secretion and inhibiting abnormal CCL5, CXCL10, CXCR2, and IL2 expression.

1. Introduction

Rheumatoid arthritis (RA) is a chronic, systemic, inflamma-
tory, and progressive autoimmune disease that affects syno-
vial joints and other organ systems [1]. To date, the
underlying disease mechanism of RA remains unclear, but

it is generally believed to be initiated by infection and
inflammatory mediators. Furthermore, recent studies have
shown that the pathogenesis of RA is related to the changes
and effects of genetic, bacterial, and viral factors; T and B
lymphocytes; cytokines; and other immune cells [2, 3]. The
incidence of RA increases with age. Approximately 0.3% to
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1.0% of the population worldwide are affected by RA each
year. Furthermore, RA is more common in adults aged 35–
50 years, and the incidence in women is approximately three
times that in men [4, 5].

Currently, the available treatment of RA includes non-
steroidal anti-inflammatory drugs, glucocorticoid drugs,
and biological macromolecular therapy; however, they are
costly and often exert toxicity and cause side effects [6, 7].
Therefore, further improvement of the efficacy and safety
of anti-RA drugs and reduction of the costs is necessary.

Traditional Chinese medicine (TCM) has a long history
of RA treatment based on rich experiences in clinical appli-
cations. RA, a common type of arthritis, belongs to “Bi syn-
drome” category in Chinese medicine [8]. Currently,
Chinese medicines and compound prescriptions against
RA have shown anti-inflammatory, analgesic, immunomod-

ulatory, multilevel, and multistep therapeutic effects and
present advantages of high safety, few adverse reactions,
and cost effectiveness. Therefore, they have potential appli-
cation for the treatment of RA [9].

Although several TCM compounds have been reported
to exert good curative effects and minor side effects, the dis-
covery of additional potential anti-RA ingredients from a
large number of common small TCM molecules with clear
pharmacological effects has important practical significance.
In this view, we integrated bioinformatics, computer-aided
drug design, and in vitro cellular experiments, in combina-
tion with existing literature analysis, to explore important
targets for the treatment of RA and further screen out the
active ingredients of TCM with potential therapeutic effects.
In vitro experiments were performed to confirm these find-
ings, with the aim of providing powerful methods and
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Figure 1: Workflow of computation-based discovery of potential targets for RA and related molecular screening and mechanism analysis of
TCM.
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technical support for the treatment of RA with TCM. The
workflow of this study is shown in Figure 1.

2. Materials and Methods

2.1. Data Collection. The active ingredients of common
TCMs that have been proven to have clear pharmacological
effects were collected from published literature in Chinese
[10, 11]. The PubChem database (https://pubchem.ncbi
.nlm.nih.gov/) was used to confirm the chemoinformatics
data for each ingredient, including molecular name CAS,
PubChem CID, molecular formula, canonical SMILES, and
SDF files. A more authoritative and reliable database of
active ingredients in commonly used Chinese medicines
has been constructed.

The ACD/Labs software and SwissADME online system
(http://www.swissadme.ch/) [12] were used to perform
absorption, distribution, metabolism, excretion, and toxicity
(ADMET) evaluation and analysis of all small molecules of
TCM. Twelve ADMET evaluation indicators were screened,
including Lipinski, molecular weight, log P, solubility,
blood–brain-barrier (BBB) permeant, Pgp substrate, GI

absorption, bioavailability score, synthetic accessibility, met-
abolic stability, Ames test, and hERG.

2.2. Gene Expression Omnibus (GEO) Differential Gene
Analysis for RA. In the GEO database (https://www.ncbi
.nlm.nih.gov/geo/), “rheumatoid arthritis” was queried to
download the gene expression profile chip data related to
RA. Perl language (version 5.32.0) was used to perform pre-
processing of the original data, such as standardization, cor-
rection, and gene name annotation. The R language-based
limma package [13] (version 3.44.0) was used for differen-
tially expressed gene (DEG) analysis, and the upregulated
and downregulated DEGs in each set of chip data were
screened out when jlog 2 FCj > 1:0 and adj:p:value < 0:05.

2.3. Construction of Disease-Associated Protein–Protein
Interaction (PPI) Network and Discovery of Key Targets. All
selected genes were imported into the STRING database
(version 11.0, https://string-db.org/) to obtain the PPIs of
the DEGs. The parameters were set as follows: organism,
Homo sapiens; combined score threshold, 0.7. In addition,
Gephi software (Version: 0.9.2, https://gephi.org/) was used
to visualize the PPI network, and cytoHubba in Cytoscape
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Figure 2: ADMET evaluation results of 432 effective small molecules of TCM based on ACD/Labs software and SwissADME. (a) Pie chart
of Lipinski drug property evaluation; (b) Box plot showing statistical results for molecular weight; (c) Statistical results for BBB permeant;
(d) Statistical results for solubility; (e) Pie chart showing statistical results for metabolic stability; (f) Violin graph of statistical results for
bioavailability score; (g) Statistical results for GI absorption; (h) Statistical results for Ames, (i) Pie chart showing statistical results for
lipophilicity (log P); (j) Violin chart showing statistical distribution of synthetic accessibility; (k) Statistical results for Pgp substrate; (l)
Statistical results for hERG.
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(version 3.7.1, https://cytoscape.org/) [14], in which the
algorithm selects the maximal clique centrality (MCC), was
used to screen out the key targets in the PPI network.

2.4. Gene Ontology (GO) Function Annotation and Kyoto
Encyclopedia of Genes and Genomes (KEGG) Pathway
Enrichment Analysis. The GO database constructed by the
GO Consortium in 2000 contains information for the bio-
logical process (BP), molecular function (MF), and cellular
component (CC) of genes [15]. A biological process or path-
way involves a group of genes functioning together. Enrich-
ment analysis is used to identify classes of overrepresented
genes or proteins, and a few of these may have an association
with disease phenotypes. GO analysis uses statistical
approaches to identify significantly enriched or depleted
groups of genes.

In this study, clusterProfiler (version 3.14.3) [16] was
used to perform GO function annotation and KEGG path-

way enrichment analysis on all differential gene sets in RA,
which were screened according to p value < 0.05 and q value
< 0.05.

2.5. Screening of Small Molecules of TCM Based on Key
Targets and Molecular Docking. The key protein targets in
the PPI network were identified, and the targets in the
reported RA-related pathways were obtained from the
KEGG pathway enrichment analysis as described in Sections
2.3 and 2.4, respectively. The common targets from the two
above-mentioned gene sets were considered the potential
key targets of RA.

The virtual screening process of small molecules of anti-
RA TCM was based on the molecular docking method,
which involved the following steps:

(1) The PDB file for the potential key target proteins was
downloaded from the PDB database (http://www
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Figure 3: (a) Volcano map of GSE55235 DEG analysis; (b) volcano map of GSE55457 DEG analysis; (c) volcano map of GSE77298 DEG
analysis; (d) Venn diagram of RA gene-based GEO differential gene analysis.
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.rcsb.org/). PyMOL (version 1.7.0, https://pymol.org/
) was used to evaluate key target proteins to remove
water molecules, impurities due to the presence of
ions, and perform other changes. AutoDockTools
(version 1.5.6, http://autodock.scripps.edu/wiki/
AutoDockTools) was used to hydrogenate and
charge the processed protein-ligand; the processed
PDB files were converted and saved in the PDBQT
file format

(2) The information of small molecules was downloaded
from PubChem in two SDF format files, 2D and 3D.
OpenBabel (version 2.4.0, http://openbabel.org/) was
used to convert the 2D SDF file into a 3D structure
file. The original 3D structure was directly converted
into a PDB file, and all small molecules were proc-
essed with minimum energy; finally, the PDB file
was converted into a PDBQT file

(3) To determine the docking center parameters, we
referred to the binding site (region) of the protein
receptor and the original ligand. The box size was
defined as 30 × 30 × 30, and AutoDock Vina (version
1.1.2, http://vina.scripps.edu/) was used to perform a
semiflexible molecular docking and calculate the
affinity values (kcal/mol) of all small molecules with
potential key targets. Generally, the lower the affinity
value, the greater the possibility that the small mole-
cule binds to the receptor; therefore, according to the
affinity value, the small molecules were sorted from

small to large, and small molecules of TCM with
potential anti-RA activity were screened out

2.6. In-Depth Research on the Mechanism of Small Molecules
of TCM Obtained through Screening. To examine the under-
lying mechanisms of small molecules of anti-RA TCM more
comprehensively, we further used the target prediction
method to discover other potential targets and combined
the findings with those of the abovementioned bioinformat-
ics analysis and molecular docking screening.

Corresponding canonical SMILES of the obtained small
molecules were imported into online prediction systems,
such as HitPick (http://mips.helmholtz-muenchen.de/proj/
hitpick) [17], SEA (http://sea.bkslab.org/) [18], SwissTarget-
Prediction (http://www.swisstargetprediction.ch/) [19], and
STITCH (version 5.0, http://stitch.embl.de/), to predict their
potential targets. In particular, the screening threshold preci-
sion for HitPick was set at 50%, the threshold MaxTc for
SEA was set at 0.7, and the threshold probability for Swis-
sTargetPrediction was set at 0.15. Molecular docking verifi-
cation, GO function annotation, and KEGG pathway
enrichment analyses were performed on the predicted
potential targets.

2.7. Analysis of the Regulation of Known RA Treatment
Targets by Small Molecules of TCM Based on Network
Proximity. Next, we determined whether the small molecules
of TCM screened have direct or indirect regulatory effects on
the clinically known RA treatment targets. Given that some
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of these molecules may not directly act on certain RA targets
but regulate the disease via the intervention of its neighbor-
ing targets, we further analyzed the small molecules of TCM
using the calculation method of network proximity, based
on the human PPI background network [20], using the fol-
lowing formula [21]:

dABh i = 1
Ak k × Bk k 〠

a∈A,b∈B
d a, bð Þ,

SAB = dABh i − dAAh i + dBBh i
2 ,

ð1Þ

where A is the target set of small molecules of TCM, kAk is
the number of the targets of A, B is the clinically known set
of RA treatment targets, kBk is the number of the targets of
B, dða, bÞ is the shortest path distance between two nodes in
the human PPI background network, hdAAi represents the
average distance between the target points of the component
action, hdBBi represents the average distance between the key
genes, and hdABi represents the average distance between the
small Chinese medicine molecular target set and the clini-

cally known RA treatment target set on the background
network.

Generally, when SAB < 0, the small molecule target A of
TCM and the clinically known RA treatment target set B
are close in network topology, indicating that the small mol-
ecule of TCM can interfere with the target set A and regulate
the clinically known RA treatment target set B. When SAB
≥ 0, A and B are separated in the network topology, indicat-
ing that the small molecule of TCM has no significant regu-
latory intervention on B. Therefore, we can calculate the
value of SAB to further judge whether the small molecules
of TCM can interfere with the known clinical disease target
set by regulating some other target proteins to further
improve the treatment of the disease.

For identifying the clinically known RA treatment tar-
gets, we queried across two databases: Therapeutic Target
Database (TTD, http://db.idrblab.net/ttd/) and DrugBank
(https://www.drugbank.ca/). Thereafter, the intersection of
the RA targets collected using the two databases was used
to construct the final known RA clinical treatment target set.

In this study, we used R language (version 3.6.2) and
igraph (version 1.2.5) to complete the aforementioned pro-
gramming, calculations, and analyses.

2.8. Verification of the Targets through In Vitro
Cell Experiments

2.8.1. Materials, Reagents, and Instruments. Materials: rat
synovial cells were induced using type II collagen and iso-
lated in our laboratory.

Reagents: PBS and RPMI 1640 medium were purchased
from Gibco (Grand Island, NY, U.S.A.); fetal bovine serum
(FBS) was purchased from Biological Industries (Kibbutz
Beit Haemek, Israel); antibiotic-antimycotic, bovine serum
albumin, and trypsin-EDTA (0.05%) were purchased from
Life Technologies (Carlsbad, California, U.S.A.); rat TNF-α
and interleukin IL-1β enzyme-linked immunosorbent assay
(ELISA) kits were purchased from LinkTech (Nanjing,
China).

Instruments: EPOCH type multifunctional microplate
reader (BioTek, Winooski, VT, USA), 3111 CO2 incubator
(Thermo, Waltham, MA, USA), CX23 microscope (Olym-
pus, Tokyo, Japan), and HFsafe-1200LC biological safety
cabinet (Likang, Hong Kong, China) were used for the
in vitro studies.

2.8.2. Effect of Small Molecules on the Proliferation of Normal
Membrane Cells and RA Synovial Cells. Synovial cells were

Table 1: The main pathways and their corresponding enrichment targets that have been reported to be related to RA disease.

ID Pathway Genes

hsa04659 Th17 cell differentiation [40, 41] HLA-DMB, HLA-DOB, CD247, CD3D, LCK, IL1R1, JUN, IL21R, IL2RG, HLA-DPB1

hsa05323 Rheumatoid arthritis HLA-DMB, HLA-DOB, CCL5, IL15, JUN, HLA-DPB1, ITGB2, CXCL6, TNFSF11

hsa04064 NF-kappa B signaling pathway [42] GADD45B, BLNK, LCK, PRKCB, IL1R1, PLCG2, BIRC3, TNFSF11, BCL2A1

hsa04668 TNF signaling pathway [43] CCL5, JUNB, SOCS3, IL15, JUN, BIRC3, CXCL10, CXCL6, MMP9

hsa04658 Th1 and Th2 cell differentiation [44] HLA-DMB, HLA-DOB, CD247, CD3D, LCK, JUN, IL2RG, HLA-DPB1

hsa04620 Toll-like receptor signaling pathway [45] CCL5, TLR7, JUN, CXCL9, CXCL11, TLR8, CXCL10, SPP1
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cultured in RPMI-1640 medium supplemented with 10%
FBS. After counting, the cells were seeded in 96-well culture
plates at a density of 2000 cells/well. The cells were incu-
bated with different concentrations of the small molecules
of TCM. After 72h, the culture medium was discarded;
90μl of fresh culture medium and 10μl of Cell Counting
Kit-8 (CCK-8) reagent were added to the wells. After incu-
bation at 37°C for 4 h, the absorbance at 450 nm was mea-
sured with a microplate reader to calculate the IC50 values
using Graph Pad (Version: 8.0) software.

2.8.3. Detection of TNF-α and IL-1β. The collagen II-induced
arthritis (CIA) rat synovial cells were maintained and cul-
tured in RPMI-1640 medium containing 10% FBS, 100U/
ml penicillin, and 100U/ml streptomycin and were seeded
in a 6-well culture plate at a density of 4 × 105 cells/well. A
total of 1800μl of RPMI-1640 serum-containing culture
medium per well was added to the culture, with an addi-
tional 200μl drug solution. The final concentration of each
sample was calculated as the IC50 concentration of the cells.
The drug-free group was used as the arthritis model cell con-
trol group and cultured at 37°C in a 5% CO2 incubator for
72 h. The culture medium was collected, centrifuged at 400
× g for 5min, and the supernatant was collected. ELISA

was used for the detection of TNF-α and IL-1β, according
to the manufacturer’s instructions.

2.8.4. Detection of the Effects of Small Molecules of TCM on
Target Proteins through Western Blotting. The sample pro-
teins collected as described in Section 2.8.3 were boiled at
100°C for 5min. Thereafter, equal amounts of protein from
each sample were loaded on a 10% SDS-PAGE gel for elec-
trophoresis. After transferring the proteins on the gel to a
cellulose acetate membrane with transfer buffer, the blots
were blocked with 5% skim milk powder for 1 h. The blots
were then incubated with different concentrations of pri-
mary antibody overnight at 4°C, followed by TBS-T washes
and incubation with horseradish peroxidase-labeled second-
ary antibody. ECL was used to develop chemiluminescence,
and the images were captured.

3. Results

3.1. Data Collection for Active Ingredients of TCM and
ADMET Analysis. After collection of published literature
data and confirmation from the PubChem database, che-
moinformatic data of 432 effective small molecules of TCM
and their corresponding 3D structure SDF files were
obtained (Supporting material 1). For small molecules with-
out 3D structure files, first, the 2D structure files were down-
loaded, and then, OpenBabel was used to convert them into
a 3D structure file. The MMFF94 force field was applied for
energy optimization.

The canonical SMILES of 432 small molecules of TCMs
were input into the ACD/Labs software and SwissADME for
ADMET prediction evaluation. The results are shown in
Figure 2. The evaluation results showed that among the
432 small molecules collected, 275 showed good Lipinski
properties, 70 had moderate (moderate), and 87 exhibited
low scores. The average, minimum, and maximum molecu-
lar weights of all small molecules were 395.05, 103.12, and
1468.52, respectively. In total, 160 small molecules were
BBB permeant, 278 had good water solubility, and 164 were
of poor solubility. A total of 24 small molecules showed high
metabolic stability; however, a few showed temporary uncer-
tainty, and 20 small molecules showed potential metabolic
instability. Most small molecules had a good bioavailability
score; only a few scored less than 0.55. Genotoxicity predic-
tion (through Ames test) showed that 39 small molecules
had potential mutagenicity, and 142 were clearly nontoxic;
however, mutagenicity of 297 molecules could not be deter-
mined. The intestinal absorption of each small molecule was
high. The lipophilicity (log P) evaluation showed that 330
small molecules exhibited optimal lipophilicity (optimal).
The average value for the synthetic accessibility of small
molecules was 4.69, suggesting that most compounds were
easy to synthesize in the laboratory. The prediction of car-
diac inhibitory toxicity (hERG) suggested that 19 small mol-
ecules had cardiotoxic properties (Supporting material 2).

3.2. RA Chip Data Collection and Differential Gene Analysis.
GSE55235, GSE55457, and GSE77298 were obtained from
the GEO query to obtain the expression profile data related

Table 2: Molecular docking results of the 432 small molecules with
CCL5 and CXCL10 targets (top 10 ranking).

Receptor Ligand
Molecular
formula

PubChem
CID

Affinity
(kcal/Mol)

CCL5

Ginsenoside
Re

C48H82O18 441921 -10.0

Asiaticoside C48H78O19 24721205 -9.7

Ergotamine C33H35N5O5 8223 -9.6

Neferine C38H44N2O6 159654 -9.6

Polyphyllin II C44H70O16 46200821 -9.5

Dioscin C45H72O16 119245 -9.4

Raddeanin A C47H76O16 174742 -9.3

Berbamine C37H40N2O6 275182 -9.2

Ginsenoside
Rg1

C42H72O14 441923 -9.1

Tubeimoside
I

C63H98O29 51346132 -9.1

CXCL10

Alpha-Crocin C44H64O24 5281233 -9.5

Polyphyllin II C44H70O16 46200821 -9.2

Dioscin C45H72O16 119245 -9.0

Digoxin C41H64O14 2724385 -9.0

Ergotamine C33H35N5O5 8223 -8.9

Saikosaponin
A

C42H68O13 167928 -8.8

Raddeanin A C47H76O16 174742 -8.8

Polyphyllin
VI

C39H62O13 10417550 -8.7

Asiaticoside C48H78O19 24721205 -8.6

Jujuboside A C58H94O26 51346169 -8.6
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to RA. The platform of GSE55235 is GPL96 [HG-U133A]
Affymetrix Human Genome U133A Array, which contains
10 normal samples and 10 RA samples; GSE55457 uses
GPL96 [HG-U133A] Affymetrix Human Genome U133A
Array as the platform, which contains 10 normal samples
and 13 RA samples; the platform of GSE77298 is GPL570
[HG-U133_Plus_2] Affymetrix Human Genome U133 Plus
2.0 Array, which contains seven healthy samples and 16
RA samples.

After differential gene analysis, 1071 DEGs were
screened in GSE55235—599 were upregulated and 472 were
downregulated; 312 DEGs were screened in GSE55457—189
were upregulated and 123 were downregulated; and 432
DEGs were screened in GSE77298—237 were upregulated
and 195 were downregulated. The volcano diagram of
GEO differential gene analysis of each group is shown in
Figures 3(a)–3(c). In this study, we included the DEGs that
concurrently appeared in any two chip expression datasets
into the RA gene set. Therefore, a total of 267 RA-related
DEGs were obtained, as shown in Figure 3(d).

3.3. PPI Network Construction and Screening of Key Targets.
All 267 differential genes of RA were imported into the

STRING database to obtain the corresponding PPI net-
work according to the method described in Section 2.3,
as shown in Figure 3(a). Thereafter, cytoHubba was
utilized to screen out the top 10% of the important
proteins (27 proteins) in the PPI network, namely, CXC
chemokine receptor type 2 (CXCR4; degree = 17), CXCL9
(degree = 16), CCR5 (degree = 18), CXCR3 (degree = 16),
CCR2 (degree = 14), CXCL10 (degree = 19), CCL5
(degree = 18), CXCL6 (degree = 14), CXCL13 (degree = 14
), ADCY2 (degree = 14), CCL25 (degree = 14), PNOC
(degree = 13), NPY1R (degree = 13), CXCL11 (degree = 13
), KIF11 (degree = 17), KIF20A (degree = 17), CDC20
(degree = 17), TYMS (degree = 15), RRM2 (degree = 14),
MAD2L1 (degree = 15), DTL (degree = 13), ASPM
(degree = 13), NDC80 (degree = 13), MELK (degree = 13),
RAD51AP1 (degree = 12), CEP55 (degree = 12), and
DLGAP5 (degree = 12). These 27 significant proteins were
divided into 2 submodules (module 1 and module 2) with
high internal connections, as shown in Figures 4(a) and
4(b).

3.4. GO Function Annotation and KEGG Pathway
Enrichment Analysis Results. ClusterProfiler was used to

THR-8ASP-6
SER-5

SER-4

Dioscin - CCL5

(a)

LYS-48
GLY-49

LYS-46

GLU-45

Dioscin - CXCL10

(b)

ARG-144

Dioscin - CXCR2

ILE-253

(c)

TYR-107

GLU-61

Dioscin - IL2

(d)

Figure 7: (a) Conformation of dioscin and CCL5; (b) dioscin and CXCL10; (c) dioscin and CXCR2; and (d) dioscin and IL2 using molecular
docking. The yellow dashed lines indicate hydrogen bond interactions.
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Figure 8: Continued.
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Figure 8: Continued.
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perform GO function and KEGG pathway enrichment anal-
yses on 267 differential gene sets of RA, where p value < 0.05
and q value < 0.05. GO function annotation, KEGG pathway
enrichment analysis, and target-pathway enrichment net-
work are presented in Figures 5(a) and 5(b).

GO function annotation indicated that these DEGs were
mainly involved in 443 BP functions, such as regulation of
lymphocyte activation (GO:0051249), leukocyte migration
(GO:0050900), immune response activation of the cell sur-
face receptor signaling pathway (GO:0002429), and antigen
receptor-mediated signaling (GO:0050851). Thirteen CC
functions mainly include the outer side of the plasma mem-
brane (GO:0009897), extracellular matrix containing colla-
gen (GO:0062023), and membrane rafts (GO:0045121). In
addition, 19 MFs involved receptor ligand activity
(GO:0048018), cytokine activity (GO:0005125), G-protein-
coupled receptor binding (GO:0001664), and endopeptidase
activity (GO:0004175), among several others.

KEGG pathway enrichment analysis revealed that RA-
related DEGs mainly involved 31 related pathways. Among
them, Th17 cell differentiation (hsa04659), rheumatoid
arthritis (hsa05323), NF-kappa B signaling pathway
(hsa04064), TNF signaling pathway (hsa04668), Th1 and
Th2 cell differentiation (hsa04658), and Toll-like receptor
signaling pathway (hsa04620) have been reported to be
closely related to RA. A total of 30 targets enriched in these
pathways were screened out, namely, BCL2A1, BIRC3,

BLNK, CCL5, CD247, CD3D, CXCL10, CXCL11, CXCL6,
CXCL9, GADD45B, HLA-DMB, HLA-DOB, HLA-DPB1,
IL15, IL1R1, IL21R, IL2RG, ITGB2, JUN, JUNB, LCK,
MMP9, PLCG2, PRKCB, SOCS3, SPP1, TLR7, TLR8, and
TNFSF11, as shown in Table 1.

We further examined the intersection shown in
Figure 5(c) and found that there were five targets associated
with both the key proteins in the PPI network and the genes
in the RA-related pathways. More interestingly, the target
proteins CCL5, CXCL10, CXCL11, CXCL6, and CXCL9
appeared unbiasedly in module 1 of the PPI network. How-
ever, three of them do not exist in the PDB database without
an appropriate PDB structure file; thus, we only used two
proteins, CCL5 (CC motif chemokine 5, PDB ID: 5L2U)
and CXCL10 (CXC motif chemokine 10, PDB ID: 1O7Y),
with complete PDB information files for follow-up research.

3.5. Molecular Docking Analysis. AutoDock Vina was used to
perform bulk molecular docking on the two protein targets
CCL5 and CXCL10, and the affinity values of 432 small mol-
ecules of TCM to act on the targets were obtained, except for
the very few unsuccessful dockings. The distribution of the
molecular docking scores of all small molecules of TCM on
CCL5 and CXCL10 is shown in Figure 6.

In this study, we only listed the top 10 small molecules of
TCM with 15 molecular docking scores, as shown in Table 2.
Table 2 demonstrates that ginsenoside Re, asiaticoside,

Cytokine-cytokine receptor intraction

Human cytomegalovirus infection Viral protein intraction with
cytokine and cytokine receptor

Epithelial cell signalingin
helicobactet pylori infection

Chagas disease

Toll-like receptor signaling pathway

TNF siganaling pathway

InfluenzaA

Cytosolic DNA-sensing pathway

Chemokine signaling pathway

CCL5

CXCR2

Dioscin

CXCL10

IL2

(c)

Figure 8: (a) GO function annotation results of the four targets of dioscin; (b) KEGG pathway enrichment analysis of the four targets of
dioscin; (c) dioscin target-pathway enrichment network. Dots represent protein targets, squares represent pathways, and V-shape
represents small molecules of TCM.
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ergotamine, neferine, polyphyllin II, dioscin, raddeanin A,
berbamine, ginsenoside Rg1, and tubeimoside I, in turn,
had better scoring results when docking with CCL5 than
with CXCL10, while alpha-crocin, polyphyllin II, dioscin,
digoxin, ergotamine, saikosaponin A, raddeanin A, poly-
phyllin VI, asiaticoside, and jujuboside A had higher scores
for CXCL10 affinity than for CCL5.

Among the small molecules, two saponins, polyphyllin II
and dioscin, had affinities of less than -9.0. Based on molec-
ular docking conformation analysis of these two small mol-
ecules, we hypothesized that a combination of dioscin with
CCL5 and CXCL10 was most stable. Therefore, we selected
dioscin for subsequent in-depth analysis, and the binding
conformations of CCL5 and CXCL10 are shown in
Figures 7(a) and 7(b).

3.6. Potential Target Prediction and Molecular Docking of
Dioscin. To comprehensively analyze the potential anti-RA
mechanism of dioscin, we used HitPick, SEA, SwissTarget-
Prediction, and STITCH to predict and screen the targets
of dioscin. As a result, we found that dioscin had two poten-
tial targets, CXCR2 and IL2. In addition to the results of
molecular docking screening presented in Section 3.5, four
potential targets, CCL5, CXCL10, CXCR2, and IL2, were
proposed for dioscin interaction.

Next, we verified the molecular docking of dioscin for
CXCR2 (PDB ID: 6LFO) and IL2 (PDB ID: 4NEM). The
results showed that the docking score of dioscin and CXCR2
was -9.1, which was identical to the docking score of dioscin

and IL2 (-9.1). The molecular binding conformation also
indicated that dioscin could form stable interactions with
these two protein targets, as shown in Figures 7(c) and 7(d).

3.7. Mechanistic Analysis of the Anti-RA Effects of Dioscin.
Furthermore, GO function annotation and KEGG pathway
enrichment analysis revealed that the four targets CXCR2,
CCL5, CXCL10, and IL2 were mainly involved in GO func-
tions, such as cellular calcium homeostasis (GO:0006874),
calcium homeostasis (GO:0055074), cellular divalent inor-
ganic cation homeostasis (GO:0072503), kinase regulator
activity (GO:0019207), cytokine activity (GO:0005125), G-
protein-coupled receptor binding (GO:0001664), and exter-
nal side of the plasma membrane (GO:0009897). The KEGG
pathway was mainly enriched in 10 pathways. The interac-
tion pathways between viral proteins and cytokines and
cytokine receptors (hsa04061), the interaction pathway
between cytokines and cytokine receptors (hsa04060), che-
mokine signaling pathway (hsa04062), cytoplasmic DNA
sensing pathway (hsa04623), epithelial cell signaling path-
way in Helicobacter pylori infection (hsa05120), Chagas dis-
ease pathway (hsa05142), Toll-like receptor signaling
pathway (hsa04620), TNF signaling pathway (hsa04668),
influenza A (hsa05164), and human cytomegalovirus infec-
tion pathway (hsa05163) are shown in Figure 8.

3.8. Analysis of the Network Regulation of Dioscin on
Clinically Known Therapeutic Targets of RA. A total of 140
and 193 known RA targets were collected from the TTD

4 Targets acted on directly
by dioscin

54 Interfered targets in
hunab PPI network

TTD Drugbank

170
(55%)

23
(7.4%)

116
(37.5%)

Figure 9: Dioscin-directed regulatory network. Dioscin can directly act on 4 targets (CCL5, CXCL10, CXCR2, and IL2), regulate 54 proteins
in the human PPI network, and further target 22 RA treatment targets to exert therapeutic effects. The triangles represent the 4 targets
directly affected by dioscin, the dots represent the 54 proteins in the human PPI network, and the squares represent the 22 known RA
treatment targets.
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and DrugBank databases, respectively. After the two sets
were intersected, 23 common RA treatment targets were
obtained: ABCG2, AKR1B1, ALOX5, CASP1, DHFR,
DHODH, HRH4, IL2, JAK1, JAK2, JAK3, MMP9, NR3C1,
PDE4A, PDE4B, PDE4D, PLA2G1B, PPARA, PTGS1,
PTGS2, TLR7, TLR9, and TNF. Among them, IL2 is also a
potential direct target of dioscin.

Using the algorithm, we obtained the proximity values of
dioscin to the 23 clinically known RA treatment targets on
the human PPI network (SAB = −1:16 < 0), where hdABi =
2:85, hdAAi = 4:62, hdBBi = 3:40. Therefore, we speculated
that dioscin could indirectly regulate and intervene in other
22 known RA targets by directly acting on the four targets,
i.e., CCL5, CXCL10, CXCR2, and IL2, in treating RA. Based

on further analysis of the human PPI network, we found that
CCL5, CXCL10, CXCR2, and IL2 interacted with 54 proteins
in the human PPI network to regulate other therapeutic tar-
gets of RA, as shown in Figure 9.

Furthermore, we searched “rheumatoid arthritis” on
the TCMSP website (https://tcmspw.com/) and obtained
42 small molecules of TCM with anti-RA effects and cor-
responding therapeutic targets (Supporting material 3).
Accordingly, the proximity SAB of these 42 small Chinese
medicine molecules on the human PPI network to 23
RA treatment targets was calculated. The results showed
that the SAB values of these 42 small molecules were all
less than 0, which confirmed that dioscin had potential
anti-RA effects.
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CXCL10

IL2

CCL5

GAPDH

CXCR2

10: Normal

9: RA

1 2 3 4 5 6 7 8 9 10

1: Dioscin

2: Asiaticoside

3: Neferine

4: Ginsenoside Re

5: Polyphyllin II

6: Saikosaponin A

7: Alpha-crocin

8: Tripterygium glycosides

(b)

Figure 10: (a) Effects of different compounds on the expression of TNF-α and IL-1β in synovial cells of CIA rats (compared with RA group:
∗p < 0:05, ∗∗p < 0:01, ∗∗∗ p < 0:001). (b) Relative expression results of CXCR2, CXCL10, IL2, and CCL5 in different groups detected
through Western blotting.
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3.9. Verification with In Vitro Cell Culture Experiments.
Based on the results of molecular docking, we selected seven
small molecules, namely, dioscin (250μg/ml), asiaticoside
(300μg/ml), neferine (400μg/ml), ginsenoside Re (300μg/
ml), polyphyllin II (800μg/ml), Bupleurum saikosaponin A
(750μg/ml), and alpha-crocin I (1000μg/ml), for in vitro
experiments. Tripterygium glycosides (150μg/ml) were used
as a control for small molecules of TCM. Therefore, a total of
eight small molecules of TCM were included in this
experiment.

Cell proliferation experiments indicated that these eight
small molecules of TCM had no significant effect on normal
rat synovial cells, while the response of CIA rat synovial cells
was significantly enhanced by dioscin, asiaticoside, and gin-
senoside Re, with IC50 values of 230:1 ± 2:1 μg/ml, 299:9 ±
2:8 μg/ml, and 270:2 ± 2:5 μg/ml, respectively.

Compared with the control group, the CIA rat synovial
cells produced significantly increased levels of TNF-α and
IL-1β. However, the TNF-α and IL-1β levels in the culture
supernatant of the dioscin, asiaticoside, and ginsenoside Re
groups were significantly reduced, which suggested that
these TCMs could significantly inhibit the hypersecretion
of TNF-α and IL-1β in CIA rat synovial cells (Figure 10(a)).

We further examined protein expression using Western
blotting. Compared with the control and RA groups, the
dioscin and asiaticoside groups showed significantly reduced
expression of CCL5, while dioscin and ginsenoside Re
groups showed significantly reduced expression of CXCL10.
Similarly, CXCR2 expression was significantly inhibited in
the dioscin, asiaticoside, and ginsenoside Re groups. Dioscin
also had a certain inhibitory effect on IL2 expression. All the
above-mentioned small molecules of TCM had similar
effects to tripterygium glycosides, as shown in Figure 10(b).

4. Discussion

In this study, we first collected 432 effective common small
molecules of TCM and screened out 267 RA-relevant genes
from 3 sets of RA gene expression profile data. The PPI net-
work based on differential genes enclosed important nodes.
Using biological function enrichment analysis, we identified
five critical genes related to RA. Combined with literature
analysis and existing protein databases, two chemokines
(CCL5 and CXCL10) were selected for follow-up research.
Target prediction and in vitro experiment results collectively
suggested that dioscin had a direct regulatory effect on
CXCR2, CCL5, CXCL10, and IL2.

Reportedly, chemokines play an important role in
inflammatory cell infiltration in the joints of patients with
RA [22], and chemokine blockers are considered potential
drugs for the treatment of RA [23]. Previous bioinformatics
analyses have shown that the expression of CCL5 is closely
related to RA [24]. CCL5 is produced by circulating T cells
and plays an active role in the chemotactic activity of T cells
in RA [25]. The expression of CXCL10 is increased in the
RA serum and synovium. It not only plays an important role
in the homing of chemotactic leukocytes in RA inflamma-
tion but can also destroy the bone tissue by activating
nuclear factor-κB ligands [26]. Studies have also found that

the expression of CXCL10 in the peripheral blood and syno-
vial fluid of RA patients is increased [27], and an increasing
number of studies are now using CXCL10 as a novel target
for RA treatment [28]. Similarly, the chemokine CXCR2 is
known to be related to RA. CXCL1 promotes the expression
of IL6 in synovial fibroblasts of osteoarthritis and RA
patients via the CXCR2, c-Raf, MAPK, and AP-1 pathways
[29]. Therapeutic blockade of CXCR2 can rapidly clear
inflammation in arthritis and atopic dermatitis models
[30]. Studies have shown that IL2 is a pleiotropic cytokine
that can promote inflammation and maintain immune toler-
ance. Consequently, it is now an emerging therapeutic target
for many anti-RA drugs [31].

Dioscin is found in medicinal plants such as Dioscorea-
nigra, D. zingiberensis, and D. fuzhouensis. Dioscin exerts
many therapeutic effects on various diseases [32, 33], such
as regulating the inhibitory effect of miR-125a-5p on STAT3
signaling and reducing glucose and lipid metabolism disor-
ders in Type 2 diabetes (T2DM) suggesting that it exhibits
anti-T2DM activity [34]. In an animal model of hyperurice-
mia, the effects of dioscin on the reduction of serum uric
acid levels and the enhancement of uric acid excretion have
been reported [35]. Moreover, dioscin inhibits the M2 polar-
ization of macrophages in the JNK and STAT3 pathways,
thereby triggering antitumor immunity [36]. Other studies
have further shown that dioscin has similar pharmacokinetic
characteristics to dexamethasone [37] and exerts antiarthri-
tis effects by inhibiting the immune response of Th17 cells
[38]. In addition, dioscin inhibits osteoclast differentiation
and bone resorption by downregulating the Akt signaling
cascade [39]. In our study, dioscin-targeted enrichment
analysis of the KEGG pathway also showed that the resultant
Toll-like receptor signaling pathway (hsa04620) and TNF
signaling pathway (hsa04668) were the main signaling path-
ways related to RA. Therefore, accumulating evidence sup-
ports that, as a natural small molecule, dioscin has
multiple therapeutic effects on RA and is worthy of in-
depth study.

In this study, we used an algorithm based on network
proximity to innovatively detect the regulation and interven-
tion ability of dioscin on the known clinically therapeutic
targets of RA. The results clearly showed that dioscin, by act-
ing directly on four targets, indirectly intervenes and affects
54 related proteins and eventually regulates the main thera-
peutic targets of RA. We found that, in the network of
dioscin-regulated RA targets, UBC (degree = 18), ARRB1
(degree = 14), APC (degree = 8), VCAN (degree = 7), GRB2
(degree = 6), IL2RB (degree = 6), FGR (degree = 6), and
GNA15 (degree = 5) had higher degree values. The discovery
of these target proteins in the network provides new insights
for further related research and could serve as an important
reference for the development of other RA drugs.

5. Conclusion

In summary, this study comprehensively used bioinformat-
ics, molecular docking-based virtual screening, network
modeling, and other computational methods; collected 432
commonly used TCM active ingredients; and analyzed the
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overall ADMET characteristics of these small molecules. The
GEO and PPI network analyses helped to identify several
key target genes associated with RA, and molecular docking
technology was used to screen the small molecules of TCM
for the treatment of RA. Furthermore, we analyzed the
potential treatment mechanism of RA through network
proximity-based prediction, and in vitro experiments con-
firmed that dioscin exerted significant regulatory effects on
CCL5, CXCL10, CXCR2, and IL2. The series of integrated
analysis methods performed in this study are expected to
provide powerful technical support for the treatment of RA
and development of novel molecules of TCM.
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