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A B S T R A C T   

Analyzing the vast amount of omics data generated comprehensively by high-throughput sequencing technology 
is of utmost importance for scientists. In this context, we propose HiOmics, a cloud-based platform equipped with 
nearly 300 plugins designed for the comprehensive analysis and visualization of omics data. HiOmics utilizes the 
Element Plus framework to craft a user-friendly interface and harnesses Docker container technology to ensure 
the reliability and reproducibility of data analysis results. Furthermore, HiOmics employs the Workflow 
Description Language and Cromwell engine to construct workflows, ensuring the portability of data analysis and 
simplifying the examination of intricate data. Additionally, HiOmics has developed DataCheck, a tool based on 
Golang, which verifies and converts data formats. Finally, by leveraging the object storage technology and batch 
computing capabilities of public cloud platforms, HiOmics enables the storage and processing of large-scale data 
while maintaining resource independence among users.   

1. Introduction 

The advent of high-throughput sequencing technology has led to an 
exponential growth in omics data, encompassing transcriptomics, ge
nomics, and metabolomics data [1–4]. The generation of large-scale 
omics data offers scientists valuable opportunities to gain comprehen
sive and profound insights into life processes [5–7]. However, it also 
presents remarkable challenges, demanding more intricate analysis 
methods/workflows and substantial computational resources. Although 
programming software, such as Python and R, offer advantages in data 
statistics and visualization, users must possess specific computer 
knowledge, including proficiency in at least one programming language 
and familiarity with the Linux operating system [8]. Traditional desktop 

software [9–12] can only implement one or a few functions within the 
entire analysis process, and different applications often have distinct 
requirements for input and output data formats. Furthermore, installing 
and configuring these desktop applications can pose a considerable 
challenge for users. 

In recent years, numerous web-based bioinformatics tools have 
emerged [13,14]. These tools enable researchers to conduct analyses 
seamlessly, eliminating the need for mastering intricate programming 
skills or configuring complex analysis environments through interactive 
graphical interfaces. ImageGP [15] is a specialized visualization plat
form tailored for generating graphics related to biological and medical 
data. This platform offers a wide array of scientific graphic and analysis 
sub-functions. START App [16] and CANEapp [17] provide 
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transcriptomics data analysis and visualization services from read count 
data. MetaboAnalyst [18] specializes in the analysis and visualization of 
metabolomics data. IMG/M [19] focuses on metagenomics data analysis 
and visualization. Additionally, Metascape [20] provides functional 
enrichment, interaction component analysis, and gene annotation 
functions, catering to experimental biologists by offering comprehensive 
resources for gene list annotation and analysis. Although these indi
vidual web tools boast robust features, leveraging multiple platforms 
comprehensively is essential to formulating a complete system-level 
analysis workflow. 

Since its launch in 2010, Galaxy [21] has paved the way for 
numerous cloud-based web tools that now play a pivotal role in 
high-throughput data analysis. Sangerbox [22] boasts powerful inter
active plotting capabilities, allowing users to intuitively adjust param
eters within the interface. However, its bioinformatics tools remain 
limited. Conversely, Hiplot [23] offers a wider array of interactive 
visualization tools, primarily tailored for lightweight data processing 
and plotting requirements. Qiita [24] stands out for its extensive 
collection of community resources, but its analysis functions are pri
marily focused on microbiome data. DolphinNext [25] empowers users 
to construct intricate data analysis workflows effortlessly using 
drag-and-drop operations, although its advanced analysis tools are 
somewhat limited in scope. Although Galaxy integrates numerous up
stream and downstream analysis tools and facilitates customization of 
complex workflows through drag-and-drop functionality, 
non-bioinformatics users face a learning curve to familiarize themselves 
with the various tools and workflows [21]. Furthermore, issues, such as 
a non-user-friendly interface and frequent errors in input data format
ting, significantly affect the overall user experience. 

To address these challenges, we have developed HiOmics, a dedi
cated cloud-based web platform (https://www.henbio.com/en/tools) 
designed for the comprehensive analysis and visualization of multi- 
omics data. HiOmics utilizes the Element Plus framework [26], not 
only presenting an appealing and user-friendly interface but also 
incorporating interactive features to elevate the overall user experience. 
For consistent and reliable analysis results across different 

environments, HiOmics relies on Docker container technology [27], 
packaging the application and its dependencies into an independent 
container. Workflow Description Language (WDL) [28] streamlines the 
management and construction of data analysis workflows, enhancing 
efficiency and reproducibility. To cater to users without programming 
backgrounds, HiOmics seamlessly integrates typical bioinformatics 
pipelines. Additionally, we have developed DataCheck, a tool built on 
Golang [29], to automatically verify and convert input data formats, 
making it adaptable to various input types. The adoption of object 
storage and batch processing technologies on public cloud platforms 
empowers HiOmics to manage large-scale data storage and processing. 
This infrastructure ensures relative resource independence among users, 
facilitating efficient data management and processing. 

2. Methods/implementation 

2.1. Building user-friendly web interfaces with Elements Plus 

HiOmics employs the UI library Element Plus [26], which is based on 
Vue.js 3, to create a sleek and user-friendly interface. Backend data 
communication is facilitated by utilizing the ThinkPHP framework and 
the MySQL database. All HiOmics applications are developed using 
open-source software like R and Python. They are abstracted as inde
pendent, parameterized, pluggable, and easily version-controlled plu
gins. With a simple mouse-click, users can seamlessly perform a wide 
array of tasks, ranging from basic visualization to complex omics anal
ysis, without the need for any coding or programming expertise. All 
functionalities are accessible via the web interface provided by HiOmics. 

2.2. Achieving reproducibility with container technology 

In the field of bioinformatics, ensuring the reproducibility of data 
analysis results is of paramount importance [30,31]. To address this 
issue, HiOmics employs Docker container technology [32,33] to pack
age each software tool, alongside its dependencies, analysis scripts, and 
runtime environment, into a singular, independent container image. 

Fig. 1. Overview of the core advantages offered by the cloud-based HiOmics platform, enhancing development efficiency and user experience. (A) Leveraging Docker 
container technology to ensure the reliability and reproducibility of data analysis results. (B) HiOmics utilizes WDL + Cromwell to construct and manage intricate 
analysis workflows, integrating typical bioinformatics analysis processes. This diminishes the learning curve and exploration costs for users, meeting the deep data 
mining needs of non-programming users, such as clinical physicians. (C) Command-line tool DataCheck, based on Golang, automatically identifies and converts user- 
uploaded data into standard formats, thereby enhancing the user experience. (D) Utilization of object storage and batch computing technologies in public cloud 
platforms facilitates large-scale data storage and processing. Additionally, it ensures relative resource independence among different users. 
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Subsequently, these images are uploaded to a unified container image 
repository. Each software tool corresponds to an individual Docker 
image, and collectively, multiple images form a comprehensive data 
analysis workflow. This approach facilitates the convenience of building 
once and running anywhere, circumventing redundant software and 
environment setups. It guarantees consistency in software, versioning, 
and runtime environments across diverse servers and operating systems 
(Fig. 1A). Ultimately, this strategy ensures the reproducibility and reli
ability of data analysis results. 

2.3. Building standard workflows with WDL 

Bioinformatics analysis tasks typically involve multiple steps and 
necessitate the combined use of various software and scripts, such as 
shell, Python, Perl, and command-line software. The utilization of WDL 

[28] enables the automation of bioinformatics analysis workflows. This 
automation standardizes and unifies the inputs, outputs, and running 
environments for each step, thereby greatly improving the reproduc
ibility and reliability of the analysis. HiOmics employs WDL + Cromwell 
[34] to construct and manage workflows, providing a web-based inter
face for task submission (Fig. 1B). Currently, HiOmics has launched 
typical omics analysis workflows, including transcriptomics, meta
genomics, and whole-genome sequencing. Additionally, it has inte
grated fundamental data, such as reference genomes and indexes for 
commonly studied species. Through the web-based interface, users can 
easily complete complex omics analysis tasks by uploading data files, 
and specifying a few parameters. 

Fig. 2. HiOmics offers a user-friendly interface. (A) Fig. A showcases the main interface of the HiOmics Artificial intelligence (AI) Modeling module. Users can swiftly 
locate the desired tools using the search bar at the top or the navigation menu on the left. (B) Fig. B illustrates the interface of the "Logistic Regression" plugin within 
Artificial Intelligence module. The parameter panel is located on the left, while the explanation panel is situated on the right. 
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2.4. Achieving diverse input data formats with DataCheck 

Many data analysis software applications impose strict requirements 
on the input data format, often mandating data to be in comma- 
separated CSV files. Uploading a table-type XLSX file, for instance, 
would trigger an error. To circumvent such issues and minimize user 
inconvenience regarding format conversion, we have developed a 

command-line tool called DataCheck using Golang [29] (Fig. 1C). This 
tool is integrated into the analysis script and automatically validates 
data before executing specific analysis tasks. It can automatically iden
tify the type, encoding format, and delimiter of user-uploaded files and 
then convert them into the standard format required by the plugin. Users 
no longer need to concern themselves with whether they should upload 
a text file or a spreadsheet file. Additionally, this tool conducts auto
matic data validation, detecting common data errors, such as 
non-numeric values, irregularly formatted matrices, inconsistent row or 
column names, as well as duplicate rows and columns. It alerts users 
through log messages, empowering them to perform targeted checks and 
rectify the data accordingly. 

2.5. Implementing large-scale data storage and processing with cloud 
platform architecture 

The rapid advancement of sequencing technology, coupled with 
decreasing costs, has resulted in a swift increase in high-throughput 
sequencing data [35–37]. Individual data files often reach gigabyte 
levels, thereby posing unprecedented challenges in data storage and 
computation [38,39]. To counter this challenge, HiOmics embraces 
public cloud object storage technology (Alibaba OSS, similar to Amazon 
S3), offering a scalable storage solution for large-scale high-throughput 

Table 1 
Comparison of Web Services between Henbio and other Cloud-based Platforms.  

Cloud-based platforms HiOmics Hiplot ImageGP Galaxy 

number of analysis tools 290 + 330 + 34 1600 +

Data file processing 8 small no full 
Sequence file processing 43 no small full 
Data preprocessing 14 no no full 
Data statistical analysis 35 small no small 
Basic plotting 60 full small moderate 
Advanced analysis 28 full small moderate 
Integrative omics analysis 13 no no no 
Cloud-based analysis 

Workflow 
49 no no constructed by 

users 
Artificial intelligence 

modeling 
42 no no no 

Pathogen detection 7 no no small 
Biomedical Databases 726 no no small  

Fig. 3. HiOmics offers a variety of high-throughput data analysis and visualization tools to meet common requirements. (A) Partial visualization results from the 
Basic Plotting Module. (B) Partial visualization results from the Advanced Analysis Module. 
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sequencing data. This approach bypasses local storage capacity limita
tions on a single server and effortlessly expands storage in tandem with 
user growth (currently, individual users possess a default permanent 
storage space of 5 GB, extendable as required). Simultaneously, HiOmics 
utilizes public cloud batch computing (Alibaba Cloud Batch Compute, 
similar to Amazon Batch) as the core computing resource. This system 
supports the parallel processing of numerous jobs, automatically man
ages resources, schedules tasks, and loads data based on task re
quirements (Fig. 1D). Therefore, resource utilization among HiOmics 
users remains relatively independent, averting resource contention and 
impact. This setup enhances task processing speed and eliminates the 
necessity to restrict the number of submitted tasks. 

3. Results 

3.1. Simple and user-friendly web page 

HiOmics, a user-friendly web platform, does not require down
loading or installing any software. The main interface features a left 
navigation bar and a right plugin bar, enabling users to swiftly locate the 
desired plugin based on their requirements (Fig. 2A). Moreover, users 
can use the search bar positioned at the top left corner of the page to find 
plugins quickly by entering keywords. Each plugin page adopts a two- 
column layout, as depicted in Fig. 2B. On the left side, a section is 
dedicated for data uploading and parameter configuration. Users can 
simply click the "Select File" option to choose files from the Cloud 
storage file manager or upload directly from their local device. To 
minimize input errors, most basic parameters are presented as drop
down lists for easy selection. The right side of the page contains a 
documentation and sample file toolbar, offering users a comprehensive 
understanding of the functionality and effective usage of the plugin. 
With only three simple steps—uploading data, configuring parameters, 
and submitting the task—users can effortlessly obtain the desired results 
without writing any code. 

3.2. Numerous analysis and visualization tools 

Since 2022, HiOmics has developed and launched over 290 inter
active data analysis and visualization tools, all conveniently accessible 
through a user-friendly web interface. These tools encompass a 
comprehensive range of classic software and methods, covering the 
entire process from upstream sequence processing to downstream data 
visualization (Table 1). 

To accommodate article length constraints, this paper primarily fo
cuses on introducing a few select functional plugins. These plugins are 
based on demo datasets, representing various feature categories and 
offering readers a fundamental understanding of their usage on this 
platform. 

3.2.1. Use Case 1: Basic plotting module 
The basic plotting module offers 61 versatile plotting tools, including 

heatmap, Violin plot, volcano plot, Sankey diagram, Manhattan plot, 
Scatter plots, and box plot (Fig. 3A). These tools cater to diverse visu
alization needs, ensuring that the resulting images meet high-quality 
standards suitable for publication. 

Next, let us take a heatmap as an example to introduce the usage of 
the basic plotting tool. Upon entering the heatmap plugin interface, you 
can easily select the gene expression matrix and group files from your 
local uploads or cloud storage file manager. After setting the parameters, 
simply click the "Run" button to generate the heatmap. Parameters for 
the heatmap include options for color scheme, row width, column height 
and normalization direction. Additional settings allow displaying spe
cific genes of interest, clustering, row and column names, legends, and 
numerical values. Upon clicking the "Submit Task" button in the inter
face, the platform will automatically deliver the plotting task to Crom
well for scheduling and execution through the API interface. Once the 
task is completed, you can preview or download the heatmap from the 
result files. The heatmap can be saved in PDF, PNG, or SVG formats, and 
you may also choose to store it in the cloud storage file manager. 

Fig. 4. Representative use case of advanced analysis module. (A) Screenshot of the “Each-sample Immune Infiltration Analysis” plugin. (B) and (C) Display the input 
files, including the gene expression matrix file and the grouping file. (D) Expression heatmaps of various cell types across different samples, with colors indicating 
different sample groups, where blue represents the high-risk group and red represents the low-risk group. (E) File summarizing enrichment scores of various cells 
across different samples. (F) Boxplots comparing cell enrichment scores between high-risk and low-risk groups, with cell types labeled below and significance levels 
indicated above (* for P < 0.05, ** for P < 0.01, *** for P < 0.001). 
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Fig. 5. Exemplification of the integrative omics analysis module’s utility. (A) Screenshot of the “Integration Analysis of Transcriptomics and Metabolomics Data” 
plugin. (B) Results of transcriptome and metabolome correlation analysis are displayed in the excel table. (C) Summary statistics boxplot of filtered metabolites and 
genes. (D) Association between metabolites and genes of interest. (E) Principal Component Analysis (PCA) plots of filtered metabolites and genes. 
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3.2.2. Use case 2: advanced analysis module 
The advanced analysis module includes 29 plugins, covering various 

functionalities, such as prognosis model construction, immune infiltra
tion analysis, Mendelian randomization, GO enrichment analysis, co- 
expression analysis, and phylogenetic tree analysis (Fig. 3B). 

In this work, we utilize TCGA’s bladder urothelial carcinoma dataset 
[40] to demonstrate the functionality of the "Each-sample Immune 
Infiltration Analysis" plugin. Users accessing the plugin webpage are 
required to input the gene expression matrix and grouping files, and 
then set the relevant parameters before initiating the analysis. The 
generated output comprises enrichment scores and expression heatmaps 
representing various cell types across different samples, along with 
boxplots displaying scores of different cells across distinct groups (with 
and without p-values), as depicted in Fig. 4. 

3.2.3. Use case 3: multi-omics integration analysis module 
Beyond single omics analysis, HiOmics prioritizes the integration of 

multiple omics data. Presently, the Integration Omics Analysis module 
provides 13 distinct plugins tailored for joint multi-omics analysis. Here, 
the NCI-60 cancer cell line metabolomics and gene expression data [41, 
42] were retrieved to demonstrate the functionality of the "Integration 

Analysis of Transcriptomics and Metabolomics Data" plugin, depicted in 
Fig. 5. To initiate the process, start by clicking on "Select File" to input 
the metabolite expression (abundance) matrix, transcriptome expres
sion matrix, and the sample phenotype file, which contains outcome 
data associated with each sample. Next, manually enter or select from a 
dropdown menu the column name in the sample phenotype file that 
necessitates calculation, the data type of this column (discrete or 
continuous), and specify the names of the metabolites and genes to be 
plotted on the correlation graph. Once configured, click "Run" to submit 
the data for background processing. The generated output comprises 
five graphs and a table, as illustrated in Fig. 5. 

3.2.4. Use Case 4: Artificial intelligence (AI) modeling module 

3.2.4.1. Machine learning models. Numerous biological problems can be 
reformulated as data analysis and pattern recognition problems. The AI 
modeling module of HiOmics has incorporated interactive plugins for 32 
widely used machine learning algorithms, encompassing artificial neu
ral networks, support vector machines, random forests, and AdaBoost. 
These plugins enable users to effectively manage and analyze substantial 
volumes of biomedical data. 

Fig. 6. Overview of Artificial Intelligence Modules. (A) This figure illustrates the machine learning models supported by the HiOmics platform and the modeling 
process. (B) Performance comparison of 12 different binary classification machine learning algorithms in terms of accuracy, precision, sensitivity, and specificity. (C) 
The ROC curves and AUC values for nine of these machine learning models. (D) This figure demonstrates the construction and evaluation process of clinical prognosis 
models on the HiOmics platform. 
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To showcase the functionality of the AI modeling tools of HiOmics, 
we chose a publicly available heart dataset [43], utilizing twelve binary 
classification machine learning algorithms to assess their performance 
within the HiOmics data analysis framework. Notably, our objective was 
to showcase the application of various machine learning plugins, rather 
than aiming for superior predictive performance compared to 
state-of-the-art methods. The algorithm parameters were set as follows: 
a test set split ratio of 0.2, non-shuffled data rows, utilization of fivefold 
cross-validation, and no custom model parameters were defined. Fig. 6A 
depicts a simplified machine learning workflow. The performance 
metrics, including accuracy, precision, sensitivity, and specificity for 
different algorithms, are presented in Table 2 and Fig. 6B, while Fig. 6C 
illustrates the ROC curves for nine out of the twelve algorithms. 

3.2.4.2. Clinical prognostic models. The Prognosis Model module offers 
clinical doctors a variety of visual plugins, such as Lasso Regression and 
Cox Regression Model, to investigate the factors influencing different 
disease outcomes. These plugins aid in assessing the probability of in
dividual outcome events by utilizing multiple predictive factors. Fig. 6D 

provides a simplified example illustrating the functionality of this 
module. Initially, the "Univariate COX Model" plugin is employed to 
identify substantial survival-related factors. Subsequently, statistically 
significant factors are chosen for analysis using the ". 

Multivariable COX Model" plugin, generating forest plots and col
umn line graphs. Moreover, the "Independent Prognostic Analysis" plu
gin evaluates whether specific factors are independent of other clinical 
characteristics, serving as independent prognostic factors. The " ROC 
Curve Analysis " plugin assesses the predictive accuracy of various 
clinical factors and risk scores for survival time. Additionally, the "Sur
vival Curve and Risk Curve" plugin evaluates the accuracy of the prog
nosis prediction model while identifying substantial differences in 
overall survival time between high- and low-risk groups classified by the 
model. 

3.3. Convenient workflow 

HiOmics has developed a collection of over 10 bioinformatics data 
processing workflows (Fig. 7), encompassing transcriptome analysis, 
metagenomic analysis, and genetic variation analysis, all built upon the 
standardized workflow language, WDL. These workflows address users’ 
essential requirements for executing complex data analysis. For 
example, the microbiome amplicon analysis workflow integrates vital 
software and databases for various steps, including paired-end sequence 
merging, barcode and primer removal, quality control, denoising for 
acquiring ASV representative sequences, taxonomic annotation, di
versity analysis, functional prediction, and differential analysis using 
LEfSe [44,45]. All these steps are conveniently presented on a single 
page, allowing users to seamlessly navigate through the workflow and 
obtain desired results effortlessly. These workflows substantially 
streamline comprehensive data mining, particularly benefiting users 
without scripting language or workflow construction expertise. 

4. Discussion 

After the completion of the Human Genome Project, scientists 
expanded their focus from the genome to other ’omics’ data types, 
—such as the transcriptome for gene expression, the epigenome for 
epigenetic markers, the proteome for protein production, and the 
metabolome for metabolic functional products. Although single omics 
data analysis usually involves correlation [46], researchers are 
increasingly collecting and analyzing multiple omics datasets 

Table 2 
Performance Comparison of Different Binary Classification Machine Learning 
Models.  

APP Name Accuracy Precision Sensitivity Specificity F1 

k-Nearest 
Neighbors (KNN)  

0.852  0.813  0.907  0.800  0.857 

Artificial Neural 
Network (ANN)  

0.852  0.854  0.953  0.611  0.901 

Gaussian Naive 
Bayes (GNB)  

0.864  0.833  0.909  0.818  0.870 

Logistic Regression 
(LR)  

0.864  0.857  0.857  0.870  0.857 

Decision Tree (DT)  0.864  0.786  0.917  0.827  0.846 
Support Vector 

Machine (SVM)  
0.869  0.864  0.950  0.714  0.905 

Random Forest (RF)  0.875  0.786  0.943  0.830  0.857 
AdaBoost  0.875  0.881  0.860  0.889  0.871 
Linear Discriminant 

Analysis (LDA)  
0.898  0.833  0.946  0.863  0.886 

Gradient Boosting 
Decision Tree 
(GBDT)  

0.909  0.881  0.925  0.896  0.902 

Light GBM  0.920  0.857  0.973  0.882  0.911 
Binary Stacking 

(BS)  
0.955  0.905  1.000  0.920  0.950  

Fig. 7. All workflows of HiOmics.  
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simultaneously to attain a more comprehensive understanding. Com
puter science plays a critical role in handling large-scale multi-omics 
data. Desktop applications, programming languages, and server-based 
network tools are frequently utilized in bioinformatics but have 
inherent limitations. Some tools lack comprehensive data analysis ca
pabilities, while others demand users to possess computer knowledge 
and familiarity with programming languages and Linux. Additionally, 
physical server constraints hinder large-scale data processing. Fortu
nately, cloud-based bioinformatics data analysis websites have emerged 
to counter these challenges. RAP [47] is a web-based tool tailored spe
cifically for RNA-seq analysis, offering standard and customized work
flows. Hiplot [23] excels in interactive analysis and visualization of 
lightweight single-omics data. Galaxy [48] empowers users to construct 
and manage their data analysis workflows, albeit requiring proficiency 
in multiple tools. 

In this work, we introduce HiOmics, a comprehensive cloud-based 
bioinformatics data analysis platform leveraging state-of-the-art tech
nologies, such as Docker containers, the WDL language, and the Crom
well engine. Tailored to meet the demands of multi-omics data 
processing and visualization, HiOmics boasts an extensive suite of nearly 
300 data processing and visualization tools. These tools encompass 
diverse analysis requirements, featuring specialized toolsets for specific 
purposes and rigorously tested, reproducible analysis workflows utiliz
ing multiple software packages. HiOmics caters to upstream analysis of 
raw sequencing data and downstream analysis, ensuring the delivery of 
high-quality visual outcomes. Its capabilities span from single omics 
analysis to intricate multi-omics integrative analysis, efficiently man
aging datasets of varying sizes, from small-scale to large-scale multi- 
sample data. Designed with a user-friendly graphical interface, HiOmics 
simplifies the processing of vast biomedical data, accommodating users 
without programming experience. With only three simple steps, re
searchers can effectively analyze and explore omics data, thereby 
eliminating barriers and empowering in-depth analysis to uncover new 
insights. For reliability, portability, and efficiency in bioinformatics data 
analysis workflows, HiOmics integrates WDL + Cromwell and Docker 
container technology. WDL + Cromwell offers robust workflow 
description and management capabilities, while Docker containers 
ensure independent and dependable workflow deployment and execu
tion environments. This integration resolves compatibility issues across 
diverse environments, allowing for complex data analysis workflows 
while maintaining consistency and standardization. Additionally, it 
minimizes maintenance costs and workflow-related risks. To manage the 
growing volume of omics data, HiOmics incorporates public cloud ob
ject storage technology and batch computing techniques, ensuring users’ 
resource independence and enabling efficient processing of vast data
sets. Furthermore, standardized data format validation enhances the 
user experience, improving data analysis reliability and effectiveness 
within the platform. 

Despite these advancements, HiOmics acknowledges the ongoing 
demand for personalized analysis plugins tailored to specific research 
fields. Hence, HiOmics is dedicated to developing additional plugins to 
cater to the diverse needs of its users. Concurrently, enhancing the speed 
and responsiveness of real-time interactions remains a focal point for 
HiOmics. Furthermore, recognizing the trend toward deep learning in 
biomedical data analysis [49–53], we aim to introduce more deep 
learning plugins, expanding our users’ options for artificial intelligence 
modeling. Through continuous efforts, we aim to enhance HiOmics, 
providing users with more efficient, flexible, and convenient data 
analysis and visualization capabilities. 

5. Conclusion 

In general, HiOmics offers an integrated biomedical data analysis 
and visualization service, streamlining researcher workflows and 
enabling more convenient scientific research. Currently, users can freely 
access all of HiOmics functions by simply registering an account. 

However, for large data computations involving cloud computing and 
storage costs, we plan to introduce charges for this specific service in the 
future. This decision aims to cover the infrastructure costs associated 
with cloud service providers. Nevertheless, other tools and services will 
remain free to support a broader range of researchers in their studies. 
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