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ABSTRACT

We developed a method for estimating the posi-
tional distribution of transcription factor (TF) binding
sites using ChIP-chip data, and applied it to recently
published experiments on binding sites of nine TFs:
OCT4, SOX2, NANOG, HNF1A, HNF4A, HNF6,
FOXA2, USF1 and CREB1. The data were obtained
from a genome-wide coverage of promoter regions
from 8-kb upstream of the transcription start site
(TSS) to 2-kb downstream. The number of target
genes of each TF ranges from few hundred to sev-
eral thousand. We found that for each of the nine
TFs the estimated binding site distribution is closely
approximated by a mixture of two components: a
narrow peak, localized within 300-bp upstream of
the TSS, and a distribution of almost uniform density
within the tested region. Using Gene Ontology (GO)
and Enrichment analysis, we were able to associate
(for each of the TFs studied) the target genes of both
types of binding with known biological processes.
Most GO terms were enriched either among the
proximal targets or among those with a uniform dis-
tribution of binding sites. For example, the three
stemness-related TFs have several hundred target
genes that belong to ‘development’ and ‘morpho-
genesis’ whose binding sites belong to the uniform
distribution.

INTRODUCTION

Elucidating the basic principles that underlie regulation of
gene expression by transcription factors (TFs) is a central
challenge of the postgenomic era. Reliable experimental
and computational identification of TF-binding motifs is
an essential step towards this goal. In spite of major tech-
nological advances that generated rapidly improving high-
throughput measurements of both gene expression (1) and
TF binding (2), and intense parallel bioinformatic efforts
that produced a large variety of computational meth-
ods (3–6) aimed at identifying functionally important

TF-binding motifs, very basic questions remain unre-
solved. Perhaps one of the most pressing outstanding
issues concerns the relative importance of proximal
versus distal regulatory regions [with respect to the tran-
scription start site (TSS)] in higher organisms.
While for prokaryotes the region in the close vicinity of

the TSS is known (7) to play a central role in binding TFs
that regulate gene expression, for eukaryotes the prevalent
opinion is to the contrary; even though arguments sup-
porting the special role of the proximal region have been
presented for yeast (7)—it is believed that distal regulatory
regions are most significant, especially for mammalians
(8,9). Most recently several bionformatical studies have
claimed that even in mammalians the proximal region
dominates transcriptional regulation in general (10,11)
or for particular biological contexts (12). There is no
known estimate, however, of the relative abundance of
distal as compared with proximal functional binding
sites of TFs. There is no clear answer to simple questions
such as the abundance of dual-action TFs, that under
different conditions and in different pathways switch
from proximal to distal regulatory binding.
Conversely—do different genes, that belong to a particular
biological function or pathway, exhibit the same posi-
tional bias in binding TFs that regulate their expression?
The work presented here is an attempt to answer some of
these questions by means of analysis of a large number of
experimentally derived (13,14) TF binding sites.
To this end, we developed a method for estimating the

positional distribution of TF binding sites on the basis of
ChIP-chip data, and applied it to recently published
experiments on binding sites of nine TFs (13,14), obtained
from a genome-wide coverage of promoter regions from
8-kb upstream of the TSS to 2-kb downstream. Even
though binding detected by ChIP-chip (in cell lines) is
not synonymous to in vivo functional binding that regu-
lates transcriptional activity, knowing the positional dis-
tribution of binding sites does contain important,
interesting and yet unexplored information.
The resulting estimated binding site distribution reveals

an unexpected picture: it is closely approximated by a
mixture of two components. One is a sharp peak, localized
within 300-bp upstream of the TSS, and the second
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component is a distribution of almost uniform density
within the tested region (�8 kb to 2 kb). These two com-
ponents appear in all nine TFs studied, but their relative
weights do depend on the TF. Such a mixture of two
distributions suggests that there might be two distinct
groups of binding sites which differ in their biological
function or in the mechanism by which their function is
achieved. Indeed we found that the three TFs, OCT4,
SOX2 and NANOG, that constitute a control unit that
governs the genetic program of embryonic stem cells (15),
communicate with hundreds of genes involved in morpho-
genesis and development via uniformly distributed bind-
ing sites. On the other hand, the internal connections
between these three TFs are of both kinds: the corre-
sponding binding sites on the NANOG promoter are
from the component proximal to the TSS, whereas on
the other two promoters they are from the more distal
uniform component. Further analysis and experiments
are needed to elucidate other characteristics of the two
kinds of binding sites and their possibly differing roles.

MATERIALS AND METHODS

The data and platform

We used ChIP-chip data from two studies. The first (13)
aimed at mapping the binding sites of three TFs, NANOG,
OCT4 and SOX2, known to play central roles in the main-
tenance of key properties of embryonic stem cells. The
second study (14) concentrated on six TFs known to be
expressed in the liver and believed to be critical for the biol-
ogy of hepatocytes: HNF1A, HNF4A, HNF6, FOXA2,
USF1 and CREB1. For six of the nine TFs there is data
from 2 biological replicas; for the remaining three—HNF6,
USF1 and CREB1 only single replicas were available.
Both studies used human cells and the same custom

designed DNA microarrays (code-named 10array) devel-
oped in the Young lab (16), containing 60mer oligonucleo-
tide probes. The probes cover regions that extend from
8-kb upstream to 2-kb downstream of the TSS of about
18 000 annotated human genes. On the average, there is
approximately one probe every 280 bp in the covered
region. A full account of the technique can be found in
Supplementary Material of (13) and (14) or on the web site
accompanying those publications (17).
Here, we review only those components of the technique

that are essential for understanding our analysis.
After immobilizing the proteins and fragmenting the

DNA (into fragments of length of 550 bp on average),
part of the resulting material is used for immunoprecipita-
tion (IP), while the other part is reserved for control. The
IP-enriched DNA extract is labeled with red fluorescent
dye, while the control whole-cell DNA extract is labeled
with green. The whole-cell extract (WCE) is assumed to
contain any piece of the genome with equal probability
(concentration), as opposed to the immunoprecipitated
DNA extract that is significantly enriched by DNA frag-
ments to which the TF of interest was bound. Both DNA
extracts are applied to the microarray to allow competitive
hybridization. The fluorescence intensity is then measured
using red and green filters separately for each probe.

Data analysis pipeline: identifying regions with bound TFs

Normalization and preprocessing. These procedures
(described in the Supplementary Material) were used to
assign each probe a score (referred to below as M-score)
indicative of the probability of the presence of a binding
site in its vicinity.

Smoothed M-scores. This score has unit variance and
approximately normal distribution; hence M-score cutoffs
can be interpreted in terms of probability. Since the spa-
cing between adjacent probes was mostly within the reso-
lution limit of chromatin IP (i.e. spacing was comparable
to the DNA fragment lengths), a binding event on probe
i was called on the basis of the M-scores of a triplet of
consecutive probes and the value of their ‘triplet M-score’,

M
ð3Þ
i ¼

Mi�1 þMi þMiþ1ffiffiffi
3
p

Under the assumption of statistical independence of Mi

and Mi�1, the smoothed variable M
ð3Þ
i is also approxi-

mately normally distributed with unit variance (see
Section 1.3.3 of the Supplementary Material for verifica-
tion of this). Using calls from a triplet of probes helps to
filter out spurious signals from single isolated probes.

Identifying bound triplets. The filtering criterion
(described in detail in Section 1.3 of the Supplementary
Material) contains four different P-value-like cutoff para-
meters, t1, t2, t3 and tn, and an overall control parameter
(com).

A triplet centered on i was labeled as bound if it passed
the following criteria:

(1) M
ð3Þ
i > ðcomÞ � t3, AND

(2) either (2.1) or (2.2),
where
(2.1) Mi> (com)�t2 AND [Mi�1> (com)�t2

OR Mi+1> (com)�t2],
(2.2) Mi> (com)�t1 AND [Mi�1> (com)�tn

OR Mi+1> (com)�tn]

See Supplementary Material for the rationale of these
criteria, adopted from (13).

In order to avoid the arbitrariness often present when
selecting a cutoff significance level, each of the four
P-value-like cutoffs was initially assigned some reasonable
value, adopted from (13), and these were then multiplied
by the overall control parameter (com) (abbreviation for
‘cutoff multiplier’). The cutoff multiplier was varied from
0.1 to 500 and for each value the whole data analysis pipe-
line was run (lower multiplier value means stricter cutoff).
For each TF, we selected a ‘natural’ value for the cutoff, as
described in the Results section.

For each triplet of probes that passed the filters, the
region between the two flanking probes (Figure 1) was
marked as a bound region. Overlapping bound regions
were collapsed into a single bound region.

The preprocessing steps described above resulted in lists
of several hundred to several thousand bound regions for
each TF. Each bound region is several hundred base pair
long (700 on average).
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Coverage plots

In order to estimate the distribution of binding sites as a
function of distance from TSS, promoters containing
bound regions were aligned relative to the TSS nearest
the bound region and a coverage number was calculated
for each nucleotide location (defined with respect to its
closest TSS). It is somewhat similar to a histogram, but
since the bound regions have different lengths, a simple
histogram could not be used. The coverage number of a
particular position, at a given distance from the aligned
TSSs, is the number of bound regions that contain the
nucleotide at this position. That is, we count how many
bound regions cover a point at distance x from the TSS,
adding them up for all the genes tested. Figure 2 illustrates
this concept. The genomic locations of the genes were
taken from the RefSeq genes table from UCSC genome
browser, build hg17.

Coverage plots that were obtained from the experimen-
tal data for the nine TFs studied are presented in Figure 3.
Note that in order to highlight the similarities between the
different coverage plots, in each of these figures the cover-
age numbers are normalized by the area under the curves
(the number of detected binding sites of the nine TFs
varied between about 100 and 4000, see Table 1).

Obtaining binding site distributions by deconvolution
of coverage plots

The genomic locations of the binding sites of a TF are not
known; the aim of our analysis is to find, for each of the
TFs, that distribution of binding sites (as a function of
distance from the TSS), which provides the best fit for
the corresponding (experimentally determined) coverage
plot. The fit is obtained by a simulation of the entire pro-
cess of TF-binding events and their identification by the
experiment.

Denote by Q(x) the probability that the nucleotide at
distance x from the TSS belongs to a binding site of a
given TF. We choose, for the TF that is studied, a parti-
cular Q(x) from a family of distributions described below.
A gene is randomly selected from the list of all possible
targets, and a binding site is placed on its promoter at a
location x selected at random from Q(x). Ten thousand

binding sites are generated independently this way, each
characterized by a genomic address and a strength param-
eter U, which represents the binding affinity of the site.
The value of U is sampled at random from a shifted
gamma distribution

p Uð Þ ¼
U� sð Þ

k�1

�k� kð Þ
exp �

U� s

�

� �
1

with parameters: shift s=3, shape k=2 and scale � = 3,
based on the model derived in Ref. (16).
The number of binding sites that were generated for a

simulation (10 000) was chosen so that the resulting simu-
lated coverage plot is not noisier than the experimental
one. The precise value of the number of sites generated
and the actual distribution of binding strengths had only a
minimal effect on the results of our simulations.
Since the locations of all probes are known, we can

calculate for each probe a simulated M-score, determined
by its distance d to the nearest of the 10 000 simulated
binding sites and by its strength parameter U:

M�score ¼ f dð Þ �U 2

f dð Þ ¼
X1
l¼d

l
Xl
a¼d

p að Þp l� að Þ 3

The influence function f(d) used to calculate the M-score
was adapted from the Supplementary Material of Ref.
(18); p(a) is the probability that the DNA was cut at a
distance a from the nearest binding site. The distribution
PL(l) of the DNA fragment lengths l has been measured
(18) and was approximated by a shifted gamma distri-
bution (18). This distribution is related to p(a) by a
convolution,

pL lð Þ ¼
Xl
a¼0

p að Þp l� að Þ 4

Since convolution of two identical shifted gamma distri-
butions is again a gamma distribution (with twice the
mean and shift), p(a) was also taken to be a shifted
gamma distribution. The following parameters were used
for the simulation: shift s= 50 bp, shape parameter k=2
and scale parameter �= 60. The simulated M-scores were

Figure 1. Example of a promoter region between TSSs of two genes:
DPAGT1 and TMEM24, on chromosome 11. Microarray probes are
depicted as squares on the x axis, red and green curves show log
intensity of the red (IP) and green (WCE) channels from NANOG
data, the blue curve is the resulting M-score. Probes detected as
bound are marked with red triangles. The resulting bound region is
marked with a magenta line. Arrows indicate direction of transcription.

Gene1

0 
1
2
3

Gene2

Gene3

Distance from TSS [bp] 1 2−1 0−2−3−4

Figure 2. Illustration of the coverage number concept (not to scale).
The red curve shows the coverage number of the hypothetical set of
bound regions which are represented by magenta colored bars.
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then fed into the analysis pipeline described above as if
they were derived from real raw data and a coverage
number plot was generated. We performed simulations
using binding site distributions Q parameterized as
described below and searched for a Q that yielded a
good approximation to the experimentally derived cover-
age plot. Since the simulation is computationally intensive
(about 55 s on Intel P4 2.4GHz 1 GB RAM for a single
run), any systematic fitting method would be difficult to
implement and our forward-fit method has to be viewed as
an approximate deconvolution.

Family of binding site distribution functions tested

The most prominent feature of the experimental coverage
number graphs (Figure 3) is the peak at around 150 bp
upstream of the TSS. The structure away from this peak,
namely the rapid decrease to zero at �8 kb and +2kb (the
edges of the genomic region covered by probes), is due to
microarray design and is consistent with a uniform binding
site distribution (see Results section). Therefore, we mod-
eled Q(x) as the sum of a uniform distribution and one or

Figure 3. The fitted deconvolved binding site distributions (blue) and the corresponding simulated ones (cyan) compared with experimental (red)
coverage number plots.

Table 1. Summary of the fitted distributions

TF com Nr Ng N0g Xp Df Dc Wu/Wp

NANOG_M3 100 2467 2394 1683 �180 260 827 6.5
OCT4_M4 100 1546 1536 623 �120 260 914 5.7
SOX2_M3 5 314 341 1271 �200 165 624 5.7
FOXA2_M2 50 1066 1126 890 �130 260 862 6.1
HNF1A_M2 50 1052 1097 1016 �180 212 802 5.7
HNF4A_M1 30 3889 3637 4519 �180 212 860 5
HNF6_M1 5 782 886 1306 �240 283 1321 6.1
CREB_M1 10 1008 1290 2197 �150 212 708 1
USF1_M1 1 111 151 1632 �200 212 606 1

Com, CutOff Multiplier; it represents the P-value cutoffs selected for
the TF as described later. Nr, number of bound regions (bound regions
are defined in Methods section). Ng, number of bound genes (a bound
gene is defined here as any gene for which there is a bound probe
within 10-kb upstream to 3-kb downstream of its TSS). N0g, number
of bound genes as previously reported by (13, 14). Xp, peak position
relative to TSS (in base pairs). Df , width in base pairs of the fitted peak
at half max (2.36 s), Dc,width of the peak of the measured coverage
plot at half max. Wu/Wp, ratio of weights of the uniform component
and of the peak in the distribution, it is also the ratio of the number of
binding sites that are distributed uniformly and the number of binding
sites that are localized within the peak.
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moreGaussians (up to five, but usually one or two sufficed).
The centers and widths of the Gaussians and the weights of
all the components were the parameters that were varied to
identify the distribution that gave best agreement with the
experimental coverage plot.

Gene Ontology enrichment analysis

For a group of genes of interest G (such as those targets of
a TF whose binding is close to the TSS), we performed
Gene Set Enrichment Analysis (GSEA) (19). Admittedly
over-representation of a specific Gene Ontology (GO)
category among the genes of G does not prove regulation
of these genes by the relevant TF, but co-regulation is a
most plausible reason for the observed enrichment. To
exclude the possibility that the over-representation of a
GO group was due to a chance fluctuation in a random
set of stray binding sites, the observed enrichment
P-values were submitted to a stringent false discovery
rate (FDR) analysis (20).

RESULTS

Coverage plots for the nine tested TFs exhibit
a prominent peak near the TSS

The coverage plots obtained from the experimental data
when the processing and analysis steps described above
were implemented are shown in Figure 3. It is important
to remember that the number of identified targets depends
on the thresholds and cutoff parameters that were used;
the dependence of the coverage plots on these parameters
and the manner in which they were determined for each
TF are discussed in detail below.

The coverage plots obtained from the experiments are in
red; for six out of the nine TFs the experiments were
repeated twice, and coverage plots were prepared for
each repeat. In four out of the six cases the two repeats
are in good agreement with each other; in all six cases we
chose to adopt the repeat with the higher peak (see
Supplementary Figure S5). For each of the nine TFs stu-
died the coverage plot exhibits a sharp peak close to the
TSS. This strong peak near the TSS is the most prominent
feature of these plots. As explained in the Methods section,
these coverage plots were normalized, in order to empha-
size that the peak near the TSS is shared by all nine TFs
studied.

Binding site distributions obtained by fitting coverage plots

In Figure 3, we present for each of the nine TFs studied
the ‘optimal’ binding site distribution Q(x) that produced
a good fit to the experimentally obtained coverage plots.
The quality of the fit can be assessed from the same figure.
Good fits were obtained when a mixture of a uniform
background distribution with one (or more) Gaussians
was used. In several cases mixing a single sharp
Gaussian, located near the TSS, sufficed; even when
more than one was needed, the first one, located upstream
close to the TSS, was the most prominent by far. The
parameters of each of the binding site distributions,
obtained for the nine TFs tested, are summarized in

Table 1, together with numbers of bound regions (see
Methods section) and bound genes. A bound gene is
defined here as any gene for which there is a bound
probe in the interval from 10-kb upstream to 3-kb down-
stream of its TSS. Note that a single bound probe can give
rise to more than one bound gene (sense and antisense).
The number of bound genes varies from about 150 for

USF1 to 3600 for HNF4A. Note that for several TFs it
differs considerably from the numbers reported previously
by Refs (13,14). These differences are mainly due to the
different values of the P-value thresholds, selected as
described later The position of the peak is close to
�200 bp for all TFs, and its width varies between 165
and 260. Using these numbers and by inspection of the
deconvolved BS distributions of Figure 3, we identified for
each target gene the ‘proximal region’ as the interval
[�300,+300] bp (on both sides of the TSS), for all the
TFs studied. If a particular region R was identified as
proximal for gene G1 and distal for G2, a binding event
in R is counted as proximal binding to G1 and distal to
G2. Note that the width of the fitted distribution of bind-
ing sites is about 25% of the width obtained from the
coverage plots; hence deconvolution of the coverage
plots indeed sharpened significantly the resolution at
which ChIP-chip data can be used to identify binding
site positional bias.
The picture that emerges indicates that a TF may have

two classes of binding sites, that probably differ in their
biological function and the mechanism by which this func-
tion is achieved.

Comparison of binding sites within the peak and
outside using GO

We turned to look for such a difference of functions, using
GO (21) annotations of genes bound by the nine TFs
studied. For this end, the genes bound by a particular
TF were split into two disjoint groups—one contained
genes that have a probe detected as bound, located
within the gene’s proximal region, and the other contains
the rest of the TF’s putative targets—i.e. genes with one or
more bound probe, none of which lie within the gene’s
proximal region. The first group is assumed to include
most of the genes that have a binding site on their pro-
moter within the peak. Both groups were subjected sepa-
rately to hypergeometric GO enrichment analysis (see
Section 2.5 of the Supplementary Material for details of
the calculation of P-values and FDR correction), using
only the ‘biological process’ type of GO annotations.
Results of this analysis are depicted graphically on
Figure 4. Genes bound by HNF6, one of the six liver-
associated TFs, were not enriched by any GO group.
For the other TFs we do find association of biological
processes with binding location; the GO groups are
divided roughly into two subsets, (i) containing a variety
of categories related to metabolism, RNA processing and
splicing, cell cycle and more (see Supplementary Table S4
for a full list) and (ii) mainly regulatory groups and devel-
opmental processes. The GO categories of subset (i) are
enriched mainly by target genes of the liver-associated TFs
and the binding sites are close to the TSS. The GO
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categories of type (ii) are enriched mostly by genes that
bind the three stemness-related TFs, with binding sites far
from the TSS. The finding that different GO terms are
enriched in different groups supports the possibility of
different functions associated with binding sites within

and outside the peak. We list below a few selected
observations.

For example, the group of genes with probes bound by
OCT4, far from the TSS, is enriched with a GO term
‘organ morphogenesis’ with an FDR corrected P-value
of 4.2� 10�6, while the group of genes with probes
bound by OCT4 close to the TSS is not enriched with
the same term.

For some TFs such as USF1 and CREB1 there are
enriched terms only in the group of genes with bound
probes close to the TSS. The situation is reversed for
OCT4. HNF4A has several GO terms enriched in both
the far and the close groups. NANOG has some terms
like mitosis enriched only in the close group, other
terms, like morphogenesis, are enriched only in the far
bound gene group, and yet others like RNA metabolism
are enriched in both (Table 2).

It is interesting to note that for genes bound by the stem
cell TFs NANOG, OCT4 and SOX2, development-related
GO categories are enriched only among the genes with a
binding site far from the TSS (Table 2 and Supplementary
Table S4).

Proximal and distal binding sites in transcriptional circuitry

It is interesting to analyze the different roles played by the
two kinds of TF binding sites in the transcriptional circuits
in which they participate. Figure 5 presents the connec-
tions within the three stem cell-related TFs and their con-
nections to the ‘external world’ of transcriptional targets.
Interestingly, NANOG itself is the target of exclusively
proximal internal binding, whereas SOX2 and OCT4

Figure 4. Enrichment scores of about 100 GO terms among the genes
bound by the studied TFs. Red color represent high enrichment. Each
row is a GO term. The TFs are listed twice; left panel present the scores
of enrichment among genes with proximal binding, while the right panel
with distal—uniformly distributed binding. Notice the two clearly distinct
groups of GO terms: one is predominantly enriched among the genes with
proximal binding (the upper left corner)—those are mostly metabolism-
related GO terms and liver-related TFs. The other group (bottom right
corner) contains mostly development-related GO terms enriched among
genes with uniformly distributed binding sites of stem cell-related TFs.
Also note that NANOG is present in both of these groups.

Table 2. GO categories enriched among the genes with a binding site of

NANOG far from the TSS

GO category FDR corrected P-values

Close to TSS Far from TSS

Development 1.00E+00 7.02E-11
Transcription 6.37E-02 1.15E-09
Nucleobase, nucleoside,

nucleotide and nucleic
acid metabolism

6.95E-09 2.01E-09

Anatomical structure
development

1.00E+00 2.88E-09

Organ development 1.00E+00 4.35E-09
RNA metabolism 2.25E-06 9.47E-09
Biopolymer metabolism 5.91E-09 4.83E-08
RNA biosynthesis 3.88E-02 1.16E-07
Transcription,

DNA-dependent
3.68E-02 1.94E-07

Morphogenesis 1.00E+00 1.42E-06
Regulation of nucleobase,

nucleoside, nucleotide
and nucleic acid metabolism

4.06E-01 1.47E-06

Regulation of transcription 4.13E-01 2.55E-06
Transcription from RNA

polymerase II promoter
1.52E-01 7.93E-06

Regulation of cellular metabolism 4.16E-01 3.04E-05
Regulation of metabolism 5.76E-01 1.17E-04

Notice that there are several development-related categories that are
not enriched in the group of genes with binding site close to the
TSS. See Supplementary Material for details about the calculation of
P-values and FDR correction and a full list of enriched categories.
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have distal internal binding sites. As to external binding,
the GO processes of development, morphogenesis, regula-
tion of transcription and sensory organ development are
controlled by binding sites from the distal, uniformly dis-
tributed class (of all three TFs).

Another interesting observation concerns the circuit of
liver-related TFs: most of the internal interactions
between the TFs in this group are either through binding
close to the TSS or within the gene.

Having discussed in detail the main characteristics of
the coverage plots and the fitted distributions obtained
from their deconvolution, as well as the biological obser-
vations concerning the two kinds of binding sites we
found, we turn to some technical details that must be
addressed. First, we rule out two possible trivial sources
of the strong peak we found; next, present a purely com-
putational test of the main result and describe the manner
in which the P-value thresholds (that were used to identify
binding events of the TFs studied) were set.

Addressing several possible concerns about the analysis

We describe here several possible reasons and artifacts
that could have misled us to reach the conclusion
described above.

The effect of probe density

The first question to consider is whether the strong peak
reflects nothing but the density of probes represented on
the chip. Even though our simulations generate binding
site distributions that fit the data (coverage plots) using
the actual genomic locations of the probes placed on the
chip, we wish to demonstrate here clearly that the distri-
butions we found, and especially the sharp peak near the
TSS, are not due to the probe distribution.

Clearly, if all probes are placed in a narrow region near
the TSS, the coverage plot will have nonzero values in this
region only. Indeed, since the microarray does not cover
promoter regions outside the interval [�8, 2] kb from the
TSS, we get zero coverage outside this region.
Additionally, the probe density within the covered
region is not uniform, as can be seen on Figure 6 (red
curve): it is higher near the TSS. In order to understand
how this probe density variation influences the coverage
number, we performed a simulation of the measurement
process starting with a hypothetical TF with a uniform
distribution of binding sites as a function of distance
from the TSS. The blue curve on Figure 6 is the average
of the coverage number plots obtained from 100 such
simulations. Comparison of this simulated curve with
that generated from real data of HNF1A is presented on
Figure 6. Clearly, the peak of the real data is much sharper
and narrower. Hence, the prominent peaks observed for
all nine TFs cannot be attributed to the probe density
variation, while the gradual decrease further away from
the TSS most probably reflects just that.

The effect of GC-content variation

A second possible artifact that could in principle produce
such a peak is the nonuniform GC content of the promo-
ters of human genes. As seen in Figure 7A, the GC content
increases from 45% far from the TSS to a peak value of
about 65% near the TSS. Higher GC content means stron-
ger binding of the DNA fragments to the corresponding
probes and hence higher M-scores and, possibly, a higher
density of detected binding sites. Since the bias introduced
by the GC content is, on the average, similar for the IP
and the WCE, we expect that taking the ratio of the inten-
sities of the same probe in the two channels reduces sig-
nificantly the effect of the GC variation on our measured
signal. Indeed, as expected, the fluorescent intensity of the
microarray probes in both channels is highly correlated
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Figure 5. Schematic diagram of the stem cell circuit with some of the
GO categories enriched among the genes bound by each TF. Blue
arrows represent binding close to the TSS, red—distal, uniformly dis-
tributed. Black arrow means that binding is inferred from another
source (15) and no information is available about the position.
Numbers near the GO categories indicate the number of genes from
the group in this category. Numbers on the arrows indicate the total
number of genes in the group submitted to GO analysis (genes with
multiple TSSs were omitted from this GO analysis). The information
about the binding of OCT4 and SOX2 to the promoter of OCT4 was
taken from Ref. (26) rather than from the ChIP-chip experiment since
the microarray in the platform used does not cover properly the OCT4
promoter.

Figure 6. Comparison of coverage number plot for HNF1A with the
coverage number plot obtained from a simulation that uses a uniform
distribution of binding sites. All three curves were normalized to have
the same area under the curve.
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with their GC content (correlation coefficient of about 0.7
in the data used here). On the other hand, correlation
coefficients between the M-score and GC content are
very low (order of 0.01) for most TFs, demonstrating
that working with the M-score (which is basically a
scaled log ratio of intensities in the two channels) success-
fully cancels the variation introduced by the GC content.
As can be seen on Figure 7B, for NANOG the coverage
number peak is about 150-bp upstream from the TSS,
while the GC content peak, as well as the peaks in inten-
sity of the red and green channels, are about 70-bp down-
stream. This significant shift in peak position serves as
convincing evidence that the sharp peaks in coverage
number plots are not an artifact caused by GC-content
variation.

A computational test

To obtain further evidence for the fact that the peaks of
the coverage plots and the resulting fits for binding site
distribution are not due to some artifact of the method, we
performed a purely computational test. We used the data-
base underlying the ‘TFBS Conserved’ track in the UCSC
genome browser (22,23), http://genome.ucsc.edu/cgi-bin/
hgTrackUi?g=tfbsConsSites. It was generated using the
TRANSFAC (24) collection of positional score matrices
(PSSMs) representing the binding preferences of TFs. The
database contains the locations and scores of TF binding
sites conserved in the human/mouse/rat alignment. In gen-
eral, the number of conserved binding sites in this data-
base is too small to construct meaningful positional
histograms for most TFs, but for HNF1A, USF1 and
CREB1 there was a large enough number. The resulting
histograms are very similar to what we found from the
ChIP-chip experiments (see Supplementary Figure S8).
Since these coverage plots are derived in a purely compu-
tational way, they are not influenced by GC concentration
in the same way as hybridization-based experiments.

Are the identified binding sites functional?

As stated in the Introduction, the binding events detected
by ChIP-chip in cell lines may not necessarily corre-
spond to functional binding, that actually regulates tran-
scriptional activity, that takes place in vivo. Performing
in vitro and in vivo experiments is the only way to establish
beyond doubt the functionality of a binding site. Using
in silico bioinformatic methods to deduce functionality
are at odds with the spirit and aims of this work, in
which we tried to limit the analysis to experimentally
derived binding events.

We did try to address specific concerns, in particular
regarding a possible reasonable suspicion about function-
ality of the distal binding events. Over the 10-kb long
DNA strands scanned for binding one may (and will)
have ‘stray’ binding sites because of purely statistical rea-
sons. We tried several tests, direct and indirect, to rule out
the suspicion that our results reported above were based
on such nonfunctional statistical binding events. As a
sanity check of the assumed functionality of the distal
binding sites, we investigated the promoters of a group
of housekeeping genes [derived from (25)]. Housekeeping
genes are believed to be proximally regulated; we found
that housekeeping genes had OCT4 and NANOG binding
sites and, as expected, these had a much stronger tendency
for proximal binding than the full genome-wide set of
bound promoters. The weight ratio Wu/Wp dropped
from �6 (Table 1) to about 1.5 (see Supplementary
Figure S14). Another (experiment-based) test is described
below; by lowering the threshold for identification of a
binding event from the data, we move from a regime
where the identified binding events are dominated by
strongly bound functional sites, to one where weaker
stray statistical binding events constitute the majority.
Since the origins of the two types of binding are very
different, the number of detected binding sites should
behave differently, as a function of the varying threshold,

A B

Figure 7. (A) GC content as a function of distance from TSS. Average over about 13 000 promoters, smoothed with a Gaussian kernel with s=6nt.
(B) This figure shows the difference between the locations of the peak of the GC content (same as A) and of the coverage number plot for NANOG
averaged over all the promoters. Notice that the peaks of intensity of red and green channels coincide with the peak of GC content as expected.
The peaks of coverage number and M-score, on the other hand, are more upstream the TSS providing convincing evidence that the sharp peaks in
coverage number plots are not an artifact caused by GC-content variation. The different curves were shifted and scaled vertically for convenient
comparison; therefore the vertical axis has no meaningful units. The curves for M-score and the red and green channel intensities were obtained by
linear interpolation between individual probes which was then averaged over all the promoters represented on the chip.
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in the two regimes. Observation of such a difference
(change of slope, apparent discontinuity, etc.) is indicative
of the fact that we indeed have two different types of
binding sites, one of which is statistical and the other—
most probably functional. We have demonstrated that for
most of the studied TFs indeed such a crossover was
observed for the distal binding sites (for which statistical
binding occurs with high probability). These results are
presented below and in Supplementary Figures S11.
Since for seven out of the nine TFs studied the weight of
the distal uniform distribution is about six times the
weight of the proximal one (Table 1), such a crossover
induces a similar trend in the total number of binding
sites (distal and proximal), as shown below.

Selecting theP-value cutoffs for each TF

As described in the Methods section, we used a single para-
meter to control the cutoff values of the four P-values that
were used to decide whether a probe was considered
bound or not by the TF. This CutOff Multiplier is referred
to as com in the various figures and their legends. It was
varied between 0.1 and 500 (lower values mean stricter
cutoff, i.e. more rigorous filtering and smaller number of
regions identified as bound). The numbers of bound
regions and genes that were identified for each TF are
reported in Table 1, which also contains (first column)
the value of com used for each TF. Obviously the
number of identified bound regions depends on the
value of com, and we discuss here the manner in which
we selected the values that were used. A related question
concerns the extent to which the coverage plots, and in
particular the sharp peak near the TSS, depend on com.

As described above, the general underlying assumption
we make is that for low values of com we have very few
false positives but many false negatives. As com increases,
more binding events are identified, until at some point the
resulting filter loses its meaning and the additional binding
events are dominated by noise. Hence, we are looking for
a change of the behavior of either the number of binding
events as a function of com, or of some other important
property of the resulting coverage plots.

The observed behavior of coverage number plots as a
function of cutoff can be divided into three different types.
For five TFs the shape remained almost invariant as the
cutoff multiplier increased, and deteriorated quickly
beyond some ‘critical’ value, above which the coverage
plot resembled the one simulated for a hypothetical TF
with uniform distribution of binding sites (Figure 6). As
shown in Figure 8, HNF1A belongs to this type (the other
four are FOXA2, HNF6, HNF4 and SOX2, see
Supplementary Figure S9). As shown in Supplementary
Figure S10, the total number of bound regions also exhi-
bits a fairly sharp anomaly for these five TFs at the critical
value of com (either a change of slope or apparent discon-
tinuity). The critical value of com differs between TFs and
may be different even between experimental replicas for
the same TF (Figure 6B).

A different behavior was exhibited by coverage number
plots for NANOG (Figures 6C and D) and OCT4
(Supplementary Figure S9). For these TFs the peak

value initially increases with com until a maximum is
reached around com=100, and then decreases.
The peaks of the coverage number plots of the remaining

two TFs, USF1 and CREB1 decreased monotonically with
com without any apparent discontinuities. It is interesting
to note that these two TFs have the highest peaks, with
coverage numbers nearly zero outside the peak (Figure 3).
For the five TFs that exhibit the first type of behavior we

selected com just below the critical value. The rationale is
that for relatively stringent cutoffs we get coverage number
plots that correspond to a relatively clean list of binding
sites with few false positives. It can be assumed that while
the relative coverage number plot does not change with
loosening cutoff, the growing list of binding sites maintains
a noise level similar to the initial one, until the critical value,
beyond which many false binding sites enter the list and the
noise level rises affecting the coverage number plot, and we
choose com at a value before that happens.
The cutoffs for NANOG and OCT4 were selected to get

the highest peak. Since the peak heights and number of
bound genes for USF1 and CREB1 exhibited no obvious
discontinuity (see Supplementary Figures S9 and S10) and
therefore provided no hint for the selection of cutoffs, we
selected rather conservative values of com (1 for USF1 and
10 for CREB1). This resulted in relatively small numbers
of genes detected as bound by USF1 (and to some extent,
by CREB1), compared with other TFs and to what was
reported by Refs (13,14).

DISCUSSION

We used ChIP on chip data for nine TFs to pose and
answer questions regarding the genome-wide distribution
of binding sites with respect to the various genes’ TSS.
From the experiment we extracted coverage plots, from
which we estimated the distribution of binding sites.
This step was performed by using the experimental
DNA fragment length distribution, the distribution of
binding strengths and the actual addresses of the probes
on the genome. The main result of this analysis is that the
distribution of binding sites can be expressed as the sum of
a very narrow peak close to the TSS, and a uniform back-
ground distribution.
We ascertained that our results are not due to various

artifacts. For example, the effect of the nonuniform GC
content (high near the TSS) on hybridization efficiency
was assessed by a careful comparison with purely in
silico results (available only for a subset of the TFs).
The distortion caused by the nonuniform distribution of
probes on the chip (denser near the TSS) was also taken
into account. Thresholds of binding calls were set by a
careful analysis of the dependence of the numbers of bind-
ing sites and the relative weights of the two components of
the distribution on variation of the threshold. For most
TFs, we observed a fairly sharp change of behavior of
these quantities, allowing us to identify the value of the
threshold at which such changes set in, indicating a change
in the strength of the contaminating noisy background
signal. The number of target genes was found to be
large. Even though most of the TFs studied were known
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to be hubs of transcriptional networks, the fact that the
number of target genes of a TF is on the order of thou-
sands (and that this seems to be the rule, rather than the
exception!) seems to be fairly surprising.
Finally, we performed a functional analysis of the two

types of genes: those that are regulated by binding sites
proximal to the TSS and those whose binding sites belong
to the uniform component of the binding site distribution.
For the three TFs that regulate and govern embryonic
stemness, we observed that the target genes associated
with morphogenesis, development and regulation of tran-
scription predominantly belong to the class with uni-
formly distributed regulatory binding sites. The
molecular reasons behind this and the role this bias
plays needs to be explored in the future.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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