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Abstract 

Background:  Currently, the rate of morbidity and mortality in acute respiratory distress syndrome (ARDS) remains 
high. One of the potential reasons for the poor and ineffective therapies is the lack of early and credible indicator of 
risk prediction that would help specific treatment of severely affected ARDS patients. Nevertheless, assessment of the 
clinical outcomes with transcriptomics of ARDS by alveolar macrophage has not been performed.

Methods:  The expression data GSE116560 was obtained from the Gene Expression Omnibus databases (GEO) in 
NCBI. This dataset consists of 68 BAL samples from 35 subjects that were collected within 48 h of ARDS. Differentially 
expressed genes (DEGs) of different outcomes were analyzed using R software. The top 10 DEGs that were up- or 
down-regulated were analyzed using receiver operating characteristic (ROC) analysis. Kaplan–Meier survival analysis 
within two categories according to cut-off and the value of prediction of the clinical outcomes via DEGs was verified. 
GO enrichment, KEGG pathway analysis, and protein–protein interaction were also used for functional annotation of 
key genes.

Results:  24,526 genes were obtained, including 235 up-regulated and 292 down-regulated DEGs. The gene ADORA3 
was chosen as the most obvious value to predict the outcome according to the ROC and survival analysis. For 
functional annotation, ADORA3 was significantly augmented in sphingolipid signaling pathway, cGMP-PKG signaling 
pathway, and neuroactive ligand-receptor interaction. Four genes (ADORA3, GNB1, NTS, and RHO), with 4 nodes and 6 
edges, had the highest score in these clusters in the protein–protein interaction network.

Conclusions:  Our results show that the prognostic prediction of early biomarkers of transcriptomics as identified 
in alveolar macrophage in ARDS can be extended for mechanically ventilated critically ill patients. In the long term, 
generalizing the concept of biomarkers of transcriptomics in alveolar macrophage could add to improving precision-
based strategies in the ICU patients and may also lead to identifying improved strategy for critically ill patients.
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Introduction
Acute respiratory distress syndrome (ARDS), accompa-
nied by increased pulmonary vascular permeability, and 
loss of aerated lung tissue, is an acute lung injury [1]. A 
series of interventions have been proposed for ARDS, 
such as lower tidal volumes [2], higher positive end-
expiratory pressure (PEEP) [3], prone positioning [4], 
and extracorporeal membrane oxygenation [5]. It was 
found by a recent international, multicenter observa-
tional cohort study that morbidity and mortality of ARDS 
were still high [6]. The prevalence period of ARDS among 
ICUs in 50 countries was 10.4% of ICU admissions [6]. 
Overall, up to 40% of patients with ARDS died in the hos-
pital [6].

One of the potential reasons for the lack of effective 
therapies is the absence of early, credible indicator for 
risk prediction, which would help in the precise treat-
ment of acute ARDS [7, 8]. It was shown that 1/3 of the 
genes in blood leukocytes were differentially expressed 
between sub-phenotypes of ARDS, supporting the bio-
logical heterogeneity of patients [9]. These biological 
sub-phenotypes are suggested to provide prediction for a 
precision-based therapeutic strategy [10].

Recent studies have suggested that transcriptomic anal-
yses using whole-blood leukocyte RNA might not accu-
rately reflect all the lung processes of ARDS [11]. Other 
findings suggest that alveolar macrophages (AMs) may 
contribute towards the inflammation and injury in ARDS 
[12]. Nevertheless, assessment of the clinical outcomes 
with ARDS by AM has not been performed [12].

In this study, we examined the transcriptome of AMs 
isolated from patients on the first day after the onset of 
ARDS. Our study attempted to performed the assess-
ment of the clinical outcomes with transcriptomics of 
ARDS by alveolar macrophage (AM).

Methods
Study population and design
The data was obtained from the Gene Expression Omni-
bus databases (GEO) in NCBI, a public functional 
genomics data repository. The expression data (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/; GSE116560) was based on 
the Illumina GPL6883 platform (Illumina Human Ref-8 
v3.0 expression BeadChip), which was submitted by 
Charib SA et al. This data performed unbiased genome-
wide transcriptional profiling of AMs purified from 
bronchoalveolar lavage fluid collected from patients with 
ARDS. This dataset [12] consists of 68 samples from 35 

subjects that occurred within 48 h of ARDS, whose BALF 
(BAL fluid) were taken at Day 1, Day 4 and Day 8. The 
average age was 45, comprising 22 men and 13 women. 
The factors of the ARDS were trauma (19), sepsis (17), 
pneumonia (9), and other (4). Participants who extubated 
were not selected for bronchoscopy on Day 4 or Day 
8. Twenty patients were successfully extubated within 
28  days. Fifteen patients were unsuccessfully extubated 
at 28 days, including five patients who died. At present, 
28 days have been observed as an important time point 
for prognosis in many studies on ARDS [13–15]. The 
patients who were released from mechanical ventilation 
within 28  days were defined as the "good" group, those 
who died or were still dependent on mechanical ventila-
tion at Day 28 were defined as the "poor" group. The data 
was prepared, processed and analyzed by the software 
R (version 3.6.3). The flowchart of this study is shown 
in Fig.  1. The procedures followed were in accordance 
with the ethical standards of the Responsible Commit-
tee on Human Experimentation and with the Helsinki 
Declaration.

Identification of differentially expressed genes
The data was normalized and corrected by the package 
limma of R software [16]. Differentially expressed genes 
(DEGs) of different outcomes were screened with criteria 
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Fig. 1  Study flowchart
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|log2fold change (FC)|> 0 and p value < 0.05 for statisti-
cally significant difference. Consequently, the DEGs were 
divided into two groups namely, up-regulated DEGs and 
down-regulated DEGs.

ROC analysis of top 10 genes DEGs
The top 10 genes with up- and down-regulated DEGs 
were analyzed by receiver operating characteristic (ROC) 
analysis. Areas under the curve (AUC) and cut-off were 
determined to evaluate the predicted value and observa-
tion point of these top 10 genes using the pROC package 
of R software [17]. The best observation points of cut-off 
were obtained according to the Yoden Index.

Survival analysis of top 10 DEGs
According to the best observation point obtained in 
ROC, the genes in DEGs were divided into two catego-
ries based on expression: (1) greater than the observation 
point and (2) less than the observation point. Top 10 up-
regulated and down-regulated genes were then analyzed 
with the package of survival as part of R software. Key 
genes related to prognosis were subsequently screened 
out based on the results of cox regression of survival 
analysis.

Functional annotation of key genes
Key genes were performed by Gene Ontology (GO) [18, 
19] enrichment and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [20] pathway analysis to investigate 
the functional annotation. Proteins encoded by genes 
were associated with cell functions. The information of 
protein–protein interaction (PPI) was performed with 
the help of the Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING) database [21]. The database 
of STRING was used to analyze the interaction between 
DEGs and key selected genes. The software of Cytoscape 
and its plug-in Multicontrast Delayed Enhancement 
(MCODE) were used to visualize and select key genes 
belonging to the PPI network [22, 23]. The cut-off crite-
ria was used with degree = 2, node score = 0.2, k-core = 2, 
and maximum depth = 100.

Results
Identification of DEGs
24,526 genes were screened from the GSE116560 data-
set, including 235 up-regulated and 292 down-regulated 
DEGs. It was shown that some of the transcriptional 
programs of AM were different between the patients 
released from mechanical ventilation within 28  days 
and those who died or were still dependent on mechani-
cal ventilation at Day 28.The volcano map of all DEGs is 
shown in Fig. 2A. The heat map of top 100 DEGs shows 

top 20 up-regulated genes, and top 20 down-regulated 
genes, Fig. 2B–D.

Identification of the top 10 DEGs with outcome
The top 10 up- and down-regulated DEGs were identi-
fied based on ROC analysis. The group of genes identi-
fied showed the best outcome with the setting AUC > 0.7, 
except for ICA1 (Fig.  3). The AUC for the gene FRAT1 
was 0.773, with a significant change of gene expression 
as up-regulated DEGs (Fig.  3A). The AUC for the gene 
UNC45A was 0.866, with the most significant change of 
gene expression as down-regulated DEGs (Fig.  3B). The 
best observed concentration of cut-off to predict was 
chosen after ROC analysis.

Identification the key genes via survival analysis
Kaplan–Meier survival analysis using two categories 
based on the cut-off was performed and the value of 
prediction of the clinical outcomes via DEGs was veri-
fied (Table  1). The gene ADORA3 showed a significant 
change with this outcome (Fig. 4A and Additional file 1). 
This was chosen as the most appropriate value to predict 
the outcome according to the survival analysis (Fig. 4B), 
p = 0.059 (< 0.10).

Functional annotation of gene ADORA3
The key gene ADORA3 was further evaluated by GO cat-
egories and KEGG pathways. Results of GO [24, 25] anal-
ysis found ADORA3 significantly enriched in pathways, 
such as adenosine P1 receptors, nucleotide-like (puriner-
gic) receptors, G alpha (i) signaling events, GPCR ligand 
binding, GPCR downstream signaling, signaling by 
GPCR, and signal transduction (Fig.  5A). The KEGG 
pathway results revealed that ADORA3 was significantly 
augmented in sphingolipid signaling pathway, cGMP-
PKG signaling pathway, and neuroactive ligand-receptor 
interaction (Fig. 5B, C).

Protein–protein interaction network
The PPI network of 237 up-regulated DEGs from ARDS 
patients identified using STRING analysis contained 123 
nodes and 146 edges. A total of 6 clusters were generated 
in MCODE. 4 genes were selected as the most important 
clusters by the scores evaluated in MCODE. MCODE 
1, consisting of four genes (ADORA3, GNB1, NTS, and 
RHO), with 4 nodes and 6 edges, had the highest score in 
these clusters (Fig. 5D).

It was shown that transcriptional programs of AM were 
different between the patients released from mechanical 
ventilation within 28  days and those who died or were 
still dependent on mechanical ventilation at Day 28. 
Among them, ADORA3 might be a key gene.
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Discussion
This study investigated the prognostic and predictive 
enrichment of ARDS sub-phenotypes of intubated 
patients. This is the first study to find the different 
prognosis between patients with significantly high or 
low expression of gene ADORA3 in ARDS. In the pre-
dictive model of our survival analysis, it forecasted 

that different expression levels of ARDOA3 at above or 
below the cut-off, the incidence of extubating were dif-
ferent at 5, 10, 15, 20, and 25 days. Our study revealed 
that ADORA3 and its related pathways might be asso-
ciated with 28-day outcomes. As we know, ADORA3 
might play an important part in the resolution and ini-
tiation of ARDS.

Fig. 2  Identification of DEGs
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ADROA3 may affect the physiological functions of 
cells and organs by participating in signal transduction 
in several signal pathways. Purinergic receptors family 
includes the GPCR P2Y purinergic receptors and adeno-
sine P1 receptors [26]. Purinergic receptors are involved 
in cellular functions such as vascular reactivity, apoptosis 
and cytokine secretion [27]. P1 receptors are purinergic 
receptors such as G-protein coupled receptors with their 
endogenous ligand adenosine. There are four adeno-
sine receptors in humans, with distinct functions. They 

might play important roles in the heart, brain, and might 
be involved in inflammation and immune responses 
[28]. The classical mechanism is inhibition of the cAMP 
dependent pathway via inhibition of adenylate cyclase 
[29]. Decrease in production of cAMP from ATP leads to 
decreased activity of cAMP-dependent protein kinases 
[29].

Putten et  al. found that ADORA3 and its pathway 
induced proinflammatory cytokines [30]. Another 
research concluded the protective effect of preventing 

Fig. 3  Identification of the top 10 DEGs with outcome
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immune mediated damage and excessive immune 
response via ADORA3 activation [31]. Lung fibroblasts 
are promoted into myofibroblasts by adenosine recep-
tors. This suggests a potential involvement of ADORA3 
in the processes of fibrotic lung disease [32]. Until now, 
studies on ADORA3 and ARDS pathogenesis is insuf-
ficient, and the mechanisms remain to be investigated 
further.

Some researchers have found the role of ADORA3 in 
heart. The signaling of ADORA3 protects cardiomyo-
cytes against the damage of ischemia, as well as protects 
it from energy depletion and contractile dysfunction 
[33–37]. Moreover, activation of ADORA3 might induce 
myocardial cells apoptosis [38]. Del et  al. found that 
mRNA expression of ADORA3 in left ventricle of failing 
minipig heart was higher than in hearts of control healthy 
minipig [39]. In addition, ADORA3 is overexpressed 
in inflammation and up-regulated in peripheral blood 
mononuclear cells of autoimmune diseases. Activation 
of ADORA3 resulting in downregulation of nuclear fac-
tor kappa B (NF-kB) and tumor necrosis factor-α (TNFα) 

[40], leads to the inhibition of inflammatory cytokines 
[41].

The package of limma was used from Bioconductor to 
correct for multiple testing issue. Through the analysis 
of differential genes by ROC analysis, survival analysis, 
functional annotation, and PPI network. We narrowed 
the scope of target genes. The top10 up-regulated and top 
10 down-regulated genes had been analyzed by survival 
analysis for all.

In the survival analysis of ADORA3, it was found that 
the two groups of survival analysis curves were far apart 
within the first 3 weeks, and gradually approached closer 
to each other in the last week. It might be considered that 
ADORA3 may be useful in the early stages of ARDS to 
predict mortality, but not in the later stages of the dis-
ease. Furthermore, we will stratify the disease course and 
expand the sample size in the further study.

This datasets we used were obtained from a public 
database. With this datasets, Morrel et  al. [12] identi-
fied genes between groups at each time point using lin-
ear models, while temporal expression analysis was 

Table 1  Survival analysis of the top 10 up-regulated and down-regulated genes

DEG differentially expressed genes

*p < 0.10

Genes OR Lower 95% Upper 95% p value

Top 10 of the up-regu-
lated DEGs

SSH2 0.516 0.166 1.603 0.252

FKBP5 1.102 0.313 3.882 0.879

TSC22D3 0.368 0.048 2.827 0.337

DDIT4L (cut-off = 9.305) 1.862 0.487 7.116 0.363

DDIT4L (cut-off = 8.951) 0.692 0.269 1.780 0.445

ICA1 0.757 0.217 2.636 0.662

FRAT1 0.512 0.194 1.347 0.175

ADORA3 2.285 0.926 8.614 0.068*

TFCP2L1 0.918 0.302 2.794 0.881

FARP1 0.607 0.235 1.566 0.301

PP2447 0.757 0.268 2.141 0.600

Top 10 of the down-
regulated DEGs

KIAA0256 0.614 0.240 1.571 0.309

AMFR (cut-off = 10.391) 1.120 0.440 2.851 0.812

AMFR (cut-off = 10.614) 0.760 0.293 1.968 0.571

CTSZ 0.907 0.258 3.195 0.879

PPP3R1 0.564 0.217 1.465 0.239

MYOM2 (cut-off = 9.843) 2.715 0.354 20.840 0.337

MYOM2 (cut-off = 10.211) 0.877 0.287 2.678 0.818

MYOM2 (cut-off = 10.348) 0.883 0.337 2.314 0.800

MYOM2 (cut-off = 10.751) 0.728 0.286 1.852 0.505

UNC45A 1.152 0.332 4.004 0.824

CD86 0.414 0.119 1.444 0.166

C21orf57 0.719 0.253 2.044 0.535

IL18BP 0.786 0.302 2.047 0.622

DCAL1 0.632 0.141 2.842 0.550
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performed using the STEM. Zhao et  al. [39] analyzed 
that GSE116560 was only one of the datasets, which was 
based on different platform. In our study, we narrowed 
the scope by screening differential genes and ROC, and 
finally performing survival analysis on related genes with 
a distinctive combination of time and outcome.

Although this study is promising and opens up a new 
perspective on the impact of ADORA3 and its signaling 

on the outcome in ARDS, the potential limitations of our 
research should also be contemplated. First, the dataset 
was obtained from a public database. All results were 
obtained using bioinformatics. Future studies are cur-
rently being designed for examining the exact roles of 
ADORA3 and its signaling in ARDS.. Second, because of 
the limited sample size, studies on a larger population are 
required to better define the role of ADORA3 in ARDS.

Fig. 4  Identification the key genes via survival analysis
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In conclusion, our results show that the prognostic pre-
diction of early biomarkers of transcriptomics as identi-
fied in alveolar macrophage in ARDS can be applied to 
mechanically ventilated critically ill patients. In the long 

term, generalizing the concept of biomarkers of tran-
scriptomics in alveolar macrophage could add to improv-
ing precision-based strategies in the ICU population and 
lead to identifying treatable therapy for all critically ill.

Fig. 5  Functional annotation of gene ADORA3
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