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Abstract: Betulin derivatives containing a 1,2,3-triazole ring possess a wide spectrum of biological
activities, including antiviral, anticancer, and antibacterial activity. A series of novel triazoles were
prepared by the 1,3-dipolar cycloaddition reaction between the alkyne derivatives of betulin and
organic azides. The chemical structures of the obtained compounds were defined by 1H and 13C
NMR, IR, and high-resolution mass spectrometry (HR-MS) analysis. The target triazoles were
screened for their antiviral activity against DNA and RNA viruses. The cytotoxic activity of the
obtained compounds 5a–k and 6a–h was determined using five human cancer cell lines (T47D,
MCF-7, SNB-19, Colo-829, and C-32) by a WST-1 assay. The bistriazole 6b displayed a promising IC50

value (0.05 µM) against the human ductal carcinoma T47D (500-fold higher potency than cisplatin).
The microdilution method was applied for an evaluation of the antimicrobial activity of all of the
compounds. The triazole 5e containing a 3′-deoxythymidine-5′-yl moiety exhibited antibacterial
activity against two gram-negative bacteria vz. Klebsiella pneumoniae and Escherichia coli (minimal
inhibitory concentration (MIC) range of 0.95–1.95 µM).

Keywords: betulin; 1,3-dipolar cycloaddition; triazoles; antiviral activity; anticancer activity;
antimicrobial activity

1. Introduction

The acetylenic moiety is one of the most important functional groups in organic chemistry [1].
Compounds with a carbon–carbon triple bond can be converted to triazole derivatives in the 1,3-dipolar
cycloaddition reaction. The classic cycloaddition described by Huisgen was carried out at a high
temperature and led to the formation of a mixture of 1,4- and 1,5-disubstituted 1,2,3-triazoles. In 2002,
Sharpless and Meldal reported milder conditions of the 1,3-dipolar cycloaddition, which allowed
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for obtaining the 1,4-regioisomer with a high yield. The compounds bearing a 1,4-disubstituted
1,2,3-triazole ring were prepared by copper-catalyzed reactions of azides with terminal alkynes.
The 1,3-dipolar cycloaddition was performed in various solvents using copper salts as a catalyst,
giving 1,4-disubstituted products in high yields [2–5].

The 1,2,3-triazole ring is an attractive structural unit, which exhibits a high stability under
acid/base hydrolysis conditions. Moreover, triazoles are capable of forming hydrogen bonds, which
can be important for their bioavailability and solubility [6]. Several 1,2,3-triazoles (e.g., fluconazole,
itraconazole, voriconazole and posaconazole) were used in medicine as antifungal drugs [7].
Additionally, the 1,2,3-triazoles are a class of heterocyclic compounds that possess a broad spectrum of
biological activities, such as antibacterial [8–10], anticancer [11,12], antiviral [13,14], antiallergic [15],
antitubercular [16–18], and anti-inflammatory [19,20] activity.

The triazoles can be used as a biological linker, and exhibit bioisosteric effects on aromatic rings,
double bonds, peptide linkage and imidazole rings [21].

Betulin 1 and betulinic acid 2 (Figure 1), both naturally occurring substances, were used in
the synthesis of various derivatives containing an acetylenic moiety at the C-28 or C-3 positions.
The 1,3-dipolar cycloaddition between acetylenic derivatives of triterpenes 1–2 and an azide generates
substituted 1,2,3-triazoles showing anticancer, antiviral, and anti-inflammatory activities [22–27].
Novel L-ascorbic acid-conjugated pentacyclic triterpene derivatives connected via a triazole linker
showed a potential anti-influenza activity against A/WSN/33 virus in MDCK (Madin Darby canine
kidney) cells [28]. The conjugates of betulin 1 and betulinic acid 2 with 3′-azido-3′-deoxythymidine
(AZT) prepared via the 1,3-dipolar cycloaddition exhibited a high anti-HIV activity. In addition, it is
known that the triazole linkage is stable inside cells, and can interact with viral proteins [26].

Figure 1. Chemical structures of betulin 1 and betulinic acid 2.

The aim of the present work was to carry out the 1,3-dipolar cycloaddition reaction between
acetylenic esters of betulin containing a propynoyl group at the C-28 and/or C-3 position, and organic
azides. The antiviral activity of the new hybrid compounds was evaluated using a vesicular stomatitis
virus (VSV), herpes simplex virus type-1 (HSV-1), cytopathogenic bovine orphan virus (ECBO),
and human adenovirus type-5 (HAdV-5). The obtained triazoles were tested for their cytotoxic activity
in vitro towards the T47D (human ductal carcinoma), MCF-7 (human adenocarcinoma), SNB-19
(glioblastoma), Colo-829 (human malignant melanoma), and C-32 (human amelanotic melanoma).
Additionally, all of the compounds were investigated against the following microorganisms:
Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae,
and Candida albicans, which are the most important nosocomial pathogens.

2. Results and Discussion

2.1. Chemistry

The new triazole hybrids of betulin were synthesized using 28-O-propynoylbetulin 3 and
3,28-O,O′-di(propynoyl)betulin 4 as starting compounds. The derivatives 3–4 were created in the
reaction between betulin 1 and propiolic acid in the Steglich esterification (Scheme 1). The crude
mixture of mono- and diester 4 was purified by column chromatography to give pure compounds 3 and
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4 with 52% and 15% yields, respectively. The chemical structures of the obtained acetylenic derivatives
3–4 were determined by 1H, 13C, NMR, IR, and mass spectrometry (MS) spectra. The spectral data of
3 and 4 were consistent with those published in the literature [29].

Scheme 1. Synthesis of the acetylenic 3–4 and triazole derivatives of betulin 5a–k and 6a–h.

Treatment of 28-O-propynoylbetulin 3 with organic azides in toluene in the presence of copper
iodide (I) under reflux gave substituted 1,2,3-triazoles. The major products of the reactions were
separated by column chromatography to give pure derivatives 5a–k in 44–78% yields. The chemical
structures of the triazoles 5a–k were defined by 1H NMR, 13C NMR and IR spectroscopy as well as
high-resolution mass spectrometry (HR-MS) analysis. On the basis of previous studies, it occurred that
the reaction of acetylenic derivatives with organic azides can lead to 1,4- or 1,5-regioisomeric products.
For this reason, the 2D NMR (1H-13C HSQC and 1H-13C HMBC) spectra of compound 5a were carried
out (Figure 2, Table 1, Figure S1). For triazole 5a, protons of the benzylic group (H-34) interacted with
C-35 aromatic carbon. The presence of the 1,4-disubstituted 1,2,3-triazole ring was detected by the
correlation of triazolyl proton H-33 with carbons C-32 and C-34.

Figure 2. Chemical structure of triazole 5a.
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Table 1. The selected chemical shifts 1H NMR and 13C NMR and correlations proton–carbon
(HSQC and HMBC experiments) for compound 5a.

1H NMR δ (ppm) 13C NMR δ (ppm) HSQC HMBC

H-33 7.88 C-33 127.16 7.88–127.16 7.88–140.61/54.49
H-34 5.51 C-34 54.49 5.51–54.49 5.51–133.77

The bistriazole derivatives of 6 were prepared in the reactions of the compound 4 with
corresponding organic azides using the same conditions as those for compounds 5. After purification
by column chromatography, derivatives 6a–h were received in 35–95% yields. The chemical structures
of compounds 6a–h were confirmed based on the 1H and 13C NMR, IR, and HR-MS spectra.

2.2. Antiviral Activity

2.2.1. Characterization of Antiviral Activity against Viruses Belonging to Different Taxonomic Groups

To characterize the antiviral activity against VSV, HSV-1, ECBO, and HAdV-5, various
experimental approaches were applied to the tested compounds. At first, the compounds were
screened for their cytotoxic activity against the human lung adenocarcinoma epithelial (A549) and the
human ovarian cancer (SKOV-3) cells using a two-fold dilution series of the tested substance ranging
from 100 µg/mL to 0.5 µg/mL. For the antiviral activity assay, a CC20 (non-toxic concentration)
was used for each compound. When the virucidal activity was assessed, none of the derivatives
proved to be effective against the tested viruses. Similarly, in the pretreatment assay, none of the
compounds protected the A549 cell against the same viruses. However, the results demonstrated
that the compounds showed an inhibitory effect on ECBO and HAdV-5 added after the adsorption
period. The acetylenic derivatives 3 and 4 did not exhibit antiviral activity against tested RNA and
DNA viruses. Among the compounds assayed, six exhibited the selectivity index (SI; ratio of CC50 to
EC50) ranging from 10 to 119 for ECBO (Table 2).

Table 2. Antiviral activity of betulin derivatives against the cytopathogenic bovine orphan virus (ECBO)
strain LCR-4 in adenocarcinoma epithelial (A549) cells.

Compound CC50 (µg/mL) EC50 (µg/mL) SI

5e 10.3 1.0 10.3
5f 100.0 5.0 20.0
5h 27.7 0.5 55.5
5j 100.0 5.0 20.0
6f 100.0 5.0 20.0
6h 29.8 0.25 0.25

Betulin 1 18.5 0.5 37.0
Ribavirin 100.0 10.0 10.0

CC50—50% cytotoxic concentration; concentration required to reduce A549 cells viability by 50%. EC50—50%
effective concentration; concentration required to inhibit ECBO cytopathic effect in A549 cells by 50%. SI—selectivity
index, or ratio of CC50 to EC50.

However, only two of them, 5h and 6h, had SI values greater than the betulin 1 (SI = 37).
Bistriazole 6h showed the highest antiviral activity, with an EC50 value of 0.25 µg/mL. Moreover,
6h presented a SI of 119, which was approximately three times higher than the compound 1’s value,
and 11 times higher than the SI for ribavirin (Table 2). Comparing the analyzed compounds, only one,
5e, exhibited a slight anti-HadV-5 activity with the SI = 6, which was below the SI of betulin 1 (data not
shown). Based on the results of this work, one may conclude that the introduction of a polar hydroxy
group (compounds 5h and 6h) in the triazole ring was advantageous for antiviral activity against ECBO
virus. The introduction of a second triazole ring increased the antiviral activity against EBCO virus.
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In addition, triazole 5e, which contains the pharmacophoric moiety (3′-azido-3′-deoxythymidine),
shows a good antiviral activity toward the screening viruses.

The activity of bistriazole 6h appeared to be Picornaviridae-specific (ECBO–Enteric, strain LCR-4),
and this compound was essentially inactive against the negative-stranded RNA vesicular stomatitis
virus (VSV), the double-stranded DNA herpes simplex virus type-1 (HSV-1) and human adenovirus
type-5 (HAdV-5).

2.2.2. Antiproliferative Effect of Triazole Derivatives

The antiproliferative activity of the compounds on the growth of human ovarian cancer cell line
SKOV-3 in vitro was summarized in Table 3.

The tested compounds did not significantly inhibit the growth of the A549 cell line. However,
several tested compounds inhibited the proliferation of ovarian cancer cells (SKOV-3) in a
dose-dependent manner, with IC values of 10–50 µg/mL (IC is the concentrations of compounds that
where used to inhibit the proliferation of tumor cell line) The compounds 5e and 6h had the highest
antiproliferative activity, reducing the proliferation of the SKOV-3 cell by 75% and 70% respectively, at
50 µg/mL (Table 3). Betulin 1 showed an almost comparable activity with respect to cisplatin, reducing
the proliferation of SKOV-3 by 30% at 2.5 µg/mL. The optimal concentration of compounds 5e and
6h required to achieve such a dramatic effect on the cell proliferation is higher than that of betulin 1
(50 µg/mL). Nevertheless, it is noteworthy that these compounds displayed a lower toxicity than the
betulin 1.

Table 3. Antiproliferative activity of triazoles in the SKOV-3 human ovarian cancer line in comparison
to betulin 1 and cisplatin.

Compound Concentration (µg/mL) Max. Inhibition (% of Control)

5a 25 40
5b 10 40
5d 10 40
5e 50 75
5f 25 35
5j 10 40
6h 50 70

Betulin 1 2.5 30
Ribavirin 1.5 30

2.3. Anticancer Activity

The triazoles 5a–k and bistriazoles 6a–h were tested for their cytotoxic activity against human
cancer cell lines such as: T47D (human ductal carcinoma), MCF-7 (human adenocarcinoma), SNB-19
(glioblastoma), Colo-829 (human malignant melanoma), and C-32 (human amelanotic melanoma).
The WST-1 assay is used to evaluate the cytotoxic activity of triterpene derivatives. The cytotoxic
activity data were expressed as the concentration of compounds (µM), which inhibits the proliferation
of 50% of tumor cells as compared with the control untreated cells. Betulin 1, acetylenic derivatives
3–4, and cisplatin were used as a positive control. The resulting IC50 values are summarized in Table 4.
In the present work, two hormone-dependent breast cancer lines (T47D and MCF-7) have been used,
which are often applied for the analyses of breast cancer mechanisms. The performed studies suggested
that in cells T47D (caspase-3 positive) and MCF-7 (caspase-3 negative), another mechanism of DNA
fragmentation was observed [30].
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Table 4. The cytotoxic activity of derivatives 3–4, 5a–k, 6a–h and cisplatin against tested cell lines:
T47D (human ductal carcinoma), MCF-7 (human adenocarcinoma), SNB-19 (glioblastoma), Colo-829
(human malignant melanoma), and C-32 (human amelanotic melanoma).

Compound Human Cell Line /IC50 ± SD [µM]

T47D MCF-7 SNB-19 Colo-829 C-32

Betulin 1 Neg Neg 17.7 ± 1.2 15.3 ± 2.2 Neg
3 110.8 ± 0.9 102.1 ± 1.4 4.2 ± 0.3 1.7 ± 0.08 16.7 ± 0.8
4 Neg Neg 13.1 ± 1.3 9.7 ± 1.5 121.2 ± 4.1

5a 10.5 ± 0.09 58.8 ± 1.5 96.2 ± 1.2 78.5 ± 8.3 Neg
5b 8.5 ± 0.02 Neg 66.1 ± 0.7 129.2 ± 7.7 Neg
5c 1.4 ± 0.01 Neg 0.70 ± 0.08 9.7 ± 0.1 Neg
5d 52.5 ± 1.4 Neg 13.0 ± 0.09 100.0 ± 5.5 Neg
5e Neg Neg Neg 35.1 ± 6.2 75.2 ± 3.7
5f Neg Neg Neg 109.5 ± 7.2 Neg
5g 135.2 ± 2.6 Neg 92.3 ± 0.9 11.4 ± 0.2 Neg
5h 1.3 ± 0.05 15.5 ± 1.1 9.9 ± 0.7 6.2 ± 0.6 80.3 ± 5.8
5i 3.63 ± 0.3 6.94 ± 0.8 0.9 ± 0.03 0.6 ± 0.13 7.9 ± 0.9
5j Neg Neg Neg 3.3 ± 1.1 Neg
5k 7.2 ± 0.2 37.2 ± 0.7 6.3 ± 0.9 8.7 ± 0.5 46.9 ± 2.5
6a Neg Neg 24.4 ± 1.3 80.7 ± 1.8 Neg
6b 0.05 ± 0.01 0.09 ± 0.01 0.08 ± 0.01 Neg Neg
6c 1.1 ± 0.01 60.7 ± 0.6 0.06 ± 0.01 Neg Neg
6d 0.9 ± 0.05 0.9 ± 0.08 0.5 ± 0.02 102.6 ± 4.7 100.4 ± 2.8
6e Neg Neg Neg Neg Neg
6f Neg Neg Neg Neg Neg
6g Neg Neg Neg 97.6±3.3 Neg
6h 62.4 ± 1.1 11.7 ± 1.2 68.3 ± 0.9 6.5 ± 1.0 9.1 ± 0.2

Cisplatin 24.9 ± 1.1 5.5 ± 1.0 2.3 ± 0.05 16.8 ± 1.7 12.3 ± 2.1

Neg—negative in the concentration used.

Orchel et al. observed that betulin 1 and 28-O-propynoylbetulin 3 induced apoptosis in G-361
cells e.g., via caspase-3 activation [31]. The tested compounds were the most active towards the
human breast cancer cells T47D (caspase-3 positive) compared with MCF-7 cells. The highest cytotoxic
activity against T47D cells in the group of monotriazoles was exhibited by the derivative 5h (IC50

value 1.3 µM), which was 19 time more cytotoxic than cisplatin. In the case of triazoles 5e, 5f, and 5j,
which contain 3′-deoxythymidine-5′-yl, 1-deoxy-β-D-glucopyranosyl, and 2-aminocarboxypropyl
substituents, respectively, the total decay of cytotoxic activity against the T47D cells was noted.
The bistriazole 6b, which contains two fluorine moieties, showed a good cytotoxic activity against
T47D, MCF-7, and SNB-19 (IC50 = 0.05 µM, 0.09 µM, and 0.08 µM, respectively). Additionally, a lower
cytotoxic activity of the tested compounds against the C-32 cell line was observed.

2.4. Antimicrobial Activity

The antibacterial activity of triterpene derivatives (betulin 1, 3–4, 5a–k, and 6a–h) was evaluated
using gram-positive (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212) and
gram-negative (Escherichia coli ATTC 25922, Pseudomonas aeruginosa ATTC 27853, Klebsiella pneumoniae
ATTC 700603) bacteria. Additionally, the antifungal activity of the tested compounds was investigated
using the Candida albicans ATTC 10231 strain. The minimal inhibitory concentration (MIC) and minimal
bactericidal concentration (MBC) were determined by the broth microdilution method, according to
the Clinical and Laboratory Standards Institute [32,33].

Various triterpene derivatives collected from the plant species were studied as antimicrobial
agents. Ursolic and oleanic acids isolated from the Miconia species exhibited an antibacterial activity
against the following microorganisms: Streptococcus mitis, Streptococcus sanguinis, Streptococcus mutans,
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Streptococcus salivarius, Streptococcus sorbinus, and Enterococcus faecalis. The MIC values of these
triterpene acids towards Enterococcus faecalis ranged from 40–50 µg/mL [34].

In the applied microdilution assay, only the 5e compounds showed an antibacterial activity
against Klebsiella pneumoniae and Escherichia coli, with MIC values of 0.95 µM and 1.95 µM, respectively
(Table 5). The compound 5e exhibited low MBC:MIC ratios of≥4 for two gram-negative bacteria strains.
The MCB:MIC ratio is a major parameter that reflects the bactericidal capacity of the tested compounds.
A value superior to one in the MBC:MIC ratio suggests that a great amount of compound is needed
to reach the bactericidal activity [35]. The MBC:MIC ratio is no more than four, which suggests that
triazole 5e possess the bactericidal activity against Escherichia coli. The results of study showed that
compound 5e is bacteriostatic against the Klebsiella pneumoniae strain, with a MBC:MIC ratio of >4.

Table 5. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of
compound 5e against Escherichia coli and Klebsiella pneumoniae.

Strains MIC (µM) MBC (µM)

Escherichia coli ATCC 25922 1.95 7.8
Klebsiella pneumoniae ATCC

700603 0.95 3.9

3. Materials and Methods

3.1. General Techniques

Melting points were determined in the open capillary tubes on an Electrothermal IA 9300 melting
point apparatus Electrothermal Engineering Ltd, Rochford, UK. The values given are uncorrected.
Optical rotation properties were measured with an ATAGO SAC-I polarimeter (Atago, Tokyo, Japan)
using a sodium lamp (589 nm) at 20 ◦C. The NMR spectra (600/150 MHz) were recorded on a
Bruker Avance (Bruker , Billerica, MA, USA) III 600 spectrometer in CDCl3. Chemical shifts were
reported in ppm (δ), and J values in Hz. Multiplicity was designated as the singlet (s), doublet
(d), triplet (t), quartet (q) and multiplet (m). High-resolution mass spectral (HR-MS) analysis was
performed on a Bruker Impact II instrument. Solid state infrared spectra were recorded in the range
of 4000–1000 cm−1 using the Shimadzu IRAffinity-1 FTIR spectrometer (Shimadzu, Kyoto, Japan)
and KBr pellet method. Thin layer chromatography (TLC) was performed on silica gel 60 254F
plates (Merck, Darmstadt, Germany) using a mixture of different organic solvents as an eluent.
The chromatographic spots were detected by spraying with a solution of 5% sulfuric acid, followed by
heating. Column chromatography was performed on silica gel 60, <63 µm (Merck), with the mixture
of chloroform and ethanol (15:1, v/v) or hexane and ethyl acetate (3:2, v/v) as an eluent. Solvents were
dried and purified according to usual procedures.

3.2. Synthesis of 28-O-Propynoylbetulin 3 and 3,28-O,O′-di(propynoyl)betulin 4

28-O-Propynoylbetulin 3 (m.p. 132–134, lit. [29] m.p. 133–135 ◦C) and 3,28-O,O′-di(propynoyl)betulin
4 (m.p. 101–103, lit. [29] m.p. 102–104 ◦C) were synthesized according to the method described
previously [29]. The spectral data of 3 and 4 were consistent with those published in the literature [29].

3.3. General Procedure for the Synthesis of Triazole Derivatives of Betulin 5

To a solution of 28-O-propynoylbetulin 3 (0.1 g, 0.203 mmol) and copper iodide (I) (0.1 eqv, 0.004 g,
0.020 mmol) in dry toluene (4 mL), a corresponding organic azide (1.05 eqv, 0.213 mmol) was added.
The reaction mixture was stirred under reflux for 72 h. Then, the reaction mixture was concentrated
under reduced pressure. The crude products were purified by column chromatography using various
mixtures of organic solvents to give pure triazoles 5a–k:
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28-O-(1-Benzyl-1H-1,2,3-triazol-4-yl)carbonylbetulin (5a). Yield: 66%, m.p. 169–171 ◦C, [α]20
D −0.5

(c 1, CHCl3). 1H NMR (600 MHz, CDCl3) δ: 0.78 (s, 3H, CH3), 0.84 (s, 3H, CH3), 0.98 (s, 3H, CH3),
1.00 (s, 3H, CH3), 1.06 (s, 3H, CH3), 1.67 (s, 3H, CH3), 1.10–2.09 (m, 25H, CH, CH2), 2.51 (m, 1H, H-19),
3.19 (m, 1H, H-3), 4.14 (d, J = 10.8 Hz, 1H, H-28), 4.56 (d, J = 10.8 Hz, 1H, H-28), 4.61 (s, 1H, H-29), 4.71
(s, 1H, H-29), 5.60 (s, 2H, CH2), 7.31–7.32 (m, 2H, HAr), 7.41–7.42 (m, 3H, HAr), 7.97 (s, 1H, CH-triazol).
13C NMR (150 MHz, CDCl3) δ: 14.8, 15.4, 16.0, 16.1, 18.3, 19.1, 20.8, 22.7, 25.2, 27.1, 27.4, 27.9, 29.6,
29.8, 31.9, 34.2, 34.7, 37.2, 37.7, 38.7, 38.9, 40.9, 42.7, 46.7, 47.7, 48.9, 50.4, 54.5, 55.3, 63.6, 78.9, 109.9,
127.1, 128.2, 129.2, 129.3, 133.8, 140.6, 150.1, 161.2. IR (KBr, cm−1) νmax: 1246–1147 (N-N=N), 1457
(N=N), 1527 (C=N), 1731 (C=O). HR-MS (APCI) m/z: C40H57N3O3 [(M − H)−], Calc. 626.4322; Found
626.4325 (Figure S2).

28-O-[1-(4-Fluorobenzyl)-1H-1,2,3-triazol-4-yl]carbonylbetulin (5b). Yield: 49%, m.p. 144–147 ◦C,
[α]20

D −0.6 (c 1, CHCl3). 1H NMR (600 MHz, CDCl3) δ: 0.78 (s, 3H, CH3), 0.86 (s, 3H, CH3), 0.98
(s, 3H, CH3), 1.00 (s, 3H, CH3), 1.06 (s, 3H, CH3), 1.67 (s, 3H, CH3), 1.11–2.10 (m, 25H, CH, CH2),
2.52 (m, 1H, H-19), 3.21 (m, 1H, H-3), 4.15 (d, J = 10.8 Hz, 1H, H-28), 4.56 (d, J = 10.8 Hz, 1H, H-28),
4.62 (s, 1H, H-29), 4.72 (s, 1H, H-29), 5.57 (s, 2H, CH2), 7.10–7.13 (m, 2H, HAr), 7.31–7.33 (m, 2H,
HAr), 7.97 (s, 1H, CH-triazol). 13C NMR (150 MHz, CDCl3) δ: 14.8, 15.4, 16.0, 16.1, 18.3, 19.1, 20.8,
25.2, 27.1, 27.4, 27.9, 29.6, 29.8, 34.2, 34.7, 37.2, 37.7, 38.7, 38.9, 40.9, 42.7, 46.7, 47.7, 48.9, 50.4, 53.7,
55.3, 63.6, 78.9, 109.9, 116.3, 116.5, 126.9, 129.7, 130.1, 130.2, 140.7, 150.1, 161.1, 162.2, 163.9. IR (KBr,
cm−1) νmax: 822 (C-F), 1226–1147 (N-N=N), 1512 (N=N), 1608 (C=N), 1729 (C=O). HR-MS (APCI) m/z:
C40H56FN3O3 [(M − H)−], Calc. 644.4227; Found 644.4229 (Figure S3).

28-O-[1-(4-Cyanobenzyl)-1H-1,2,3-triazol-4-yl]carbonylbetulin (5c). Yield: 47%, m.p. 225–228 ◦C, [α]20
D +0.3

(c 1, CHCl3). 1H NMR (600 MHz, CDCl3) δ: 0.78 (s, 3H, CH3), 0.85 (s, 3H, CH3), 0.99 (s, 3H, CH3),
1.01 (s, 3H, CH3), 1.07 (s, 3H, CH3), 1.68 (s, 3H, CH3), 1.12–2.10 (m, 25H, CH, CH2), 2.51 (m, 1H,
H-19), 3.20 (m, 1H, H-3), 4.15 (d, J = 10.8 Hz, 1H, H-28), 4.58 (d, J = 10.8 Hz, 1H, H-28), 4.62 (s, 1H,
H-29), 4.72 (s, 1H, H-29), 5.68 (s, 2H, CH2), 7.40 (d, 2H, J = 8.4 Hz, HAr), 7.72 (d, 2H, J = 8.4 Hz, HAr),
8.05 (s, 1H, CH-triazol). 13C NMR (150 MHz, CDCl3) δ: 14.8, 15.4, 16.0, 16.1, 18.3, 19.1, 20.8, 21.1,
25.2, 27.1, 27.4, 27.9, 29.6, 29.8, 34.2, 34.7, 37.2, 37.7, 38.7, 38.9, 40.9, 42.7, 46.7, 47.7, 48.9, 50.4, 53.7,
55.3, 60.4, 63.8, 78.9, 109.9, 113.3, 117.9, 127.3, 128.5, 133.1, 138.9, 141.0, 150.0, 160.9. IR (KBr, cm−1)
νmax: 1246–1147 (N-N=N), 1457 (N=N), 1612 (C=N), 1726 (C=O), 2232 (CN). HR-MS (APCI) m/z:
C41H56N4O3 [(M − H)−], Calc. 651.4274; Found 651.4276 (Figure S4).

28-O-(1-Phenylthiomethyl-1H-1,2,3-triazol-4-yl)carbonylbetulin (5d). Yield 78%, m.p. 143–146 ◦C,
[α]20

D −0.6 (c 1, CHCl3). 1H NMR (600 MHz, CDCl3) δ: 0.79 (s, 3H, CH3), 0.85 (s, 3H, CH3), 0.99
(s, 3H, CH3), 1.02 (s, 3H, CH3), 1.07 (s, 3H, CH3), 1.67 (s, 3H, CH3), 1.14–2.10 (m, 25H, CH, CH2), 2.51
(m, 1H, H-19), 3.22 (m, 1H, H-3), 4.15 (d, J = 10.8 Hz, 1H, H-28), 4.56 (d, J = 10.8 Hz, 1H, H-28), 4.56 (s,
1H, H-29), 4.73 (s, 1H, H-29), 5.69 (s, 2H, CH2), 7.35–7.36 (m, 5H, HAr), 8.05 (s, 1H, CH-triazol). 13C
NMR (150 MHz, CDCl3) δ: 14.1, 14.8, 15.4, 16.0, 16.1, 18.3, 19.1, 20.8, 22.7, 25.2, 27.1, 27.4, 27.9, 29.6, 29.8,
34.2, 34.7, 37.2, 37.7, 38.7, 38.9, 40.9, 42.8, 46.7, 47.7, 48.9, 50.4, 54.3, 55.3, 63.6, 78.9, 109.9, 126.8, 129.1,
129.7, 131.4, 132.4, 140.6, 150.0, 160.9. IR (KBr, cm−1) νmax: 1243–1136 (N-N=N), 1482 (N=N), 1546
(C=N), 1730 (C=O). HR-MS (APCI) m/z: C40H57N3O3S [(M − H)−], Calc. 658.4043; Found 658.4041
(Figure S5).

28-O-[1-(3′-Deoxythymidine-5′-yl)-1H-1,2,3-triazol-4-yl]carbonylbetulin (5e). Yield 67%, m.p. 181–185 ◦C,
[α]20

D +0.7 (c 1, EtOH). 1H NMR (600 MHz, DMSO-d6) δ: 0.66 (s, 3H, CH3), 0.78 (s, 3H, CH3), 0.88
(s, 3H, CH3), 0.97 (s, 3H, CH3), 1.03 (s, 3H, CH3), 1.67 (s, 3H, CH3), 1.78 (s, 3H, CH3-AZT), 1.05–2.1.85
(m, 27H, CH, CH2), 2.00 (m, 1H, AZT), 2.67 (m, 1H, H-19), 2.77 (m, 1H, AZT), 2.97 (m, 1H, H-3), 3.65 (m,
2H, AZT), 4.02 (d, J = 10.8 Hz, 1H, H-28), 4.28 (t, J = 4.8 Hz, 1H, AZT), 4.54 (d, J = 10.8 Hz, 1H, H-28),
4.59 (s, 1H, H-29), 4.74 (s, 1H, H-29), 5.28 (t, 1H, J = 4.8 Hz, AZT), 5.46 (m, 1H, AZT), 5.67 (s, 1H, AZT),
6.45 (t, 1H, J = 6.6 Hz, AZT), 7.83 (s, 1H, AZT), 8.32 (s, 1H, CH-triazol), 9.02 (s, 2H, NH-AZT). 13C
NMR (150 MHz, DMSO-d6) δ: 12.7, 15.0, 15.9, 16.1, 16.3, 16.4, 18.4, 19.2, 20.8, 25.2, 25.3, 25.6, 27.1, 27.6,
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28.6, 29.4, 29.7, 34.2, 34.6, 36.6, 37.1, 37.6, 37.7, 38.7, 39.0, 40.9, 42.8, 46.8, 47.5, 48.7, 50.2, 55.3, 55.4, 55.6,
60.2, 60.6, 61.1, 61.3, 62.7, 66.8, 67.5, 77.3, 79.7, 83.8, 84.3, 84.4, 84.7, 110.0, 110.1, 110.5, 129.3, 136.5,
136.8, 139.3, 150.3, 150.9, 160.9, 164.2. IR (KBr, cm−1) νmax: 1273 (N-N=N), 1456 (N=N), 1541 (C=N),
1697 (C=O), 2104 (C-NH2), 2870–2941 (C-H), 3392–3412 (N-H). HR-MS (APCI) m/z: C43H63N5O7

[(M − H)−], Calc. 760.4649; Found 760.4645 (Figure S6).

28-O-[1-(1-Deoxy-β-D-glucopyranosyl)-1H-1,2,3-triazol-4-yl]carbonylbetulin (5f). Yield 75%, m.p.
184–186 ◦C, [α]20

D +0.9 (c 1, EtOH). 1H NMR (600 MHz, DMSO-d6) δ: 0.66 (s, 3H, CH3), 0.78 (s,
3H, CH3), 0.85 (s, 3H, CH3), 0.97 (s, 3H, CH3), 1.05 (s, 3H, CH3), 1.67 (s, 3H, CH3), 1.11–1.72 (m, 25H,
CH, CH2), 1.99 (m, 1H, OH), 2.98 (m, 1H, H-19), 3.26 (m, 1H, H-3), 3.41 (m, 1H, OH), 3.47 (m, 1H, OH),
3.71 (m, 1H, OH), 3.86 (m, 1H, CH-sugar), 4.02 (d, J = 10.8 Hz, 1H, H-28), 4.28 (m, 1H, CH-sugar), 4.56
(d, J = 10.8 Hz, 1H, H-28), 4.58 (s, 1H, H-29), 4.63 (m, 1H, CH-sugar), 4.73 (s, 1H, H-29), 5.20 (d, 1H,
J = 5.4 Hz, CH-sugar), 5.34 (d, 1H, J = 5.4 Hz, CH-sugar), 5.45 (d, 1H, J = 5.4 Hz, CH-sugar), 5.61 (d,
1H, J = 5.4 Hz, CH-sugar), 9.08 (s, 1H, CH-triazol). 13C NMR (150 MHz, DMSO-d6) δ: 15.0, 16.1, 16.3,
16.4, 18.4, 19.2, 20.8, 25.2, 27.1, 27.6, 28.6, 29.4, 29.6, 34.2, 34.6, 37.1, 37.6, 38.7, 39.0, 39.6, 40.9, 42.8, 46.8,
47.5, 48.7, 50.2, 55.3, 61.2, 62.7, 69.9, 72.4, 77.2, 77.3, 79.7, 80.6, 88.3, 110.5, 129.1, 139.2, 150.3, 160.9. IR
(KBr, cm−1) νmax: 1275 (N-N=N), 1456 (N=N), 1541 (C=N), 1728 (C=O), 2870–2941 (C-H), 3414 (O-H).
HR-MS (APCI) m/z: C39H61N3O8 [(M − H)−], Calc. 698.4380; Found 698.4384.

28-O-(1-Ethylacetyl-1H-1,2,3-triazol-4-yl)carbonylbetulin (5g). Yield 65%, m.p. 176–181 ◦C, [α]20
D −0.1

(c 1, CHCl3). 1H NMR (600 MHz, CDCl3) δ: 0.78 (s, 3H, CH3), 0.85 (s, 3H, CH3), 0.98 (s, 3H, CH3),
1.00 (s, 3H, CH3), 1.08 (s, 3H, CH3), 1.34 (t, 3H, J = 7.2 Hz, CH3), 1.69 (s, 3H, CH3), 1.18–2.00 (m, 25H,
CH, CH2), 2.53 (m, 1H, H-19), 3.20 (m, 1H, H-3), 4.17 (d, J = 10.8 Hz, 1H, H-28), 4.32 (q, 2H, J = 7.2Hz,
OCH2), 4.59 (d, J = 10.8 Hz, 1H, H-28), 4.63 (s, 1H, H-29), 4.73 (s, 1H, H-29), 5.24 (s, 2H, CH2), 8.24
(s, 1H, CH-triazol). 13C NMR (150 MHz, CDCl3) δ: 14.1, 14.8, 15.4, 16.1, 18.3, 19.2, 20.8, 25.21, 27.1,
27.4, 28.0, 29.6, 29.8, 34.2, 34.7, 37.2, 37.7, 38.7, 38.9, 40.9, 42.8, 46.7, 47.7, 48.9, 50.4, 51.0, 55.3, 62.8, 63.7,
79.0, 110.0, 128.7, 140.7, 150.1, 160.9, 165.7. IR (KBr, cm−1) νmax: 1213 (N-N=N), 1458 (N=N), 1541
(C=N), 1734 (C=O), 1751 (C=O), 2870–2943 (C-H). HR-MS (APCI) m/z: C37H57N3O5 [(M − H)−], Calc.
622.4172; Found 622.4170.

28-O-[1-(3-Hydroxypropyl)-1H-1,2,3-triazol-4-yl]carbonylbetulin (5h). Yield: 77%, m.p. 201–205 ◦C,
[α]20

D −1.5 (c 1, EtOH). 1H NMR (600 MHz, DMSO-d6) δ: 0.66 (s, 3H, CH3), 0.78 (s, 3H, CH3), 0.88
(s, 3H, CH3), 0.96 (s, 3H, CH3), 1.03 (s, 3H, CH3), 1.08 (t, 2H, J = 7.2 Hz, CH2OH), 1.67 (s, 3H, CH3),
1.13–1.74 (m, 25H, CH, CH2), 2.51 (m, 1H, H-19), 2.98 (m, 1H, H-3), 3.39 (m, 2H, CH2), 4.02 (d, J = 10.8
Hz, 1H, H-28), 4.30 (br.s, 1H, OH), 4.48 (t, 2H, J = 7.2 Hz, CH2), 4.54 (d, J = 10.8 Hz, 1H, H-28), 4.58
(s, 1H, H-29), 4.73 (s, 1H, H-29), 8.81 (s, 1H, CH-triazol). 13C NMR (150 MHz, , DMSO-d6) δ: 15.0, 15.9,
16.1, 16.4, 18.4, 19.2, 20.8, 25.2, 25.3, 27.1, 27.6, 28.6, 29.4, 29.7, 33.1, 34.2, 34.6, 37.1, 37.6, 38.7, 39.0, 40.9,
42.8, 46.8, 47.5, 47.6, 48.7, 50.2, 55.3, 55.6, 57.8, 62.5, 77.2, 79.7, 99.5, 110.5, 129.7, 139.0, 150.3, 161.1. IR
(KBr, cm−1) νmax: 1201 (N-N=N), 1456 (N=N), 1541 (C=N), 1724 (C=O), 2870–2941 (C-H), 3420 (O-H).
HR-MS (APCI) m/z: C36H57N3O4 [(M − H)−], Calc. 594.4271; Found 594.4274.

28-O-[1-(3-Aminopropyl)-1H-1,2,3-triazol-4-yl]carbonylbetulin (5i). Yield: 66%, m.p. 156–160 ◦C, [α]20
D +1.9

(c 1, EtOH). 1H NMR (600 MHz, DMSO-d6) δ: 0.67 (s, 3H, CH3), 0.78 (s, 3H, CH3), 0.88 (s, 3H, CH3),
0.97 (s, 3H, CH3), 1.03 (s, 3H, CH3), 1.68 (s, 3H, CH3), 1.15–1.83 (m, 25H, CH, CH2), 1.97 (m, 2H, CH2),
2.58 (m, 1H, H-19), 2.60 (t, 2H, J = 7.2 Hz, CH2NH2), 2.98 (m, 1H, H-3), 4.00 (d, J = 10.8 Hz, 1H, H-28),
4.27 (br.s, 2H, NH2), 4.51 (t, 2H, J = 7.2 Hz, CH2), 4.55 (d, J = 10.8 Hz, 1H, H-28), 4.59 (s, 1H, H-29),
4.73 (s, 1H, H-29), 8.82 (s, 1H, CH-triazol). 13C NMR (150 MHz, DMSO-d6) δ: 15.0, 16.1, 16.3, 16.4,
18.4, 19.2, 20.8, 25.2, 27.1, 27.6, 28.6, 29.5, 29.7, 33.9, 34.2, 34.6, 37.2, 37.6, 38.1, 38.7, 38.9, 39.0, 40.9, 42.8,
46.8, 47.5, 47.9, 48.7, 50.2, 55.3, 62.6, 77.2, 110.5, 129.7, 139.1, 150.3, 161.1. IR (KBr, cm−1) νmax: 1205
(N-N=N), 1456 (N=N), 1541 (C=N), 1732 (C=O), 2870–2939 (C-H), 3385–3442 (N-H). HR-MS (APCI)
m/z: C36H58N4O3 [(M − H)−], Calc. 593.4431; Found 593.4333.
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2-Amino-3-[4-(28-O-betulinylcarbonyl)-1H-1,2,3-triazol-1-yl]propanoic acid (5j). Yield: 44%, m.p.
265–269 ◦C, [α]20

D −1.1 (c 1, EtOH). 1H NMR (600 MHz, DMSO-d6) δ: 0.66 (s, 3H, CH3), 0.78 (s,
3H, CH3), 0.88 (s, 3H, CH3), 0.96 (s, 3H, CH3), 1.03 (s, 3H, CH3), 1.06 (t, 1H, J = 7.2 Hz, CH), 1.67 (s,
3H, CH3), 1.14–1.81 (m, 25H, CH, CH2), 1.97 (m, 2H, CH2), 2.58 (m, 1H, H-19), 2.96 (m, 1H, H-3), 3.97
(d, J = 10.8 Hz, 1H, H-28), 4.29 (d, 2H, J = 7.2 Hz, CH2), 4.55 (d, J = 10.8 Hz, 1H, H-28), 4.57 (s, 1H,
H-29), 4.73 (s, 1H, H-29), 8.62 (s, 1H, CH-triazol). IR (KBr, cm−1) νmax: 1284 (N-N=N), 1456 (N=N),
1603 (C=N), 1728 (C=O), 2870–2938 (C-H), 3406 (O-H). HR-MS (APCI) m/z: C36H56N4O5 [(M − H)−],
Calc. 623.4172; Found 623.4175.

3-Methyl-3-[4-(28-O-betulinylcarbonyl)-1H-1,2,3-triazol-1-yl]butyric acid (5k). Yield: 55%, m.p. 293–297 ◦C,
[α]20

D +6.4 (c 1, EtOH). 1H NMR (600 MHz, DMSO-d6) δ: 0.67 (s, 3H, CH3), 0.71 (d, 3H, J = 6.6 Hz,
CH3), 0.78 (s, 3H, CH3), 0.88 (s, 3H, CH3), 0.91 (d, 3H, J = 6.6 Hz, CH3), 0.97 (s, 3H, CH3), 1.03 (s, 3H,
CH3), 1.07 (d, 1H, J = 6.6 Hz, CH3), 1.67 (s, 3H, CH3), 1.17–1.83 (m, 26H, CH, CH2), 2.43 (m, 1H, CH),
2.52 (m, 1H, H-19), 2.98 (m, 1H, H-3), 4.02 (d, J = 10.8 Hz, 1H, H-28), 4.28 (m, 1H, CHCOOH), 4.53
(d, J = 10.8 Hz, 1H, H-28), 4.59 (s, 1H, H-29), 4.73 (s, 1H, H-29), 8.66 (s, 1H, CH-triazol). 13C NMR
(150 MHz, DMSO-d6) δ: 15.0, 15.9, 16.1, 16.3, 16.4, 18.4, 19.0, 19.2, 20.2, 20.8, 25.2, 25.3, 27.1, 27.6, 28.6,
29.5, 29.8, 31.8, 34.2, 34.7, 37.2, 37.6, 38.7, 40.9, 42.8, 46.8, 47.6, 48.7, 50.2, 55.31, 55.6, 56.5, 62.5, 72.8, 77.3,
79.7, 110.5, 128.9, 138.4, 150.3, 161.3. IR (KBr, cm−1) νmax: 1232 (N-N=N), 1456 (N=N), 1541 (C=N),
1717 (C=O), 1734 (C=O), 2870–2968 (C-H), 3385 (O-H). HR-MS (APCI) m/z: C38H58N3O5 [(M − H)−],
Calc. 636.4455; Found 636.4357.

3.4. General Procedure for the Synthesis of Bistriazole Derivatives of Betulin 6

A reaction mixture containing 3,28-O,O′-di(propynoyl)betulin 4 (0.1 g, 0.203 mmol), copper iodide
(I) (0.2 eqv, 0.008 g, 0.040 mmol), a corresponding organic azide (2.10 eqv, 0.426 mmol), and dry toluene
(4 mL) was stirred under reflux for 72 h. Subsequently, the solution was concentrated under reduced
pressure. The crude products were purified by column chromatography using various mixtures of
organic solvents to give pure product 6a–h:

3,28-O,O′-Di[(1-benzyl-1H-1,2,3-triazol-4-yl)carbonyl]betulin (6a). Yield: 48%, m.p. 117–120 ◦C, [α]20
D +2.8

(c 1, CHCl3). 1H NMR (600 MHz, CDCl3) δ: 0.77 (s, 3H, CH3), 0.79 (s, 3H, CH3), 0.87 (s, 3H, CH3), 0.91
(s, 3H, CH3), 0.98 (s, 3H, CH3), 1.67 (s, 3H, CH3), 1.10–2.09 (m, 25H, CH, CH2), 2.42 (m, 1H, H-19), 4.05
(d, J = 10.8 Hz, 1H, H-28), 4.48 (d, J = 10.8 Hz, 1H, H-28), 4.53 (s, 1H, H-29), 4.63 (s, 1H, H-29), 4.69 (m,
1H, H-3), 5.60 (s, 4H, CH2), 7.22–7.23 (m, 4H, HAr), 7.32–7.33 (m, 6H, HAr), 7.84 (s, 1H, CH-triazol),
7.87 (s, 1H, CH-triazol). 13C NMR (150 MHz, CDCl3) δ: 14.2, 14.7, 16.0, 16.2, 16.5, 16.7, 18.2, 19.1, 20.8,
21.1, 22.7, 23.8, 25.2, 27.1, 28.0, 29.6, 29.8, 34.1, 37.1, 37.7, 38.2, 38.4, 40.9, 42.7, 46.7, 47.7, 48.9, 50.3, 54.4,
54.5, 55.4, 60.4, 63.6, 81.9, 109.9, 129.9, 126.9, 127.1, 128.2, 129.1, 129.2, 129.3, 133.8, 134.0, 140.6, 150.1,
160.5, 160.6, IR (KBr, cm−1) νmax: 1261–1144 (N-N=N), 1457 (N=N), 1540 (C=N), 1734 (C=O). HR-MS
(APCI) m/z: C50H64N6O4 [(M − H)−], Calc. 811.4911; Found 811.4914.

3,28-O,O′-Di[1-(4-fluorobenzyl-1H-1,2,3-triazol-4-yl)carbonyl]betulin (6b). Yield: 35%, m.p. 155–158 ◦C,
[α]20

D +8.8 (c 1, CHCl3). 1H NMR (600 MHz, CDCl3) δ: 0.80 (s, 3H, CH3), 0.82 (s, 3H, CH3), 0.88
(s, 3H, CH3), 0.89 (s, 3H, CH3), 0.98 (s, 3H, CH3), 1.67 (s, 3H, CH3), 1.10–2.09 (m, 22H, CH, CH2), 2.42
(m, 1H, H-19), 4.05 (d, J = 10.8 Hz, 1H, H-28), 4.48 (d, J = 10.8 Hz, 1H, H-28), 4.53 (s, 1H, H-29), 4.63
(s, 1H, H-29), 4.69 (m, 1H, H-3), 5.48 (s, 4H, CH2), 7.00–7.04 (m, 4H, HAr), 7.22–7.24 (m, 4H, HAr), 7.84
(s, 1H, CH-triazol), 7.88 (s, 1H, CH-triazol). 13C NMR (150 MHz, CDCl3) δ: 14.8, 16.0, 16.2, 16.8, 18.2,
27.1, 28.1, 34.7, 37.1, 37.7, 38.2, 38.4, 40.9, 42.7, 47.8, 48.9, 50.3, 53.7, 53.8, 63.7, 82.0, 116.3, 116.4, 116.5,
130.1, 130.2. IR (KBr, cm−1) νmax: 1228–1197 (N-N=N), 1456 (N=N), 1541–1512 (C=N), 1724 (C=O), 2945
(C=C), 1105 (C-F). HR-MS (APCI) m/z: C50H62F2N6O4 , [(M − H)−], Calc. 847.4722; Found 847.4729
(Figure S7).

3,28-O,O′-Di[1-(4-cyanobenzyl-1H-1,2,3-triazol-4-yl)carbonyl]betulin (6c). Yield: 35%, m.p. 186–190 ◦C,
[α]20

D +16.4 (c 1, CHCl3). 1H NMR (600 MHz, CDCl3) δ: 0.90 (s, 3H, CH3), 0.92 (s, 3H, CH3), 0.98 (s, 3H,
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CH3), 1.00 (s, 3H, CH3), 1.16 (s, 3H, CH3), 1.72 (s, 3H, CH3), 1.10–2.09 (m, 25H, CH, CH2), 2.20 (m, 1H,
H-19), 4.15 (d, J = 10.8 Hz, 1H, H-28), 4.59 (d, J = 10.8 Hz, 1H, H-28), 4.63 (s, 1H, H-29), 4.73 (s, 1H,
H-29), 4.79 (m, 1H, H-3), 5.68 (s, 4H, CH2), 7.39–7.41 (m, 4H, HAr), 7.71–7.73 (m, 4H, HAr), 8.01 (s, 1H,
CH-triazol), 8.05 (s, 1H, CH-triazol). 13C NMR (150 MHz, CDCl3) δ: 16.8, 18.2, 19.1, 20.8, 21.1, 23.8,
25.1, 27.1, 28.1, 29.6, 29.8, 34.1, 34.7, 37.1, 37.7, 38.2, 38.4, 41.0, 42.7, 46.7, 47.8, 48.8, 50.3, 53.7, 55.4, 60.4,
63.8, 82.2, 110.1, 113.2, 113.3, 118.0, 127.2, 127.3, 128.5, 133.1, 140.0, 141.0, 141.4, 150.0, 160.3, 160.9. IR
(KBr, cm−1) νmax: 1228–1192 (N-N=N), 1456 (N=N), 1541 (C=N), 1728 (C=O), 2945 (C=C), 2229 (C=N).
HR-MS (APCI) m/z: C52H62N8O4 , [(M − H)−], Calc. 861.4816; Found 861.4812.

3,28-O,O′-Di[(1-phenylthiomethyl-1H-1,2,3-triazol-4-yl)carbonyl]betulin (6d). Yield: 59%, m.p. 127–131 ◦C,
[α]20

D +11.2 (c 1, CHCl3). 1H NMR (600 MHz, CDCl3) δ: 0.82 (s, 3H, CH3), 0.83 (s, 3H, CH3), 0.87 (s,
3H, CH3), 0.93 (s, 3H, CH3), 0.99 (s, 3H, CH3), 1.67 (s, 3H, CH3), 1.10–2.09 (m, 24H, CH, CH2), 2.42
(m, 1H, H-19), 4.04 (d, J = 10.8 Hz, 1H, H-28), 4.47 (d, J = 10.8 Hz, 1H, H-28), 4.54 (s, 1H, H-29), 4.64
(s, 1H, H-29), 4.68 (m, 1H, H-3), 5.59 (s, 4H, CH2), 7.25–7.27 (m, 10H, HAr), 7.89 (s, 1H, CH-triazol),
7.95 (s, 1H, CH-triazol). 13C NMR (150 MHz, CDCl3) δ: 16.1, 16.2, 16.7, 18.2, 23.8, 25.2, 27.1, 28.1, 29.6,
29.8, 34.1, 34.7, 37.1, 37.7, 38.2, 38.4, 40.9, 42.8, 46.7, 47.8, 48.9, 50.3, 54.3, 55.4, 63.6, 82.1, 110.0, 126.6,
129.1, 129.7, 131.2, 131.3, 132.4, 132.5, 150.0, 160.9. IR (KBr, cm−1) νmax: 1224–1195 (N-N=N), 1456–1438
(N=N), 1541 (C=N), 1724 (C=O), 2943 (C=C). HR-MS (APCI) m/z: C50H64N6O4S2 [(M − H)−], Calc.
875.4352, Found 875.4350.

3,28-O,O′-Di[1-(3′-deoxythymidine-5′-yl-1H-1,2,3-triazol-4-yl)carbonyl]betulin (6e). Yield: 51%, m.p.
224–227 ◦C, [α]20

D +0.9 (c 1, CHCl3). 1H NMR (600 MHz, CDCl3) δ: 0.87 (s, 3H, CH3), 0.88 (s, 3H,
CH3), 0.95 (s, 3H, CH3), 1.00 (s, 3H, CH3), 1.03 (s, 3H, CH3), 1.69 (s, 3H, CH3), 1.84 (s, 3H, CH3-AZT),
1.10–2.09 (m, 25H, CH, CH2), 2.20 (m, 1H, H-19), 2.65–2.69 (m, 2H, AZT), 2.76–2.79 (m, 2H, AZT),
3.69–3.72 (m, 2H, AZT), 4.02 (d, J = 10,8 Hz, 1H, H-28), 4.28 (t, J = 4,8 Hz, 2H, AZT), 4.58 (d, J = 10.8 Hz,
1H, H-28), 4.60 (s, 1H, H-29), 4.63 (m, 1H, H-3), 4.75 (s, 1H, H-29), 5.28–5.30 (m, 2H, AZT), 5.45–5.48
(m, 2H, AZT), 6.43–6.46 (m, 2H, AZT), 7.83 (s, 2H, AZT), 8.96 (s, 1H, CH-triazol), 9.02 (s, 1H, CH-triazol),
11.38 (s, 2H, NH-AZT). 13C NMR (150 MHz, CDCl3) δ: 12.7, 15.0, 16.1, 16.4, 17.0, 19.0, 28.1, 37.1, 37.7,
40.9, 42.8, 46.8, 47.5, 49.9, 60.2, 61.2, 84.3, 84.7, 110.2, 129.3, 136.8, 139.2, 139.5, 150.9, 160.9, 164.2. IR
(KBr, cm−1) νmax: 1273–1199 (N-N=N), 1473 (N=N), 1541–1512 (C=N), 1693 (C=O), 1681 (C=O), 2927
(C-H), 3408–3373 (N-H), 2106 (C-N). HR-MS (APCI) m/z: C56H76N10O12 [(M − H)−], Calc. 1079.5566;
Found 1079.5564.

3,28-O,O′-Di[1-(1-deoxy-β-D-glucopyranosyl-1H-1,2,3-triazol-4-yl)carbonyl]betulin (6f). Yield: 95%, oil,
[α]20

D −0.3 (c 1, CHCl3). 1H NMR (600 MHz, CDCl3) δ: 0.87 (s, 6H, 2 × CH3), 0.95 (s, 3H, CH3), 0.99 (s,
3H, CH3), 1.08 (s, 3H, CH3), 1.69 (s, 3H, CH3), 1.11–1.72 (m, 25H, CH, CH2), 1.99 (m, 2H, OH), 2.99 (m,
1H, H-19), 3.09 (m, 2H, OH), 3.19 (m, 2H, OH), 3.26 (m, 1H, H-3), 3.41 (m, 2H, OH), 3.47 (m, 2H, OH),
3.68 (m, 2H, OH), 3.71 (m, 2H, CH-sugar), 3.86 (m, 1H, H-3), 4.02 (d, J = 10.8 Hz, 1H, H-28), 4.47 (m, 1H,
CH-sugar), 4.56 (d, J = 10.8 Hz, 1H, H-28), 4.58 (s, 1H, H-29), 4.65 (m, 2H, CH-sugar), 4.74 (s, 1H, H-29),
5.21 (m, 2H, CH-sugar), 5.35 (m, 2H, CH-sugar), 5.45 (m, 2H, CH-sugar), 5.61 (m, 2H, CH-sugar), 9.08
(s, 1H, CH-triazol), 9.08 (s, 1H, CH-triazol). 13C NMR (150 MHz, DMSO-d6) δ: 15.0, 16.1, 16.4, 17.2,
18.2, 19.3, 23.9, 25.2, 25.7, 27.1, 28.1, 29.4, 29.6, 37.1, 37.6, 38.2, 40.8, 42.6, 42.8, 46.8, 47.5, 48.7, 49.9, 55.0,
61.2, 62.6, 69.9, 70.0, 72.4, 73.8, 77.0, 77.2, 79.6, 80.6, 81.4, 88.3, 90.6, 110.4, 129.9, 129.1, 139.2, 139.4, 150.3,
160.4, 160.9. IR (KBr, cm−1) νmax: 1236 (N-N=N), 1458 (N=N), 1543 (C=N), 1732 (C=O), 2941 (C=C),
3406 (OH). HR-MS (APCI) m/z: C48H72N6O14 [(M − H)−], Calc. 955.5028, Found 955.5024.

3,28-O,O′-Di-[(1-ethylacetyl-1H-1,2,3-triazol-4-yl)carbonyl]betulin (6g). Yield 71%, m.p. 133–136 ◦C,
[α]20

D −7.6 (c 1, CHCl3). 1H NMR (600 MHz, CDCl3) δ: 0.83 (s, 3H, CH3), 0.85 (s, 3H, CH3), 0.90 (s, 3H,
CH3), 0.94 (s, 3H, CH3), 1.02 (s, 3H, CH3), 1.24 (m, 6H, 2 × CH3), 1.64 (s, 3H, CH3), 1.10–1.98 (m, 25H,
CH, CH2), 2.45 (m, 1H, H-19), 4.08 (d, J = 10.8 Hz, 1H, H-28), 4.22 (m, 4H, 2 × OCH2), 4.52 (d, J = 10.8
Hz, 1H, H-28), 4.54 (s, 1H, H-29), 4.65 (s, 1H, H-29), 4.73 (m, 1H, H-3), 5.15 (s, 4H, 2 × CH2), 8.11 (s, 1H,
CH-triazol), 8.15 (s, 1H, CH-triazol). 13C NMR (150 MHz, CDCl3) δ: 14.1, 14.2, 14.8, 16.1, 16.2, 16.8,
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18.2, 19.1, 20.8, 23.8, 25.2, 27.1, 28.1, 29.6, 29.8, 34.1, 34.7, 37.1, 37.7, 38.2, 38.4, 40.9, 42.8, 46.7, 47.8, 48.9,
50.3, 51.0, 55.4, 62.8, 62.81, 63.7, 82.1, 110.0, 128.5, 128.7, 140.7, 141.0, 150.1, 160.3, 160.9, 165.7, 165.7.
IR (KBr, cm−1) νmax: 1207 (N-N=N), 1467 (N=N), 1543 (C=N), 1751 (C=O), 2872–2947 (C-H). HR-MS
(APCI) m/z: C44H64N6O8 [(M − H)−], Calc. 803.4707; Found 803.4704.

3,28-O,O′-Di[1-(3-hydroxypropyl-1H-1,2,3-triazol-4-yl)carbonyl]betulin (6h). Yield: 78%, m.p. 172–176 ◦C,
[α]20

D −1.5 (c 1, EtOH). 1H NMR (600 MHz, CDCl3) δ: 0.83 (s, 3H, CH3), 0.85 (s, 3H, CH3), 0.91 (s,
3H, CH3), 0.93 (s, 3H, CH3), 1.00 (s, 3H, CH3), 1.18 (t, 4H, J = 7.2 Hz, 2 × CH2OH), 1.69 (s, 3H, CH3),
1.25–2.12 (m, 25H, CH, CH2), 2.44 (m, 1H, H-19), 3.60 (m, 4H, 2× CH2), 3.65 (t, 4H, J = 7.2 Hz, 2 × CH2),
4.08 (d, J = 10.8 Hz, 1H, H-28), 4.49 (br.s, 2H, 2 × OH), 4.51 (d, J = 10.8 Hz, 1H, H-28), 4.54 (s, 1H,
H-29), 4.65 (s, 1H, H-29), 4.71 (m, 1H, H-3), 7.99 (s, 1H, CH-triazol), 8.03 (s, 1H, CH-triazol). 13C NMR
(150 MHz, CDCl3) δ: 14.8, 16.1, 16.2, 16.8, 18.2, 18.5, 19.1, 20.8, 23.8, 25.2, 25.3, 27.1, 28.1, 29.6, 29.9, 32.3,
32.4, 34.1, 34.7, 37.1, 37.7, 38.1, 38.4, 40.9, 42.8, 46.7, 47.2, 47.3, 47.8, 48.9, 50.3, 55.4, 58.6, 63.6, 82.0, 110.0,
127.7, 150.1, 160.3, 161.2. IR (KBr, cm−1) νmax: 1220–1203 (N-N=N), 1456 (N=N), 1541 (C=N), 1724
(C=O), 2872–2947 (C-H), 3435 (O-H). HR-MS (APCI) m/z: C42H64N6O6 [(M − H)−], Calc. 747.4809;
Found 747.4802 (Figure S8).

3.5. Biological Activities

3.5.1. Cells and Viruses

The synthesized compounds, dissolved in DMSO (20 mg/mL), were tested against VSV—vesicular
stomatitis virus (strain Indiana; ATTC VR-1238™, Rhabdoviridae); HSV-1—herpes simplex virus type-1
(HSV-1-strain MacIntyre; ATTC VR-539™, Herpesviridae); ECBO—cytopathogenic bovine orphan virus
(BEV-1, ECBO–Enteric, strain LCR-4; ATTC VR-248™, Picornaviridae); HAdV-5—human adenovirus
type-5 (strain Adenoid 75; ATTC VR-5™, Adenoviridae) in A549 (ATCC® CCL-185™)—human lung
adenocarcinoma epithelial cell line culture

3.5.2. Cytotoxicity Assay: Determination of Cytotoxic Concentration CC50

The cytotoxic effect of compounds on A549 cells was determined by the MTT method,
as previously described [36]. The MTT assay is the enzyme-based method, which use the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide as a reductive coloring agent. Briefly,
subconfluent monolayers of A549 cells (2 × 104 cell/well in Dulbecco’s Minimal Essential Medium
(DMEM) supplemented with 5% fetal bovine serum (FBS), antibiotics (100 U/mL penicillin and
100 µg/mL streptomycin), and 2 mM L-glutamine (all from Sigma Aldrich, St. Louis, MO, USA)
were incubated in 96-multi-well plates in the presence of dilutions of the compounds ranging from
100 µg/mL to 0.5 µg/mL, in triplicate for 48 h at 37 ◦C in a humidified atmosphere with 5% CO2.
After 48 h, 20 µL of MTT solution (Promega, Madison, WI, USA) was added to each well, and the
microplates were kept at 37 ◦C/5% CO2 for 3 h. Then, the solubilization/stop solution containing
SDS-HCl (100 µL/well) was added, and the absorbance values of the wells were measured at 570 nm
using a 96-well plate reader (Multiskan RC spectrophotometer, Thermo Labsystems, Waltham, MA,
USA). Cell viability (%) was calculated for each concentration as Abs treated/Abs control × 100,
where Abs treated and Abs control are the absorbance readings for the wells with and without
the tested compounds, respectively. The 50% cytotoxic concentration (CC50) was defined as the
concentration that reduced cell viability by 50% with respect to controls without drugs. The CC50

value was calculated from the corresponding dose–response curves.

3.5.3. Virucidal Activity

The virucidal activity was measured in vitro incubating various strains of viruses with
the compounds. Briefly, the viruses (VSV−1 × 107 TCID50/mL, HSV−1 × 106 TCID50/mL,
ECBO−1 × 105 TCID50/mL, HAdV−5 1 × 105 TCID50/mL) were incubated for 2 h at room
temperature with a non-toxic (CC20) concentration of each compound. Simultaneously, the same
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amount of virus was incubated with the culture medium as a control. After incubation, viruses were
titrated (10−1 to 10−8) and plated on A549 cell monolayers seeded in 96-well plates 24 h before the
experiment (2 × 104 cell/well). The plates were incubated for 48 h (for VSV and HSV-1) and 72 h
(for ECBO and HAdV-5) at 37 ◦C in a humidified atmosphere with 5% CO2. The cytopathic effect
(CPE) was observed under microscope. Scoring of CPE from 0 (no CPE) to 4 (100% cell destruction)
was performed.

3.5.4. Pretreatment Assays

To assess the effect of the pretreatment with the compounds, A549 cell monolayers seeded in
96-well plates were treated for 24 h at 37 ◦C, with the CC20 of each compound in triplicate. Then,
the medium was removed, and the cell monolayers were infected with 100 TCID50/well of each
virus. After 30 min at 37 ◦C for VSV and HSV-1, and 1 h for ECBO and HAdV-5, the viral inoculum
was removed. Plates were washed and finally overlaid with 2% DMEM (100 µL per well), and then
incubated 48 h for VSV and HSV-1, and 72 h for ECBO and HAdV-5. Finally, the cytopathic effect
(CPE) was observed under microscope and determined by the MTT method.

3.5.5. Time of Addition Assay

To study the effect of the compounds in the adsorption and post-adsorption events, two different
treatments with the compounds were carried out. First, when the derivatives were present: (i) only
during the adsorption period (Adsorption); (ii) after adsorption and until the end of the experiment
(Post-Adsorption). Briefly, A549 cell monolayers cultured in 96-well plates were then infected with
100 TCID50/well of each virus in the presence or absence of each compound, and further incubated at
37 ◦C (for the designated time for each virus), allowing only the adsorption step of the viral particles
to the cells (Adsorption). Cell monolayers were then washed and incubated with 2% DMEM. In the
Post-Adsorption experiments, A549 cell monolayers were infected with 100 TCID50/well of each virus,
and after adsorption, cells were washed, and derivatives were added to the wells. CPE was assessed
48 h und 72 h under microscope and by the MTT method. All of the experiments mentioned above
were performed in parallel with a drug effective against the used virus (Acyclovir, Cidofovir, Ribavirin,
Interferon-γ) and betulin 1 to test the suitability of the assay. Each assay was run in triplicate.

3.5.6. Measurement of Inhibition Activity on Tumor Cell Proliferation

Antiproliferative activities of the compounds were measured by the MTT assay using A549
cells and a human ovarian cancer cell line SKOV-3 (adenocarcinoma ATCC® HTB77™). A total of
2 × 103 cells in DMEM medium supplemented with 5% FBS were placed in each well of a 96-well
flat-bottom plate. After 24 h of incubation at 37 ◦C in 5% CO2, the growth medium was replaced
by media containing different concentrations of the derivatives. Control cultures received cisplatin
0.1–10 µg/mL, and blank wells contained 100 µL of growth medium with no cells. After 96 h of
incubation, cell proliferation was determined by the colorimetric MTT assay (570 nm) reading for
each concentration compared with the control. At least three replicates for each sample were used to
determine the cell proliferation.

3.5.7. Anticancer Activity

The cytotoxic activity of the compounds was measured in vitro using following human cancer cell
lines: human ductal carcinoma T47D (ATCC, Rockville, MD, USA), human adenocarcinoma MCF-7,
glioblastoma SNB-19 (DSMZ, Braunschweig, Germany), human malignant melanoma Colo-829 (ATCC,
Rockville, MD, USA), and human amelanotic melanoma C-32 (ATCC, Rockville, MD, USA). The cells
were grown in DMEM (Lonza, Basel, Switzerland) growth medium containing 10% fetal bovine
serum (FBS) (Biological Industries, Cromwell, CT, USA), penicillin (10.000 U/mL) and streptomycin
(10 mg/mL) (Lonza, Basel, Switzerland). Cells were seeded (5 × 103 cells/well) into 96-well plates
(Nunc Thermo Fisher Scientific, Waltham, MA, USA) and incubated for 24 h at 37 ◦C in a 5% CO2
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atmosphere at 95% humidity. The culture medium was replaced with a fresh aliquot containing the
tested compounds (0.01–100 µg/mL). Next, the cells were incubated with the compounds for another
72 h. The cytotoxic activity was evaluated using a WST-1 test (Roche Diagnostics GmbH, Mannheim,
Germany), which is based on the cleavage of the bright red-colored stable tetrazolium salt WST-1 to
dark red soluble formazan by mitochondrial dehydrogenases in viable cells. The amount of formazan
correlates directly with the amount of metabolically active cells in the culture, and is measured by
absorbance (λ = 450 nm).

3.5.8. Antimicrobial Activity

The antibacterial and antifungal activities of compounds were evaluated using the following
strains: Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATTC
25922), Pseudomonas aeruginosa (ATTC 27853), Klebsiella pneumoniae ATTC 700603), and Candida albicans
(ATTC 10231). Cells were cultured for 24–48 h on Columbia agar or Sabouraud agar (C. albicans) in a
saline solution (0.9% NaCl) and adjusted to a 0.5 McFarland density standard (1.5 × 108 CFU/mL).
The final density of microorganisms was approximately 3× 105 CFU/mL. The solutions of compounds
were added to the medium at various concentrations (0.06 µM–2 mM). The MIC (minimal inhibitory
concentration) was defined as the lowest concentration of the examined compounds inhibiting the
growth of the cell strains after 18 h incubation at 35 ◦C in ambient air. The experiments were performed
in triplicate.

4. Conclusions

In conclusion, novel mono- and bis-1,4-disubstituted triazole hybrids of betulin were synthesized
by the Huisgen cycloaddition reaction. The acetylenic and triazole compounds were tested for their
antiviral activity using a vesicular stomatitis virus (VSV), herpes simplex virus type-1 (HSV-1), bovine
picornavirus (ECBO) and human adenovirus type-5 (hAdV-5). The transformation of acetylenic moiety
to triazole ring was necessary to demonstrate antiviral activity. Several of the hybrid conjugates
showed a promising antiviral activity against ECBO strain LCR-4 in A549 cells. The most active
compound was 6h, which contained a 3-hydroxypropyl substituted 1,2,3-triazole ring. The cytotoxic
results showed that the bistriazole 6b had potential activity against the human ductal carcinoma T47D
as compared with cisplatin. In the case of the bistriazoles 6e and 6f, both which contain substituents
associated with the occurrence of antiviral activity, the total decay of cytotoxic effect against all of
the tested cancer cell lines was observed. Only, the triazole 5e containing a 3′-deoxythymidine-5′-yl
moiety showed antibacterial activity against Klebsiella pneumoniae and Escherichia coli strains.

Supplementary Materials: Supplementary materials can be accessed online.
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