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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) has been increas-

ingly recognized as the most common chronic liver disease 
owing to excessive lipid accumulation in hepatocytes, leading 
to hepatocyte apoptosis, fat denaturalization, and the progres-
sion of hepatic fibrosis.1 For some cases, this disease often in-
cluded a spectrum of histological changes, from simple steatosis 
to non-alcoholic steatohepatitis (NASH), which may develop 
into liver fibrosis, cirrhosis, and even hepatocellular carcino-
ma.2 With great changes in lifestyle and diet, as well as im-
provement of people’s living standards, NAFLD incidence is 
gradually rising with a trend in younger ages, which has be-
come one of the most prevalent chronic diseases in China after 
chronic viral hepatitis.3 Generally, NAFLD, accompanied with 
obesity, diabetes, hyperlipidemia, hypertension, and meta-
bolic syndrome, is well-regarded as the hepatic manifestation 
of metabolic syndrome.4 Although effective therapies are ab-
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sent due to inadequate elucidation of NAFLD pathogenesis, 
many factors such as immunity, genetics, metabolism, and en-
vironment are linked to the presence of NAFLD.5

S100 protein, a low molecular weight acidic protein (10–12 
kDa), is reported to play a crucial role in many human diseas-
es, and it controls multiple processes like apoptosis, inflamma-
tion, and cell movement.6 A total of 25 calcium-binding S100 
family members, namely S100A1–18, hair hyaluronin, keratin 
fibrin, repetin, S100B, S100P, S100Z, and S100G, have been 
currently identified.7 As indicated by Mukai, et al.,8 S100A8 
could induce the upregulation of tumor necrosis factor-alpha 
(TNF-α) in CXCR2-expressing CD11b+Gr-1high cells, thereby 
aggravating hepatitis in mice. In addition, Liu, et al.9 also found 
that expression levels of S100A9 was significantly elevated in 
patients with non-alcoholic fatty liver, which were suggested to 
be even higher in patients with NASH, highlighting the in-
volvement of S100 protein in NAFLD progression. S100 calci-
um binding protein A4 (S100A4), another member of the S100 
protein family, also known as Mts1, metastasin, p9Ka, pEL98, 
CAPL, and calvasculin, Fsp-1, placental calcium-binding pro-
tein, is a polypeptide comprised of 101 amino acids with a mo-
lecular weight of 11.5 kDa.10 Until now, existing studies on 
S100A4 mainly focused on its effects on tumors, like reducing 
intercellular adhesion, remodeling extracellular matrix, and 
promoting abnormal cell proliferation and angiogenesis, ulti-
mately enhancing tumor cell invasion and migration.11 More-
over, S100A4 is known as an inducer of inflammatory processes, 
and its expression is strongly upregulated in various inflamma-
tory diseases such as rheumatoid arthritis,12 idiopathic inflam-
matory myopathies13 and so on. In addition, there has been 
evidence stating that S100A4 levels in liver tissues were posi-
tively correlated with liver fibrosis.14 All factors mentioned 
above showed a possible role of S100A4 in NAFLD, which has 
been increasingly recognized as an inflammatory disease with 
different degrees of liver fibrosis.15 However, it remains unclear 
whether S100A4 is associated with the pathology of NAFLD. 
Methionine-choline-deficient (MCD) diet impaired the secre-
tory process of very low-density lipoprotein from the liver, which 
could induce hepatic lipid accumulation, aminotransferase 
elevation, and hepatic histological changes including steato-
sis, hepatic inflammation, and fibrosis.16,17 These histological 
changes were similar to those of human NAFLD pathology.18 
Therefore, MCD diet has been used as an internationally rec-
ognized animal model of NAFLD.19,20 In our study, we intend-
ed to observe the influences of S100A4 knockout (KO) on 
NAFLD by feeding S100A4 KO mice and their wild-type (WT) 
counterparts with either MCD diet or methionine-choline-suf-
ficient (MCS) control diet, which were identical to MCD but 
sufficient in choline chloride (2 g/kg) and DL-methionine 
(3 g/kg).

MATERIALS AND METHODS

Ethics statement
A total of 100 male SPF C57BL/6 mice (age: 6–8 weeks; weigh-
ing: 18–20 g) were purchased from Shanghai Experimental Ani-
mal Center of Chinese Academy of Sciences (Shanghai, China). 
The current study was consistent with the Laboratory Animal 
Use Convention published by the National Institutes of Health,21 
and all animal experimental procedures were conducted and 
supervised by the Medical Laboratory Animal Ethics Commit-
tee of Taihe Hospital.

Mice model construction
The study on S100A4 KO mice was conducted with a germline 
inactivation of S100A4 gene, as described from the previous 
study.22 S100A4 KO mice (n=20) and their WT counterparts (n= 
20) were randomly divided into model and control groups. The 
mice in model group were fed with MCD diet, namely KO/
MCD and WT/MCD groups with 10 mice in each group, and 
control group mice were treated with MCS diet, namely KO/
MCS and WT/MCS groups with another 10 mice in each group. 
The composition of MCS was identical to MCD but sufficient in 
choline chloride (2 g/kg) and DL-methionine (3 g/kg). Both 
MCS and MCD were obtained from MP Biomedicals (Solon, 
OH, USA).

Specimen preparation
Mice in each group were executed after 8 weeks of feeding, 
and peripheral blood was obtained after removal of eye-balls. 
Then, serum was collected after centrifugation and stored at 
-20°C. The blood biochemical parameters including alanine 
aminotransferase (ALT), aspartate aminotransferase (AST), 
triglyceride (TG), and total cholesterol (TC) levels in each 
group were measured by an automatic biochemical analyzer 
7180 (Hitachi Ltd, Tokyo, Japan). Mice were fixed on the oper-
ating table, and their skin and peritoneum were cut open using 
surgical scissors, exposing and removing liver tissues. A part of 
acquired liver tissues was stabilized in 4% paraformaldehyde 
for 24 h to make regular paraffin embedded slices, while the 
other part was fixed in 4% paraformaldehyde for 2–4 h and 
soaked in 30% sucrose solution overnight at 4°C, which was 
stored in a refrigerator at -80°C for subsequent tests after opti-
mal cutting temperature embedded.

Histological analysis
Hematoxylin and eosin (HE) staining: Slices of liver tissues 
were dewaxed in xylene twice for 5 min, dehydrated with gra-
dient alcohol, and washed with distilled water for 5 min. Then, 
slices were stained with hematoxylin stain for 5 min and dif-
ferentiated with 1% hydrochloric acid for 30 s, followed by 1% 
eosin-alcohol dyeing for 5 min, which could be observed un-
der a microscope after regular gradient alcohol dehydration 
and mounting. 
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Oil Red O (ORO) staining: Tissue sections were placed on 
slide sat room temperature for 30 min, fixed in 10% ice para-
formaldehyde for 10 min, and then washed three times by dis-
tilled water. After drying for several minutes, oil red and de-
ionized water were diluted in a 3:2 ratio and placed at room 
temperature for 10 min. Following that, slices experienced 
ORO staining for 8 min, 85% propylene glycol solution differ-
entiation for 2 min, washed twice, hematoxylin counterstained 
for 30 s, flushed with water for 3 min, and then mounted for mi-
croscope observation. 

Masson staining: Paraffin section of mice was observed after 
a series of procedures including routine dewaxing rehydration, 
ponceaufuchs in acid solution staining for 5–10 min followed 
by washing, 1% phosphomolybdic acid solution differentiation 
for 5 min, aniline blue solution counterstain for 5 min, treat-
ment of 1% glacial acetic acid for 1 min, alcohol gradient de-
hydration, transparent through dimethylbenzene xylene, and 
mounting. 

NAFLD was diagnosed according to NAFLD activity scores 
(NAS) including steatosis (0–3), lobular inflammation (0–3), 
and hepatocyte ballooning (0–2),23 while liver fibrosis was cal-
culated as grade 0 (none), grade 1 (zone perisinusoidal fibro-
sis), grade 2 (as above with portal fibrosis), grade 3 (as above 
with bridging fibrosis), and grade 4 (cirrhosis).24

qRT-PCR
Total RNA was extracted by using total RNA extraction kit (Bei-
jing Tian Enze Gene Technology Co., Ltd., Beijing, China), and 
cDNA was synthesized under the support of reverse transcrip-
tion kit (Hangzhou Bori Technology Co., Ltd., Hangzhou, Chi-
na). RT-PCR mixture was obtained from Bio-Rad (Hercules, 
CA, USA), and the reaction was carried out on ABI 7500 Quan-
titative PCR instrument (Appplied Biosystems, Foster City, CA, 
USA) under the following conditions: pre-denaturation at 94°C 
for 5 min, followed by 40 cycles of denaturation at 94°C for 30 s, 
annealing at 58°C for 30 s, and extension at 72°C for 20 s. GAP-
DH was selected as a reference gene, and formula 2-ΔΔCT was 
used to compare and analyze the differences in gene expres-
sions. The experiment was repeated three times.

Western blot
Liver tissue was dissolved in a pre-cooled (2 mL) phosphate-
buffered saline (PBS) solution (pH 7.4). Total protein concen-
tration of supernatant was quantified by Bradford method after 
ultrasonic disintegration. Protein was separated by polyacryl-
amide gel electrophoresis, and then was transferred to polyvi-
nylidene difluoride (PVDF) membrane semi-dry membrane 
apparatus (Bio-Rad, USA). The transferred PVDF membrane 
was blocked by skimmed milk powder at room temperature, 
and washed with PBS with Tween-20 (PBST) buffer. Afterwards, 
1 μg/mL anti-S100A4 antibody (ab41532) and 1 μg/mL anti-β-
actin antibody (ab8227), purchased from Abcam (Cambridge, 
MA, USA), were added for hybridization at room temperature 

for 1 h. After being washed with PBST buffer for five times×3 
min, membrane was incubated with the second antibody, and 
washed with PBST again. At last, target protein was detected 
with horseradish peroxidase (HRP) substrate (Bio-Rad). The 
relative content of target protein was expressed by the ratio of 
gray-value to the corresponding internal reference (S100A4/β- 
actin). We conducted every experiment three times for mean 
value.

TUNEL staining
Paraffin sections of liver tissue were routinely dewaxed and 
rehydrated, and 5 µL TdT and 45 µL fluoresce in-labeled dUTP 
were added for incubation at 37°C for 60 min, and rinsed with 
PBS for 3 min×three times. Then, sections with an additional 
50 μL converter-PODs were incubated at 37°C for 30 min, with 
PBS washing for 3 min in triplicate. After that, moderate DAB 
(3, 3'-diaminobenzidine) substrate was added for coloration, 
and hematoxylin was used for counterstaining. Subsequently, 
sections were dehydrated and mounted, and positive apoptotic 
cells appeared reddish brown under a light microscope. Apop-
totic-positive cells in a total of 1000 cells were counted by micro-
scopic examination in 5–10 random fields, according to apop-
totic index (AI).

Statistical analysis
All statistical data were analyzed using SPSS 22.0 (IBM Corp., 
Armonk, NY, USA). Measured data in this study were expressed 
as mean±standard deviation. Differences between the two 
groups were compared using an independent sample t-test. 
Among groups, differences were analyzed by one-way ANO-
VA, and the least significant difference test was applied for in-
ter-group analyses. p<0.05 was considered significant.

RESULTS

S100A4 knockout improves liver function and blood 
lipid levels in MCD diet-induced NAFLD mice
After feeding with MCD or MCS for 8 weeks, no significant dif-
ferences were found in liver function (ALT and AST) and lipid-
related parameters (TG and TC) between mice of WT/MCS 
group and KO/MCS group (all p>0.05). However, serum levels 
of the above parameters were obviously higher in MCD diet 
mice compared to MCS-diet mice; specifically, these factors 
were relatively lower in mice from KO/MCD group than those 
of WT/MCD group (all p<0.05) (Fig. 1). 

Influences of S100A4 knockout on liver morphology 
in MCD diet-induced NAFLD mice
As shown in Fig. 2, livers in MCS-diet fed mice exhibited dark 
red color, smooth and shiny surface, and sharp edges. On the 
other hand, livers of mice in WT/MCD group had khaki-yellow 
color, while the edges became blunt with increased volume 
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and tense capsule, and even coagulation and yellow-white focal 
degeneration occurred. Livers in mice from KO/MCD group 
showed slightly yellow color and larger size, along with slightly 
tough and smooth surface.

Comparison of S100A4 expressions in mice liver tissue 
of each group
According to the detection of qRT-PCR and Western blot, S100 
A4 mRNA and protein expressions in liver tissues of mice from 
WT/MCD group were found to be highly upregulated com-
pared to those of mice in WT/MCS group (all p<0.05), as shown 
in Fig. 3, but were not detected in mice from both KO/MCS and 
KO/MCD groups.

S100A4 knockout attenuates liver tissue injury in 
MCD diet-induced NAFLD mice
In order to determine the effect of S100A4 KO on liver tissue in-
jury in MCD diet-induced NAFLD mice, we performed HE 
staining, ORO staining, and Masson staining to assess hepatic 
inflammation and fibrosis by using NAS, to visualize lipid drop-
lets, and to observe the distribution of collagen fibers in mice 
liver tissue of each group, respectively. As illustrated in Fig. 4A, 
MCS-fed-induced mice had regular structure of hepatic lob-
ule, clearly visible hepatic sinus, as well as normal structure 
and morphology of hepatic cells, without lipid droplets deposi-
tion and collagen fibers. However, a large number of fat vacu-
oles accumulated in liver tissues of mice in WT/MCD group 
and hepatocytes showed balloon-like changes accompanied 
by increased inflammatory cell and collagen fibers. Other 
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Fig. 1. S100A4 KO improves liver function and blood lipid-related parameters in MCD diet-induced non-alcoholic fatty liver disease mice. Influences of 
S100A4 KO on serum ALT (A), AST (B), TC (C), and TG (D) levels in mice. *p<0.05 compared to MCS group, †p<0.05 compared to WT/MCD group. S100A4, 
S100 calcium binding protein A4; MCD, methionine-choline-deficient; MCS, methionine-choline-sufficient; KO, knockout; WT, wild-type; ALT, amino-
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Fig. 2. Effect of S100A4 KO on liver morphology in MCD diet-induced non-
alcoholic fatty liver disease mice. S100A4, S100 calcium binding protein 
A4; KO, knockout; WT, wild-type; MCD, methionine-choline-deficient; 
MCS, methionine-choline-sufficient.
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than that, reduced liver cell damage and inflammatory cell in-
filtration, coupled with a small amount of collagen fibers, were 
observed in liver tissues of mice in KO/MCD group. Moreover, 
steatosis, inflammatory infiltration, ballooning, total NAS, and 
liver fibrosis in KO/MCD group were significantly lower com-
pared to those in WT/MCD group (all p<0.05) (Fig. 4B-F).

S100A4 knockout inhibits expressions 
of proinflammatory-/profibrogenic cytokines in MCD 
diet-induced NAFLD mice
qRT-PCR was performed to detect the expression of pro-in-
flammatory (including TNF-α, IL-1β, and IL-6) and profibro-
genic cytokines (including TGF-β1, COL1A1, and α-SMA) in liv-
er tissues of mice, as demonstrated in Fig. 5. As a result, mRNA 
levels of TNF-α, IL-1β, IL-6, TGF-β1, COL1A1, and α-SMA were 
significantly higher in mice fed with MCD than those fed with 
MCS (all p<0.05). As for mice in MCD groups, expressions of 
proinflammatory-/profibrogenic cytokines in KO mice were 
significantly lower than those in WT group (all p<0.05).

S100A4 knockout reduces hepatocyte apoptosis 
in MCD diet-induced NAFLD mice
As evaluated by TUNEL staining in Fig. 6, increased number 
of TUNEL-positive hepatocytes were discovered in mice of 
WT+MCD group compared to mice in MCS group, which ex-
hibited less and scattered positive hepatocytes, while mice in 
KO+MCD group showed less positive hepatocytes than those 
in WT+MCD group. Furthermore, statistical analysis demon-
strated that AI of mice in WT/MCD group was markedly ele-
vated compared to mice in KO/MCS and WT/MCS groups, but 
was obviously decreased in mice from KO/MCD group when 
compared to those in WT/MCD group (all p<0.05).

DISCUSSION

“First hit” refers to several processes, including the digestion 
and absorption of exogenous lipids, lipoprotein metabolism, 
as well as conversion and decomposition of cholesterol in liver, 
to serve as a part of NAFLD pathogenesis.25 Concerning MCD 
diet-fed mice, liver function indexes (ALT and AST) and blood 

lipid parameters (TG and TC) were significantly lower in KO 
mice than in WT mice, suggesting that S100A4 deletion en-
hanced liver function and blood lipid levels in NAFLD mice. 
Similarly, patients with type 2 diabetes also had higher serum 
S100A4 concentrations, which were related to the metabolic 
pathways.1 This demonstrates an important role of S100A4 in 
lipid metabolism, possibly since S100A4 could activate the ex-
pression of receptor of advanced glycation end products in he-
patocytes and hepatic stellate cells (HSCs), and thereby exerting 
functions in development of NAFLD.26,27

In addition, “second hit” has been widely acknowledged as 
the pathophysiological model of NAFLD, which is defined as 
increased oxidative stress and initiation of lipid peroxidation, 
resulting in the formation of inflammatory mediators and ac-
tivation of HSCs to produce irreversible lesions in hepato-
cytes.28,29 A recent study demonstrated a significant role of 
S100A4 in the inflammatory response of diseases.30 In our 
study, S100A4 KO mice fed with MCD showed noticeably de-
creased liver steatosis, inflammation, and ballooning scores, 
with reduced total NAS and downregulated pro-inflammatory 
cytokines (including TNF-α, IL-1β, and IL-6) expressions in liv-
er tissues, compared to WT mice fed with MCD. As document-
ed, TNF-α is a firstly appearing cytokine in the process of liver 
injury, which could facilitate the release of IL-1β and IL-6, act-
ing as a crucial factor in the progress from NAFLD to NASH,31 
indicating S100A4 deletion weakened NAFLD inflammation 
which could be possibly related to the inflammatory response 
mediated by TLR4 signaling.32 In addition, S100A4 was credit-
ed as a fibroblast-specific marker in liver fibrosis. For example, 
S100A4 was found to be secreted by a subpopulation of macro-
phages in fibrotic liver,33 and its increased levels in liver tissue 
and serum of hepatitis patients were positively correlated with 
liver fibrosis.34 In our study, less amount of collagen fiber was 
observed in MCD diet-fed KO mice compared to WT mice, and 
expressions of pro-fibrogenic cytokines (including TGF-β1, CO-
L1A1, and α-SMA) were also significantly reduced, which might 
have resulted from the overexpression of α-SMA stimulated by 
S100A4 through c-Myb in HSCs to promote liver fibrosis,33 or a 
common mediator of S100A4 in epithelial-mesenchymal transi-
tion,35 thus contributing to the cirrhosis progression in NAFLD.36

In recent years, “third hit” of NAFLD was pointed out, name-
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ly hepatocyte apoptosis, which could accelerate the transfor-
mation of NAFLD into liver cirrhosis.4 In NAFLD patients, he-
patocyte proliferation was blocked, and apoptotic cells was 
replaced by proliferation and differentiation of hepatic progeni-

tor cells, leading to hepatic fibrosis and inflammatory cell infil-
tration, and so on.37 In our research, S100A4 KO reduced hepa-
tocyte apoptosis in MCD diet-induced mice, showing that 
S100A4 deficiency might play a protective role in NAFLD via 

Fig. 4. S100A4 KO reduces liver tissue damage and inflammatory cell infiltration in MCD diet-induced NAFLD mice. (A) HE staining, ORO staining, and 
Masson staining were used to observe pathological changes of liver tissues in each group (×400); (B-E) Comparison of steatosis (B), lobular inflammation 
(C), hepatocyte ballooning (D), total NAS (E), and fibrosis (F) in liver tissues of mice in each group. *p<0.05 compared to MCS group, †p<0.05 compared to 
WT/MCD group. S100A4, S100 calcium binding protein A4; MCD, methionine-choline-deficient; MCS, methionine-choline-sufficient; KO, knockout; 
WT, wild-type; HE, hematoxylin and eosin; ORO, Oil Red O; NAFLD, non-alcoholic fatty liver; NAS, NAFLD activity scores.
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inhibiting hepatocyte apoptosis. A possible reason could be 
correlated with elevated levels of WT p53,38 which enhances 
TGF-β-induced p66Shc signaling, ROS accumulation, and he-
patocyte apoptosis.39 On the contrary, S100A4 KO could also 
lead to the stabilization of p53 protein in two p53 WT cell lines 
(A549 and HeLa), which implies that S100A4 could accelerate 
p53 degradation.40 Therefore, whether S100A4 can affect hepa-
tocyte apoptosis in NAFLD mice via regulation of p53 should 
be further explored, and we plan to deeply investigate this mat-
ter in our subsequent and future studies. In summary, S100A4 
was upregulated in NAFLD mice, and S100A4 KO significantly 
improved liver function and blood lipid levels, contributing to 
reduced hepatic fibrosis and inflammation as well as inhibited 
hepatocyte apoptosis in MCD diet-induced NAFLD mice, which 
provided new clues for the treatment of NAFLD.
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