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Abstract: Increased arterial stiffness has been associated with an increased risk of developing
cardiovascular diseases and all-cause mortality. Pulse wave velocity (PWV) is an innovative and
affordable measurement of arterial stiffness which may be an accessible tool to estimate mortality
risk; however, no meta-analysis has estimated its predictive performance for cardiovascular and
all-cause mortality. Moreover, reference values for PWV have only been established by consensus for
healthy populations. The aim of this review was to estimate PWV and especially carotid femoral PWV
performance predicting cardiovascular and all-cause mortality as well as comparing the resulting
cfPWV thresholds with already established values in order to increase its validity. Original studies
measuring PWV thresholds and its association with cardiovascular and all-cause mortality were
systematically searched. The DerSimonian and Laird method was used to compute pooled estimates of
diagnostic odds ratio (dOR), and overall test performances were summarized in hierarchical summary
receiver operating characteristic curves (HSROC). Six studies were included in the meta-analysis.
The pooled dOR values for the predictive performance of cfPWV were 11.23 (95 % CI, 7.29–1.29) for
cardiovascular mortality and 6.52 (95% CI, 4.03–10.55) for all-cause mortality. The area under the
HSROC curve for cfPWV was 0.75 (95% CI, 0.69–0.81) for cardiovascular mortality and 0.78 (95% CI,
0.74–0.83) for all-cause mortality, where the closest cut-off point to the summary point was 10.7 and
11.5, respectively. This systematic review and meta-analysis demonstrates that cfPWV is a useful and
accurate cardiovascular mortality predictor and that its previously estimated reference values for
estimating risk may be used in high-risk populations.

Keywords: arterial stiffness; pulse wave velocity; predictive performance; cardiovascular risk;
cardiovascular mortality; all-cause mortality

1. Introduction

Vascular ageing measurements are presumed to be a useful tool to estimate cardiovascular risk.
Increased arterial stiffness, defined as the reduced ability of an artery to expand and contract in response
to pressure changes [1], has been associated with the development of cardiovascular disease [2,3].
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Arterial stiffening induces an early return of arterial wave reflection consequently increasing systolic
blood pressure (SBP), while reducing diastolic blood pressure (DBP). This causes an increased left
ventricular afterload and altered coronary perfusion [4]. Moreover, high blood pressure induces
vascular ageing by causing chronic arterial inflammation and diffuses intima-media thickening, and
as such, changes in blood pressure can be considered both a cause and a consequence of arterial
stiffness [5]. Nevertheless, arterial stiffening is not only an atherosclerosis-related outcome [6], but also
a consequence of the exposure to many contributing factors, such as age, hypertension or diabetes [7].

Arterial stiffness can be measured through non-invasive, reproducible, and relatively inexpensive
techniques, such as the measurement of pulse wave velocity (PWV) [8]. PWV is considered the gold
standard method for assessing aortic stiffness [9,10]. Arterial stiffness measures, and carotid femoral
PWV (cfPWV) in particular, are being included in the routine clinical assessment of patients and within
the framework of large-scale clinical studies [9] as new instrumental solutions that allow the PWV
assessment, such as photoplethysmography or magnetic resonance emerge [11] (Table 1). Nevertheless,
an introduction into clinical practice has not been implemented further due to the fact that there is a lack
of established reference values based on a large population and due to the absence of a standardized
methodology for PWV assessment [12].

Table 1. Methods used to determine PWV. aPWV: aortic pulse wave velocity; baPWV: brachial-ankle
pulse wave velocity; cfPWV: carotid-femoral pulse wave velocity; DVP: digital volume pulse; ECG:
electrocardiogram; PWV: pulse wave velocity.

Method Description Measure

Non-invasive
methods

Applanation tonometry

Apply a pressure sensor through the skin
and applanate a superficial artery by

applying a downward pressure sufficient to
flatten the artery.

baPWV, cfPWV

Computerized
oscillometry

Simultaneous acquisition and analysis of
the pulsation of the artery, which is caused
by the heart, as the pressure oscillation in

the cuff.

Heart-brachial PWV,
heart-ankle PWV,

brachial-ankle
PWV, cfPWV

Mechanotransducer

Two dedicated piezoelectric pressure
mechanotransducers directly applied to the

skin in a simultaneous measurement of
pressure pulses

carotid–femoral,
carotid–brachial or
femoral–dorsalis

pedis PWV

Ultrasound
Doppler pulses are recorded sequentially in
2 different arterial sites and compared using

the R-wave of the ECG
baPWV, cfPWV

Photoplethysmography DVP measured by the
photoplethysmography transducer

DVP associated
with aPWV

Magnetic Resonance
Imaging

Assessment of the blood flow velocity with
an enough temporal and spatial resolution

to study the propagation of the aortic
systolic flow wave

Local PWV

Invasive methods Aortic angiography Intra-aortic catheter measurements Local PWV

Previous meta-analyses have attempted to calculate quantitative estimates of the predictive value
of PWV for different outcomes. However, to the best of our knowledge, no previous meta-analysis has
estimated the predictive performance (diagnostic odds ratio (dOR), sensitivity, specificity, positive
likelihood ratio (PLR), and negative likelihood ratio (NLR)) of PWV considering the thresholds for a
higher risk of cardiovascular or all-cause mortality estimated using hierarchical summary receiver
operating characteristic (HSROC) models. Moreover, reference values for PWV have been established
through cross-sectional studies [12] or expert consensus [13], in which subjects by age and blood
pressure categories with no additional identified cardiovascular risk factors were considered. However,
as these reference values are not yet fully incorporated into clinical practice, there is uncertainty
regarding whether such values are applicable to high-risk subjects.
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Therefore, the aim of this systematic review and meta-analysis was to estimate the predictive
performance of PWV for cardiovascular and all-cause mortality using an HSROC analysis as well as
comparing the resulting PWV thresholds with those established in order to improve its validity.

2. Methods

This systematic review and meta-analysis was reported following the Preferred Reporting Items
for Systematic Reviews of Interventions (PRISMA) statement [14] and the recommendations of the
Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy [15]. This study was registered
in the PROSPERO International Prospective Register of Systematic Reviews (registration number:
CRD42018080949).

2.1. Literature Search

PubMed (via MEDLINE), EMBASE (via Scopus) and Web of Science databases were searched
systematically from inception to June 2020. The following free-terms were included in the search strategy
combined with Boolean operators following the PICO strategy: “arterial stiffness”, stiffness, “pulse wave
velocity”, PWV, “aortic pulse wave velocity”, “carotid-femoral pulse wave velocity”, “brachial-ankle
pulse wave velocity”, cfPWV, baPWV, predict*, marker, “cut-off”, prognostic, “cut-point”, sensitivity,
specificity, threshold, mortality, death, “cardiovascular mortality”, “cardiovascular risk”, “all-cause
mortality”, “cardiac death” or survival (Figure S1).

2.2. Selection Criteria

Eligible articles were original studies measuring PWV thresholds and their association with
cardiovascular and all-cause mortality, that is, PWV predictive performance. Thus, inclusion criteria
were as follows: (i) study participants aged ≥18 years; (ii) measured PWV (brachial-ankle PWV
(baPWV) or carotid-femoral PWV (cfPWV)); (iii) study design: longitudinal studies with prospective
or retrospective data collection; and (iv) reported sensitivity, specificity and 2 × 2 table. Studies were
excluded if they: (i) were not written in English or Spanish; and ii) did not report cardiovascular or
all-cause mortality as an outcome.

2.3. Data Extraction and Quality Assessment

The following data was extracted from each included study: (i) author identification and year
of publication; (ii) country of study; (iii) characteristics of the population; (iv) age of the participants;
(v) number of participants; (vi) number of deaths (cardiovascular and/or all-cause); (vii) PWV test
used; and (viii) parameters summarizing the accuracy of the test (cut-off point, sensitivity, specificity,
area under curve (AUC) and diagnostic odds ratio (dOR)).

The Quality in Prognosis Studies (QUIPS) tool for studies of prognostic factors [16] was used to
assess the risk of bias of each included study. This tool evaluates six bias domains: study participation,
study attrition, prognostic factor measurement, outcome measurement, study confounding, statistical
analysis, and reporting. Each may be rated as having high, moderate or low risk of bias.

The literature search, data extraction, and quality assessment were performed by two independent
researchers (IS-D and IC-R). Inconsistencies were solved by consensus.

2.4. Statistical Analysis and Data Synthesis

The sensitivity, specificity, PLR, NLR, AUC, and dOR along with their corresponding 95%
confidence intervals (CIs) were calculated for the PWV test used in each included study.

HSROC curves were used to summarize overall test performance as multivariate methods that
jointly analyze sensitivity and specificity. These curves have been proposed to estimate the diagnostic
performance of tests in meta-analyses, where the prediction region is useful for estimating the magnitude
of heterogeneity in such a way that wider prediction regions suggest greater heterogeneity [17]. An AUC
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closer to one indicates a more accurate test, that is the probability of a randomly selected pair of a
true-positive and a true-negative being ranked as such by the diagnostic test, an AUC value of less
than 0.75 may be reasonable, though it indicates weaknesses in the test accuracy [18].

The dOR is a measure of the accuracy of a diagnostic test that combines sensitivity and specificity
into a single value. The value ranges from zero to infinity, with a value of one corresponding to a
null diagnostic ability and a higher value to a better discriminatory test performance. The dOR was
computed using Moses’ constant of a linear model. This approach relies on the linear regression of
the logarithm of the dOR of a study as a dependent variable and on an expression of the positivity
threshold of a study as an independent variable [19].

The DerSimonian and Laird method [20] was used to compute pooled estimates of dOR for
each included study. The heterogeneity of results across studies was assessed using the statistical
parameter I2 and the corresponding p values. I2 values were considered as follows: might not
be important (0–30%); may represent moderate heterogeneity (30–50%); substantial heterogeneity
(50–75%); and considerable heterogeneity (75–100%) [21].

Sensitivity analyses were performed to estimate the individual influence of each particular study in
the pooled dOR by removing studies one by one. Subgroup analyses were performed for cardiovascular
mortality and all-cause mortality. Random-effects meta-regression models were used to evaluate if the
cut-off points for PWV values and the mean age and percentage of women of participants influenced
dOR values. Finally, publication bias was evaluated by visually examining funnel plots and through
Deeks’ method [22].

All statistical analyses were performed using STATA SE software, version 15 (StataCorp, College
Station, TX, USA).

3. Results

3.1. Baseline Characteristics

After removing duplicates, the titles and abstracts of 58 articles were screened. Following the
full-text review, nine studies were included in this systematic review, and due to the scarcity of studies
measuring baPWV, only studies measuring cfPWV [6,7,23–26] were included in the main quantitative
data synthesis (Figure 1).
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) diagram of
the systematic literature search strategy.

All included studies were of longitudinal nature [6,24–29], two of them were cross-sectional
analyses from longitudinal studies [7,23]. Studies were published between 1999 and 2014 and
were performed in six different countries: France [23–25], Japan [27,28], Korea [29], Macedonia [6],
Portugal [7], and the United States [26].

A total of 3170 participants were included with mean ages ranging from 53.1 to 76.4 years. Studies
were carried out in specific populations, such as patients undergoing dialysis [6,7], hypertensive
patients [23,27], end-stage renal failure patients [24,25], elderly population [28], patients who had a
percutaneous coronary intervention [29], who can all be considered high-risk populations, and the
general population [26] (Table 2).

3.2. Risk of Bias

As evaluated with the QUIPS tool, all studies provided information regarding the six quality
domains. Most studies had shortcomings in the study participation and study confounding domains
(55.5% and 77.8% of studies scored as moderate risk of bias, respectively). An overall moderate bias
risk was obtained since the weakest quality study only had three domains with a moderate score
(Table S1).
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Table 2. Characteristics of studies included in the meta-analysis.

Author Country Population Age n (%
Female) n Mortality Index Test (Device) Cut-Off

Point Sens (%) Spec (%) AUC dOR

Adragão et al.
2008 Portugal Dialysis patients 58.9 101 (29.7) All-cause: 31 cfPWV (Complior) 10.5 71.0 69.0 0.738 5.33

Avramoski et al.
2013

Macedonia Dialysis patients 61.3 80 (33.75)
All-cause: 23 cfPWV (pulsed-Doppler ultrasound

synchronized with ECG)
11.8 82.6 61.4 0.722 7.56

CV: 17 11.8 94.1 61.4 0.820 26.00

Blacher et al.
1999 France Hypertensive

patients 62.0 710 (41.8) CV: NA cfPWV (Complior) 13 60.0 84.0 0.780 7.54

Kawai et al.
2012 Japan Hypertensive

patients 61.0 400 (45.5) All-cause: 17 baPWV (FCP-4731) 18 71.0 71.0 0.719 5.88

London et al.
2001

France End-stage renal
failure patients 54.0 180 (40)

All-cause: 70
cfPWV (SPT-301)

11.5 80.0 74.0 0.820 11.17

CV: 40 11.3 79.0 64.0 0.760 7.20

Miyano et al.
2010

Japan Elderly population 76.4 530 (31)
All-cause: 30

baPWV (BP-203I)
19.6 73.0 63.0 0.673 4.68

CV: 11 19.6 91.0 62.0 0.795 16.34

Pannier et al.
2005 France End-stage renal

failure patients 53.1 305 (38) CV: 96 cfPWV (SEGA M842 8MHz Doppler
unit and Gould 8188 recorder) 10.7 84.0 73.0 0.834 14.75

Seo et al. 2014 Korea

Post-percutaneous
coronary

intervention
patients

65.2 372 (36.8) CV: 21 baPWV (BP-203RPE II) 16.7 85.7 60.1 0.778 9.04

Shokawa et al.
2005

USA/Japan General
population 64.5 492 (55.3)

All-cause: 43
cfPWV (MCG400)

9.9 72.0 62.0 0.690 4.20

CV: 14 9.9 93.0 60.0 0.770 19.53

Sens: sensitivity; Spec: specificity; AUC: area under curve; dOR: diagnostic odds ratio; CV: cardiovascular; ECG: electrocardiogram; NA: not available.
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3.3. Meta-Analysis

A meta-analysis was only performed for cfPWV, as the main analysis, due to the small number
of included studies using baPWV (three studies). Although both are measures of arterial stiffness,
baPWV measures the stiffness of peripheral arteries, while cfPWV is an indicator of stiffness of central
elastic arteries, and therefore, their thresholds differ markedly because of their different measurement
points; however, a meta-analysis was performed for baPWV despite the scarcity of studies (Figure S2).
The pooled dORs for cardiovascular mortality were 11.23 (95% CI, 7.29–17.29) and 6.52 (95% CI,
4.03–10.55) for all-cause mortality. No important heterogeneity across studies was found in the cfPWV
dOR for cardiovascular mortality (I2 = 0.0%, p = 0.511) or all-cause mortality (I2 = 23.4%, p = 0.271),
as can be observed in the forest plots (Figure 2). The pooled sensitivity, specificity, PLR, NLR, dOR and
AUC are presented in Table 3.
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Table 3. Pooled accuracy parameters in the prediction of mortality (cfPWV).

Sensitivity (%) Specificity (%) PLR NLR dOR AUC

All-cause mortality 77.00 (65.00–91.00) 65.00 (59.00–71.00) 2.33 (0.66–8.19) 0.34 (0.09–1.25) 6.50 (4.30–9.83) 0.750 (0.690–0.810)
CV mortality 83.00 (71.00–97.00) 71.00 (66.00–75.00) 2.68 (0.90–8.00) 0.21 (0.07–0.65) 11.23 (7.29–17.29) 0.780 (0.740–0.830)

Values in parentheses are 95% confidence intervals. CV: cardiovascular; PLR: positive likelihood ratio; NLR: negative
likelihood ratio; dOR: diagnostic odds ratio; AUC: area under curve.

In order to avoid potential bias, we performed a meta-analysis that excluded the only study
performed in the general population with slightly smaller pooled dORs for cardiovascular mortality
9.08 (95% CI, 4.31–13.84) and slightly higher dORs for all-cause mortality 7.12 (95% CI, 2.72–11.52),
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with no important heterogeneity across studies found for cardiovascular mortality (I2 = 0.0%, p = 0.62)
or all-cause mortality (I2 = 0.0%, p = 0.55).

The area under the HSROC curve for estimating the predictive performance of cfPWV was
0.78 (95% CI, 0.740–0.830) for cardiovascular mortality and 0.75 (95% CI, 0.690–0.810) for all-cause
mortality. The 95% confidence region for the point estimate that summarized the overall test
performance in the area under the HSROC curve (Figures 3 and 4) included studies in which the test
cut-offs ranged from 9.9 to 13.0 m/s for cardiovascular mortality and from 9.9 to 11.8 m/s for all-cause
mortality. The closest cut-off point to the summary point was 10.7 for cardiovascular mortality and
11.5 for all-cause mortality, as shown in Figures 3 and 4, respectively.

3.4. Sensitivity Analyses for the Effect of Individual Studies

The pooled dOR estimates for cfPWV were not affected after studies were removed one at a time
from the analyses to evaluate their individual impact on cardiovascular and all-cause mortality.
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3.5. Random Effects Meta-Regression Model

Although random effects meta-regression models are only recommended for meta-analysis
including ten or more studies [30], they were used to determine whether the cfPWV cut-off points
were related to the dORs for cardiovascular (p = 0.354) and all-cause mortality (p = 0.210), concluding
that there was no statistically significant effect (Figures S5 and S6). Moreover, there was no statistically
significant results between age and dOR estimates for neither cardiovascular (p = 0.995) nor all-cause
mortality (p = 0.208) (Figures S7 and S8) or between the percentage of women and dOR estimates for
cardiovascular (p = 0.85) or all-cause mortality (p = 0.59) (Figures S9 and S10).

3.6. Publication Bias

Deeks’ funnel plot for asymmetry suggested the absence of publication bias for cardiovascular
and all-cause mortality (p = 0.890 and p = 0.850, respectively) (Figures S11 and S12).

4. Discussion

Arterial stiffness measurements are becoming a field of interest as previous evidence has showed
their role as an independent risk predictor for cardiovascular disease [31]. However, to the best of our
knowledge, no previous study has estimated the predictive performance of PWV for cardiovascular
and all-cause mortality. Our results indicate a good accuracy of cfPWV for cardiovascular mortality
(dOR: 11.23 (95% CI, 7.29–17.29); sensitivity: 83% (95% CI, 71.00–79.00); specificity: 71% (95% CI,
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66.00–75.00)), and slightly lower accuracy values for all-cause mortality. Furthermore, data regarding
the cfPWV AUC for cardiovascular mortality showed good accuracy levels.

Previous meta-analyses [8,32] have provided evidence on the predictive value of PWV for
cardiovascular events and all-cause mortality, thereby demonstrating the importance of arterial
stiffness as an indicator of cardiovascular risk. Our results do not only support previous findings,
but also estimate the threshold that represents the range of increased risk.

cfPWV reference values have been previously defined as 10 m/s through consensus [13] or based
on large cross-sectional studies [12] focused mainly on healthy populations. Our results support
such recommendations even for high-risk populations, as the cut-off points in the current study
ranged between 9.9 and 13 for cardiovascular mortality, and from 9.9 to 11.8 for all-cause mortality.
The smallest cut-off point was obtained from the only study performed in the general population [26]
and is probably due to the narrower threshold of all-cause mortality than the higher risk population
samples. However, it should be noted that the measurement of PWV is of particular clinical interest in
improving the predictive ability of cardiovascular risk in intermediate risk patients [33]; thus, in order
to provide additional evidence supporting the inclusion on this new biomarker to improve the risk
stratification and, consequently, tailoring more precisely the treatment of patients, more randomized
clinical trials are needed.

cfPWV is the recommended arterial stiffness measurement method according to the American
Heart Association (AHA) scientific statement [10], the European expert consensus document [34] and
European Society of Cardiology (ESC) and the European Society of Hypertension (ESH) Guidelines for
the management of arterial hypertension [35] due to the large preponderance of longitudinal data from
cohort studies. However, as is common with rapidly developing technologies, the standardization of
techniques is required [10]. Six of the studies included in this review measured cfPWV, [6,7,23–26] and
three measured baPWV [27–29], in fact, the latter is not as established as cfPWV. In our systematic
review and meta-analysis, predictive performance measures remarkably decreased when cfPWV was
analyzed in combination with baPWV (Figures S3 and S4 and Table S2). This may be attributable to the
differences between function and structure of central elastic arteries (cfPWV), whose main function is
to maintain a relatively constant pressure gradient despite the constant pumping action of the heart,
and stiffer peripheral muscular arteries with predominantly conduit function (baPWV) [36]. Therefore,
there is a dilemma between the higher accuracy of cfPWV and the measuring easiness of baPWV since
the latter only requires the wrapping of blood pressure cuffs on the four limbs [37], nevertheless such
dilemmas may be dissipated as new PWV measuring methods are developed, such as oscillometric
methods or photoplethysmography, with additional functionality and greater ease-of-use, presenting
this methods as a more applicable tool for PWV assessment in daily clinical practice [11,38].

Vascular biomarkers, such as ankle-brachial index, arterial stiffness, endothelial function,
and circulating biomarkers related to vascular wall structure have been suggested for risk assessment
in prevention strategies of cardiovascular events [39]. PWV, as a measure of arterial stiffness, has been
proven to be effective in predicting the risk of cardiovascular events and mortality as well as all-cause
mortality. However, the relevance of PWV to traditional risk scores has not been clearly examined. Several
studies, such as Rhee et al. for Framingham risk score [40] or Pereira et al. for HeartSCORE [41], have
evaluated the benefits of integrating PWV in cardiovascular risk assessment strategies to improve their
discriminative capacity. Therefore, a new scenario has emerged which, despite requiring further research,
may lead to the inclusion of vascular health measurements, such as PWV, in cardiovascular risk scores.

This systematic review and meta-analysis has some potential limitations to be acknowledged:
(i) despite the lack of clear evidence of publication bias, studies with a poor test performance may
be less or more likely to be published; (ii) some studies could not have been included because they
were published in languages other than English or Spanish, or were grey literature (PhD dissertations,
institutional reports, etc.); (iii) from 8005 studies retrieved by the search strategy, only nine referred to
studies examining or reporting harder endpoints (cardiovascular and all-cause mortality), the scarcity
of studies including predictive performance measurements and cardiovascular events as an outcome,
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means that further research is needed; (iv) included studies were performed in specific populations,
such as elderly people, patients undergoing dialysis or hypertensive patients, making it difficult
to infer our results to the general population; (v) not all of the included studies performed cfPWV
measurements using the same technique or the same device, which may bias the estimates obtained,
also taking into account the high intra-individual variation of this measurement (which could be due
to biological variability/measurement error). However, despite the previously mentioned limitations,
our results may lead to further research, which may establish cfPWV as an accurate risk predictor of
cardiovascular and all-cause mortality, and consequently justifying future research and its inclusion
in daily clinical practice, which, as long as it requires a great deal of effort from clinicians and health
systems to implement it, strong evidence is needed to endorse such change.

5. Conclusions

cfPWV constitutes a good cardiovascular and all-cause mortality predictor, since it has been shown
to have good accuracy in estimating cardiovascular and all-cause mortality risk, although its accuracy
was observed to be much higher for cardiovascular mortality. Consequently, cfPWV constitutes a
feasible, non-invasive and replicable method for estimating risk, and enabling its use in high-risk
populations. Moreover, our data confirm that the cfPWV cut-off values previously established by
scientific societies are applicable to high-risk populations.

Nevertheless, further research is necessary to decrease the impact of the limitations of the current
review and extend the results obtained by studying PWV’s predictive ability in the general population
and if it may extend beyond cardiovascular events.
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