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Abstract

Modern radiologic images comply with DICOM (digital imaging and communications in med-

icine) standard, which, upon conversion to other image format, would lose its image detail

and information such as patient demographics or type of image modality that DICOM format

carries. As there is a growing interest in using large amount of image data for research pur-

pose and acquisition of large amount of medical image is now a standard practice in the clin-

ical setting, efficient handling and storage of large amount of image data is important in both

the clinical and research setting. In this study, four classes of images were created, namely,

CT (computed tomography) of abdomen, CT of brain, MRI (magnetic resonance imaging) of

brain and MRI of spine. After converting these images into JPEG (Joint Photographic

Experts Group) format, our proposed CNN architecture could automatically classify these 4

groups of medical images by both their image modality and anatomic location. We achieved

excellent overall classification accuracy in both validation and test sets (> 99.5%), specificity

and F1 score (> 99%) in each category of this dataset which contained both diseased and

normal images. Our study has shown that using CNN for medical image classification is a

promising methodology and could work on non-DICOM images, which could potentially

save image processing time and storage space.

Introduction

Modern radiologic medical images, comply with DICOM (digital imaging and communica-

tions in medicine) standard, which is a worldwide standard for the storage and transmission

of medical imaging. The reason for using the DICOM standard is to ensure that all the medical

images made by different machines, hospitals or companies can speak the same language and

therefore operate within the same environment. Each DICOM file has a header containing

data such as patient demographic information, acquisition parameters and image dimensions.

The remaining portion of the DICOM file contains the image data [1]. The header information

is encoded within the DICOM file so that it cannot be accidentally separated from the image
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data. If the header is separated from the image data, the image will not be displayed properly

[2]. However, there are times that these DICOM images would be converted into different for-

mat such as JPEG (Joint Photographic Experts Group) or PNG (Portable Networks Graphics)

for reasons such as they are of smaller file size or supporting website display. In such scenario,

the information that the DICOM image carries would be lost and unable to retrieve. Among

these other file format, JPEG is the most popular format as it can be read by all computer plat-

forms. However, as JPEG format uses lossy compression, it may suffer from compression arti-

facts or loss of details which may affect image interpretation, and is therefore generally

avoided for diagnostic purpose.

With the advancement of medical imaging technique, acquisition of large, high-resolution

images has now become a standard expectation and requirement in diagnostic setting by both

clinician and radiologist. As there is a continuous interest on medical images research using

machine learning methods, a need to pre-process and classify large volume of image data is

growing since assigning human to recognize, sort and organize every medical image is labori-

ous and error-prone [3]. What is more, efficient handling of large amount of image data is also

important in the setting of teleradiology [4]. Although we could use text-based retrieval

method to categorize medical images since DICOM header contains information on body part

and image modality, previous research have shown that about 15% of images contained false

tag entries which can result in wrong categorization [5]. Therefore, a reliable pure image-

based classification algorithm would be applicable in both clinical and research setting.

Deep learning (DL) is a breakthrough technique that can extract discriminative image fea-

tures. Convolutional Neural Network (CNN) is the most commonly used DL architecture in

many image analyses and computer vision-related tasks [6]. DL can automatically learn visual

features from the input image pixels [7] through mechanisms of combining multiple (deep)

layers of receptive fields, and pooling [8]. It has been shown to have a superior performance

compared to other conventional machine learning methods such as SVM and ANN [9, 10].

The goal of this study is to see if CNN can accurately discriminate medical images from their

imaging modalities and anatomic location after they have been converted into other image for-

mat, namely JPEG format. JPEG format was chosen as it is the most portable image format

with small file size and can substantially reduce storage requirements and expedite image

transfer and training for machine learning purpose but is known for its inadequate image qual-

ity for diagnosis.

Materials and methods

Dataset

The institutional review board approved this retrospective study (Taipei Medical University-

Joint Institutional Review Board No: N201912079), with a waiver of informed consent. We

focused on CT and MRI images as these two image modalities are the main workhorse in diag-

nostic imaging. For each image modality, two anatomical locations were selected and thus a

total of four medical image sub-groups were collected and they were CT of abdomen, CT of

brain, MRI of brain and MRI of lumbar spine. Examples of these four categories of images are

shown (Fig 1).

We first searched in the PACS system of Shuang-Ho Hospital for these four types of medi-

cal images and then randomly select the images from different patients and saved them into

JPEG files (Fig 2). JPEG format was chosen for the reason stated previously and also, many of

the publicly accessible medical image dataset are of JPEG format. We saved all image slices as

separate JPEG images. As our database contains both normal and pathological images, it

should therefore be generalized enough to represent what radiologists or researchers face in
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daily practice. MRI was performed with various machines, including 1.5T (Signa HDX 1.5T,

GE Healthcare, Milwaukee, WI, USA) and 3T scanners (Discovery MR750 3T, GE Healthcare,

Milwaukee, WI, USA). The CT was performed with two machines in our hospital, Bright

Speed 16 CT scanner (GE Healthcare, Milwaukee, WI, USA) and Discovery CT 750 HD scan-

ner (GE Healthcare, Milwaukee, WI, USA).

For the MRI of the lumbar spine group, T1, T2 sequences with both sagittal and axial views

were collected. For the MRI of the brain group, images of T1, T2 axial views, T2 coronal view

and DWI images were collected. For the abdominal CT group, only axial views were selected

but both the images of with and without contrast enhancement were collected. For the brain

CT group, only the non-enhanced brain CT images and axial view were collected. All images

were in grayscale. After converting these medical images from DICOM format into JPEG

images, we resized them into 512x512 in pixels. Default window level of the images was

downloaded from our PACS and no pre-processing or normalization of these images was

performed.

A dataset containing abovementioned four images folders were created with folder names

as CT of abdomen, CT of brain, MRI of brain and MRI of lumbar spine for the CNN to read.

The amount of images of each folder was as below: total of 742 images for CT of abdomen

folder, 739 images for the CT of brain folder, 707 images for the MRI of brain folder and 690

images for the MRI of spine folder (Table 1).

Fig 1. Example image of each modality and anatomical location. (a) abdomen CT, (b) brain CT, (C) brain MRI, (d)

MRI lumbar spine.

https://doi.org/10.1371/journal.pone.0253205.g001

Fig 2. Workflow chart.

https://doi.org/10.1371/journal.pone.0253205.g002
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CNN architecture

Our proposed model was modified from a CNN architecture provided by Matlab 2020a (The

MathWorks, Inc., Natick, MA) for hand-written digit data classification. The original CNN

architecture was modified to read image size of 512-by-512-by-1, with 512 being the pixel size

of images and 1 indicating grayscale image. The data was randomly divided into training and

validation sets using 70% of the images for training and 30% for validation. The training set

was used to train the algorithm, and the validation set was for tuning of hyperparameters.

After multiple attempts, further modification was made for the CNN to contain five sets of

convolutional layers followed by batch normalization layer, ReLu layer and then Max Pooling

layer. The filter size for the all five convolutional layers were 3-by-3 but we gradually increased

the number of filters so that there were 8 filters in the first convolutional layer, 16 filters in the

second, 24 filter in the third, 32 filters in the fourth and 48 filters in the fifth convolutional lay-

ers. Default padding of one and stride of one in the convolutional layer were used. The fully

connected layer was set to four as there were four classes to be classified (Fig 3).

The trained network then predicted the labels of the validation data and calculated accu-

racy, which is the fraction of labels that the network predicts correctly. The network used sto-

chastic gradient descent with momentum (SGDM) with an initial learning rate of 0.01. The

maximum number of epochs was adjusted to 8 after several attempts to gain best result.

To further test the accuracy of our trained network, we created a test set containing these

four classes of images, with each class containing 50 new and unseen images (Fig 2) to our

algorithm. We calculated the prediction accuracy of these unseen data using the same method

as we did with the validation data. The above experiments were conducted with a standard

MacBook Pro computer incorporated with Intel Core i7 2.7 GHz CPU, 16G main memory

and Intel HD Graphics 530 1536 MB.

Statistical analysis

A confusion matrix was created from our predicted result and compared with actual results to

calculate the following evaluation metrics:

Accuracy ¼ ðTPþ TNÞ � Total ð1Þ

Precision ¼ TP� ðTPþ FPÞ ð2Þ

Recall ¼ Sensitivity ¼ TP� ðTPþ FNÞ ð3Þ

Specificity ¼ TN� ðFPþ TNÞ ð4Þ

F1 Score ¼ 2� Precision� Recall� ðPrecisionþ RecallÞ ð5Þ

where TP is the true positive count, FP is the false positive count, FN is the false negative count

and FP is the false positive count.

Table 1. Data distribution across the image modalities.

Category Total Samples Training Validation Test Pixel size File Type

Abdominal CT 742 476 223 50 512x512 JPEG

Brain CT 739 517 222 50 512x512 JPEG

Lumbar Spine MRI 690 483 207 50 512x512 JPEG

Brain MRI 707 495 212 50 512x512 JPEG

https://doi.org/10.1371/journal.pone.0253205.t001
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Fig 3. Our CNN architecture.

https://doi.org/10.1371/journal.pone.0253205.g003
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Accuracy is the ratio of the correctly labeled images to the whole pool of images. Precision

measures how precise or accurate our model is, that is, how many images of our model’s pre-

diction matched with actual ground truth label. Recall is also named as sensitivity which is the

ratio between how many images that were correctly identified as one class of image to how

many images that were actually that class of image. Specificity is the ratio between how many

images that were correctly classified as not belonging to a class of image to the amount of total

images that were actually not that class of images. F1 score considers both precision and recall

and is the harmonic mean (average) of the precision and recall. F1 score suits best if there is

some sort of unbalance between precision and recall in the system and is considered a better

indicator of the classifier’s performance than the measure of accuracy.

Results

We trained our model and repeated this task for 5 times, for each run, the time elapsed for the

training and validation took about 21 to 24 minutes. The average validation accuracy of these

5 attempts was 99.91%. We then used our trained network for prediction on the testing set of

unseen images, after 5 runs, the model achieved an average accuracy rate of 99.6% (Table 2).

During validation, among the four groups of medical images, there were cases of CT of brain

image being misclassified as MRI of brain image, cases of MRI of brain image misclassified as MRI

of spine image and cases of MRI of spine image misclassified as CT of brain image (Table 3). On

the testing set, only the images of spine MRI were misclassified as MRI of brain images (Table 4).

The results of accuracy, precision, sensitivity, specificity and F1 score for these four classes

in both the validation and testing sets were presented and showed that the accuracy, precision,

recall, specificity and F1 score were all near 100% in the validation set (Table 5). The result

dropped slightly in the testing set which showed a precision of 98.4% in the MRI brain group

and recall of 98.4% in the MRI of spine group (Table 6). The F1 score of both sets therefore

were 99% and 99.2% respectively. All the other performance measurements were well above

99%. Examples of misclassified images by the validation and testing sets are shown in Fig 4.

Discussion

In this digital age, many medical images may be converted into different file format to be car-

ried around and for various purposes such as education or consultation. Converting DICOM

Table 2. Performance of our CNN architecture on image modality and anatomical location classification.

Number of Attempts

1st 2nd 3rd 4th 5th Average

Elapsed Time (m = min, s = second) 23m25s 22m53s 23m4s 22m1s 21m51s 22m39s

Validation Accuracy (%) 99.77 100 99.88 99.88 100 99.91

Testing Accuracy (%) 100 99.5 100 98.5 100 99.6

https://doi.org/10.1371/journal.pone.0253205.t002

Table 3. Multi-class confusion table for validation set of the five attempts.

Actual Class

CT Abdomen CT Brain MRI Brain MRI Spine

Predicted Class CT Abdomen 223 ± 0 0 0 0

CT Brain 0 221.6 ± 0.24 0 0.2 ± 0.16

MRI Brain 0 0.4 ± 0.24 211.8 ± 0.16 0

MRI Spine 0 0 0.2 ± 0.16 206.8 ± 0.16

https://doi.org/10.1371/journal.pone.0253205.t003
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images into other file format also has its necessity in both clinical and research setting as it

allows for faster image transmission and reduces file storage space. However, after conversion,

they would lose their DICOM header information and one can no longer identify the image

location and modality without expert’s help, which is the first step in using these images for

various purposes. Using human expert’s visual inspection for image classification can be labo-

rious and error-prone. Our result showed that using our simple convolutional neural network,

we could achieve very high performance in classifying both image modality and anatomical

location on JPEG images. This can be useful in the clinical setting such as teleradiology as one

could use JPEG for its advantage on faster image transmission and restore them to remove the

compression artifact associated with JPEG images as proposed by Chung et al [4]. Also, earlier

work done by Szot et al have shown that using both JPEG- and JPEG2000-compressed images

from the digital camera and a view-box allow readings of sufficient quality for the diagnosis of

tuberculosis on chest X-ray, this means that using JPEG image for diagnostic purpose could

suffice under specific condition and appropriate setting.

A reliable, automatic, pure image-based classification algorithm also has its demand in the

research setting. Pizarro et al developed a deep learning algorithm using CNN architecture to

automatically infer the contrast of MRI scans based on the image intensity of multiple slices

for database management purpose in their research center. The MRI contrast dataset at their

second part of study included fluid-attenuated inversion recovery (FLAIR), proton-density

weighted, T1-weighted, post-contrast agent, T1-weighted pre-contrast agent, T2-weighted,

high resolution T1-weighted, magnetic transfer ON, and magnetic transfer OFF. The CNN

algorithm they developed could automatically identify the MRI contrast of previously

described dataset with a less than 0.2% error rate, which was markedly lower than the random

forest algorithm that had 1.74% error rate for the same MRI dataset [11]. A similar idea was

investigated upon by Remedios et al for a similar purpose, in which they developed a novel 3D

deep CNN-based method for MR image contrast classification. Specifically, they investigated

on three classification tasks. Firstly, to identify T1-weighted, T2-weighted, and FLAIR con-

trasts. The second task was to identify pre versus post-contrast T1-weighted images. The third

task was to identify pre versus post-contrast FLAIR images. They achieved a mean accuracy of

97.57% across the 3 tasks [3]. Compared with our work, their work focused on classifying dif-

ferent image contrast or sequences of the same image modality, namely MRI, and the same

anatomical location, namely brain. Remedios et al showed some examples of the misclassified

Table 4. Multi-class confusion table for testing set of the five attempts.

Actual Class

CT Abdomen CT Brain MRI Brain MRI Spine

Predicted Class CT Abdomen 50 ± 0 0 0 0

CT Brain 0 50 ± 0 0 0

MRI Brain 0 0 50 ± 0 0.8 ± 1.36

MRI Spine 0 0 0 49.2 ± 1.36

https://doi.org/10.1371/journal.pone.0253205.t004

Table 5. Overall performance measures of our CNN architecture on validation set (In percentage).

Accuracy Precision Recall Specificity F1 Score

CT Abdomen 100 100 100 100 100

CT Brain 99.9 99.9 99.8 100 100

MRI Brain 99 99.8 99.9 99.9 100

MRI Spine 100 99.9 99.9 100 99.9

https://doi.org/10.1371/journal.pone.0253205.t005
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images by their proposed algorithm, and they were due to either severe artifact or pathologies.

This is similar in our study in which one of our misclassified images had intracerebral

hemorrhage.

For the task of image classification, CNN has been reported to outperform other conven-

tional machine learning methods by Maruyama et al. They reported using CNN, namely Alex-

Net, Support Vector Machine (SVM) and Artificial Neural Network (ANN) to classify 3

different image modalities, namely, X-ray, CT and MRI images and amongst two image for-

mats, namely, DICOM and JPEG format. They showed that CNN had 100% classification

accuracy using the JPEG dataset and the accuracy rate was 94.4% for SVM, and 88.9% for

ANN. The classification accuracy, using the DICOM dataset, was 100% for CNN, SVM, and

ANN. Moreover, they reported a shorter processing time for one JPEG image (7 seconds)

compared with DICOM image (10 seconds) for CNN [10]. This study could further justify the

advantage of choosing CNN as the algorithm for pure image-based classification and JPEG as

the image format.

There are several other studies that focused on classifying medical images according to the

anatomic location or organ-specific anatomy. For example, Ning-ning Ren et al used image

processing method to automatically recognize radiographic position of brain, cervical spine,

chest, lumbar spine, pelvis, and limbs. The radiographic position was determined from fre-

quency similarity and amplitude classification. The body region recognition was performed by

image matching in the whole-body phantom image which they built a series of templates to

compare with. Using these methods, they achieved an average organ recognition accuracy of

93.78% and the average judgment time was 0.29 s [12].

Hiroyuki Sugimori focused on classifying CT images according to their anatomic location

by using various numbers of images slices ranging from 100 to 10000. They used AlexNet and

GoogLeNet to classify 10 classes, namely, brain, neck, chest, abdomen, and pelvis with con-

trast-enhanced and plain images and found that the best overall accuracy was 0.721 for the

classification of 10 classes by using GoogLeNet and 10000 image slices. Also, the best overall

accuracy for the classification of the slice position without contrast media was 0.862 by using

2000 image slices dataset with AlexNet [13].

Table 6. Overall performance measures of our CNN architecture on testing set (In percentage).

Accuracy Precision Recall Specificity F1 Score

CT Abdomen 100 100 100 100 100

CT Brain 100 100 100 100 100

MRI Brain 99.6 98.4 100 99.5 99

MRI Spine 99.6 100 98.4 100 99.2

https://doi.org/10.1371/journal.pone.0253205.t006

Fig 4. Example of incorrect prediction by our proposed CNN architecture is shown. (a) CT of brain image

misclassified as MRI of brain image in the validation set. (b) MRI of spine image misclassified to CT of brain in the

validation set. (c) MRI of spine image misclassified to MRI of brain in testing set. Notice the image in (a) contains

intracerebral hemorrhage (arrow).

https://doi.org/10.1371/journal.pone.0253205.g004

PLOS ONE Classification of medical image modality and anatomical location using CNN

PLOS ONE | https://doi.org/10.1371/journal.pone.0253205 June 11, 2021 8 / 11

https://doi.org/10.1371/journal.pone.0253205.t006
https://doi.org/10.1371/journal.pone.0253205.g004
https://doi.org/10.1371/journal.pone.0253205


Sameer Khan et al tried to identify the same organs (lung, liver, heart, kidney and lumbar

spine) from five different imaging modalities (CT, MRI, Positron emission tomography, ultra-

sound and X-ray images) by using a modified CNN architecture based on AlexNet. They

achieved a validation and test accuracy of 76.6% and 81% respectively. This result outper-

formed three milestone CNN architectures namely, AlexNet, LeNet and GoogleLeNet which

had test accuracy of 74%, 59% and 45% respectively [14]. Their result showed that the architec-

tures used for natural image classification cannot be generalized on medical images and modi-

fication of the basic CNN architecture could yield better results for the task of medical image

anatomy classification. This result is similar to our findings that modification of hyperpara-

meters was required for medical image classification after we adopted the CNN architecture

that was originally designed for hand-written digit data. Holger R. Roth et al developed a con-

volutional network with five layers of convolution filters to identify 5 classes of anatomy in CT

images namely, neck, lungs, liver, pelvis and legs. Their testing set error rate improved from

9.6% prior to data augmentation to 5.9% after data augmentation [15, 16] Compared to their

work, our study had a much higher accuracy rate (> 99.5%) but we focused on identifying ana-

tomic location rather than specific anatomic organs.

Despite all previous works, to our knowledge, there were no previous studies that used

CNN to classify medical images by both image modality and anatomic location, which is most

practical in both clinical and research setting. The higher than 99.5% accuracy rate and the

higher than 99% F1 score and specificity for each category of our validation and testing set

demonstrated that using CNN for medical image classification is a promising application in

real life scenario. A comprehensive table of previous works regarding medical image classifica-

tion on either anatomy and/or image modality is summarized in Table 7.

There were several limitations in our study. Firstly, we only used JPEG images for our CNN

architecture. It would have been interesting to compare the accuracy rate between JPEG and

DICOM images using the same algorithm as the conversion of DICOM to JPEG format

resulted in information loss which may impact the classification accuracy rate. However, Mar-

uyama et al have already shown that there was no difference in classification accuracy between

JPEG and DICOM images using CNN and that using JPEG image benefited from a shorter

processing time. Therefore, we would assume that the difference in accuracy would have been

small if this comparison was made. Secondly, we did not perform any image pre-processing

for this study and only used the preset window level for our model. However, our excellent

classification accuracy result could justify for the lack of image pre-processing and proved that

using the preset window level was enough to perform this task well which also saved image

processing time. Thirdly, we did not choose all the sequences in the two MRI classes, only

those we thought was representative on that certain image modality and anatomic location,

which might hinder its accuracy rate if applying this CNN architecture to other sequences in

real life scenario. Fourthly, a limited number of test set examples were included in this study.

Table 7. Summary of medical image classification on image modality and/or anatomy by various authors.

Author Topic Method Used Main Evaluation Metrics

Pizarro et al MRI Contrast Classification CNN Error Rate

Remedio et al MRI Contrast Classification 3D CNN Accuracy Rate

Maruyama et al Image Modality Classification CNN, SVM, ANN Accuracy Rate

Ren et al Identify Radiographic position Image Processing Method Accuracy Rate

Sugimori Classify Anatomic Location on CT Image CNN Accuracy Rate

Khan et al Classify both Anatomic Organ and Image Modality CNN Accuracy Rate

Roth et al Classify Anatomy on CT Image CNN Error Rate

https://doi.org/10.1371/journal.pone.0253205.t007
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Fifthly, only 4 categories out of two image modalities and three anatomical locations were

selected in this study, this could hinder the ability of generalization in the real life.

Conclusion

In this study, we proposed a deep CNN architecture for the classification of medical image by

both their anatomic location and image modality using JPEG images and achieved excellent

overall classification accuracy in both validation and test sets (> 99.5%). We also achieved very

high specificity and F1 score (> 99%) in each category of our dataset which contained both

diseased and normal images. Our study confirmed that using CNN for medical image classifi-

cation is a promising methodology and could work on non-DICOM images. This could poten-

tially save image processing time and storage space in real life scenario. Future work on other

anatomic locations and imaging modalities should be investigated upon in the hope that a

fully automated medical image classification algorithm can be used in both clinical and

research setting.
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