
materials

Article

Effects of Concentration and Spin Speed on the Optical and
Electrical Properties of Silver Nanowire Transparent Electrodes

Xiaopeng Li 1,*, Jiayue Zhou 1, Dejun Yan 2, Yong Peng 1,*, Yong Wang 2, Qi Zhou 1 and Kehong Wang 1

����������
�������

Citation: Li, X.; Zhou, J.; Yan, D.;

Peng, Y.; Wang, Y.; Zhou, Q.; Wang, K.

Effects of Concentration and Spin

Speed on the Optical and Electrical

Properties of Silver Nanowire

Transparent Electrodes. Materials

2021, 14, 2219. https://doi.org/

10.3390/ma14092219

Academic Editors:

Sotirios Christodoulou and

Dimitra Vernardou

Received: 26 February 2021

Accepted: 5 April 2021

Published: 26 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Materials Science and Technology, Nanjing University of Science and Technology,
Nanjing 210014, China; lxp11s009184@163.com (J.Z.); cheezhou@163.com (Q.Z.); wkh1602@126.com (K.W.)

2 China State Shipbuilding Corporation Huangpu Wenchong Shipbuilding Company Limited,
Guangzhou 510715, China; 13B909097@hit.edu.cn (D.Y.); zhangdeku@sohu.com (Y.W.)

* Correspondence: lxp@njust.edu.cn (X.L.); ypeng@njust.edu.cn (Y.P.); Tel.: +86-182-6002-2588 (X.L.);
+86-138-6182-3291 (Y.P.)

Abstract: In this paper, silver nanowires (AgNWs) with a diameter of 40 nm and a length of 45 µm
were dispersed into an ethanol solution to prepare AgNW solutions with concentrations of 1, 2,
and 3 mg/mL, respectively. The AgNW solutions were then deposited on a glass substrate using
spin-coating at 1000, 2000, and 3000 rpm for 45 s, respectively, to prepare transparent electrodes. The
results showed that the distribution of AgNWs on the substrate increased in density with the increase
in the AgNW solution concentration and the decrease in spin speed. The effect of concentration
on the distribution of AgNWs was greater than that of the spin speed. The transmittance of each
electrode was between 84.19% and 88.12% at 550 nm, the average sheet resistance was between 20.09
and 358.11 Ω/sq, the highest figure of merit (FoM) was 104.42, and the lowest haze value was 1.48%. The
electrode prepared at 1000 rpm with a concentration of 2 mg/mL and that prepared at 3000 rpm with
a concentration of 3 mg/mL were very similar in terms of the average sheet resistance, transmittance
at 550 nm, FoM, and haze value; thus, these two electrodes could be considered equivalent. The haze
value of the electrode was positively correlated with the spin speed at low concentration, but that
relationship became inverse as the concentration rose. For the AgNWs used in this experiment with
an aspect ratio of 1125, the concentration of the AgNW solution should reach at least 2 mg/mL to
ensure that the FoM of the electrode is greater than 35.

Keywords: silver nanowires; concentration; spin speed; sheet resistance; transmittance; FoM; haze value

1. Introduction

As technology has been developed, the demand for new high-performance electronic
devices has increased. New flexible electronic devices, such as flexible wearable devices,
electronic skin, touch screens, and flexible solar cells, have attracted an upsurge in research
due to their good folding and tensile properties. As an important part of new flexible
electronic devices, flexible transparent electrodes have been widely studied nationally and
internationally [1–6].

Flexible transparent electrodes not only need to have a high electrical conductivity and
high transmittance, but also need to have a certain flexibility. Currently, the most widely
used transparent electrode material is indium tin oxide (ITO) [7]. Although ITO has excel-
lent transmittance and electrical conductivities, its poor mechanical flexibility and high cost
make it unsuitable for the new generation of flexible electronic devices [8,9]. For this reason,
scholars have successively proposed a variety of ITO alternatives, such as carbon nanotubes,
graphene, conductive polymers, and metal nanostructures. Cao applied arrays of single-
walled carbon nanotubes to high-performance electronics [10]. Ho invented stretchable
and multimodal all-graphene electronic skin [11]. Kim fabricated highly efficient flexible
organic light-emitting devices based on poly(3,4-ethylenedioxythiophene):poly(styrene
sulfonate)(PEDOT:PSS) electrodes doped with highly conductive Pyronin B [12]. Kang
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reported the use of a silver nanowire network for triboelectric nanogenerators [13]. Wang
mixed silver nanowires (AgNWs) and nanosilver-coated copper micronflakes (mass ratio
1:9) to prepare electrically conductive adhesives [14].

Among these alternatives, silver nanowires (AgNWs) are regarded as the ITO substi-
tutes with the highest potential due to their excellent electrical conductivity, transmittance,
and flexibility [15]. There are many synthetic methods for AgNWs, including the solution
chemical reduction method and template method. Sun used ethylene glycol to restore
AgNO3 to Ag nanoparticles at 160 ◦C, finally obtaining AgNWs with an aspect ratio of
up to 1000 [16]. Cui synthesized AgNWs with a diameter of 50 nm and a length of 6 µm
on a DNA template using an electrochemical technique [17]. The synthesized AgNWs are
generally dispersed in an ethanol solution or isopropanol solution for preservation to avoid
oxidation and vulcanization.

The preparation methods of the transparent electrodes mainly include the spin-coating,
spray-coating, drop-coating, rod-coating, brush-painting, and patterning methods. Wu
studied the conductivity enhancement of PEDOT:PSS electrodes via the addition of chloro-
platinic acid and its mechanism utilizing the spin-coating method [18]. Choi used a
continuous two-step spray-coating method to prepare annealing-free, flexible AgNW-
polymer composite electrodes [19]. Cui optimized the ethylene-glycol-doped PEDOT:PSS
transparent electrodes by the drop-coating method [20]. Huang chose a Mayer rod-coating
method to prepare AgNW electrodes [21]. Lee proposed the preparation of transparent
PEDOT/AgNWs/PEDOT multilayer electrodes by brush painting [22]. Ko invented a
simple AgNW patterning method based on poly(ethylene glycol) photolithography [23].

The laboratory usually adopts the convenient spin-coating method. First, the wet
film of AgNWs was prepared by a spin coater, and after the solvent volatilized, the dry
AgNW transparent electrode could be obtained. The optical and electrical properties of the
spin-coated AgNW transparent electrode are mainly affected by two factors. One is the
specification of AgNWs, such as the aspect ratio, concentration, viscosity, and dispersion in
the solvent, which can be regulated by adjusting the synthesis method of AgNWs and the
subsequent purification process. The other is the spin process, which can be regulated by
adjusting the spin speed and the duration.

In recent years, scholars have successfully applied AgNW transparent electrodes
to a variety of electronic devices. By embedding AgNWs into polymethyl methacry-
late (PMMA), Kim prepared a flexible transparent electrode with a low roughness and
successfully applied it to a flexible organic light-emitting diode (OLED) device, where
the on–off voltage of the OLED device was 2.8 V and its maximum brightness reached
23,741 cd/m2 [24]. Seo applied AgNW transparent electrodes to a flexible solar cell, whose
short-circuit current density, open-circuit voltage, filling factor, series resistance, and en-
ergy conversion efficiency were, respectively, 17.4 mA/cm2, 0.764 V, 64.2%, 4.13 Ω/cm2,
and 8.75%, showing a good mechanical flexibility [25]. Li treated the AgNW transparent
electrode with plasma and applied it to an OLED device. The maximum brightness of
the OLED device reached 27,000 cd/m2 and its current efficiency was 11.8 cd/A [26].
The research carried out by Norio showed that stable electrical insulation with a small
removal trace area of AgNWs can be expected by using a proper long-pulse duration in
nanosecond pulsed laser processing, which provided a new idea for the application of
AgNW transparent electrodes in devices [27].

At present, AgNW transparent electrodes have been widely used in various electronic
devices; however, as the electrode is only one of the components of electronic devices,
scholars have paid more attention to the overall performance parameters of electronic
devices rather than the properties of individual electrodes; thus, there are a small number
of studies on the influence of the specifications of AgNWs and the preparation process of
electrodes on the properties of AgNW transparent electrodes. Bernal studied the effect of
spin speed on the optical and electrical properties of AgNW transparent electrode, but he
did not study the effect of the concentration of the AgNW solution [28]. In addition, as
the specifications of AgNWs and the electrode preparation processes adopted by scholars
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all over the world are very different, the properties of AgNW transparent electrodes in
different papers vary greatly. Taking sheet resistance as an example, the initial sheet
resistance of the AgNW transparent electrodes prepared by Tokuno at room temperature
was 1.8 × 104 Ω/sq [29], while the initial sheet resistance of the one prepared by Ha was
only 87 Ω/sq [30], both without post-treatment. Their difference could already reach up to
several orders of magnitude.

Due to the fact that different electronic devices have different requirements on the
optical and electrical properties of the electrode, this paper adopted the spin-coating
method to prepare AgNW transparent electrodes. The effects of concentration and spin
speed on the uniformity, sheet resistance, transmittance, FoM, and haze value of AgNW
transparent electrodes were studied, providing a reference for the rapid preparation of
AgNW transparent electrodes with the required properties in the laboratory.

2. Materials and Methods
2.1. Materials

The AgNWs (MG-NW-S40) used in this experiment were purchased from Shanghai
Maoguo Nanotechnology Co. LTD (Shanghai, China), and its main parameters are shown
in Table 1. The substrate of the AgNW transparent electrode was 20 mm × 20 mm × 1 mm
transparent quartz glass.

Table 1. Main parameters of silver nanowires (AgNWs).

Specification Diameter nm Length µm Aspect Ratio Purity % Appearance Solvent Concentration

MG-NW-S40 40 45 1125 99.9 Incanus Ethanol 5 mg/mL

2.2. Preparation of AgNW Solutions with Different Concentrations

The AgNWs purchased were dispersed in an ethanol solution at a concentration of
5 mg/mL. The original AgNW solution was diluted with ethanol solutions in volume
ratios of 1:4, 2:3, and 3:2, respectively, to obtain AgNW solutions with concentrations of 1,
2, and 3 mg/mL.

2.3. Preparation of AgNW Transparent Electrode

First, a 20 mm × 20 mm × 1 mm transparent quartz glass was immersed in an ethanol
solution and acetone solution in turn for ultrasonic cleaning for 15 min, and then the glass
was placed on a thermostatic hot plate and dried at 150 ◦C for 15 min. Next, the glass
was placed into an ultraviolet ozone processor for 15 min, finally obtaining the clean glass
substrate. Before the deposition of AgNWs on the glass substrate, the clean glass substrate
was fixed on the spin coater and the AgNW solution was dispersed and homogenized
using a magnetic stirrer for 1 h. During the deposition of AgNWs on the glass substrate,
100 µL of AgNW solution was taken using a pipette and dropped onto the glass substrate
evenly, and the AgNW wet film was prepared by setting the spin speed and the duration.
After the deposition of AgNWs on the glass substrate, and after the solvent volatilized, the
AgNW transparent electrode could be obtained.

2.4. Characterization

A scanning electron microscope (SU8010, Hitachi, Tokyo, Japan) was used to test the
morphology of the samples. An ultraviolet-visible-near-infrared spectrometer (UV3600 I
Plus, Shimazu, Kyoto, Japan) was used to test the transmittance spectra and the haze value
of the samples. The sheet resistance (Rs) of the samples was tested using a four-point probe
system (Model 280, Saratoga Technology, Saratoga, NY, USA).
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3. Results
3.1. Effects of Concentration and Spin Speed on the Distribution of AgNWs

The two most important photoelectric properties of transparent electrodes are elec-
trical conductivity and transmittance. For the AgNW transparent electrode, when the
specifications (length and diameter) of the AgNWs remain unchanged, its photoelectric
properties are mainly affected by the distribution of AgNWs on the substrate. The AgNWs
pile up and lap under the action of gravity to form a conductive network. The denser
the AgNW network is, the more conductive pathways it will have and the better its con-
ductivity will be. However, the dense AgNW network has a strong scattering effect on
visible light, which is not conducive to its transmittance. As the conductivity and the
transmittance of the AgNW transparent electrode are a pair of internal contradictions, it is
very important to balance them by regulating the distribution of AgNWs on the substrate.

The distribution of AgNWs on the substrate is mainly affected by the concentration of
the AgNW solution and the spin-coating process. The concentration of the AgNW solution
determines the initial quantity density of AgNWs on the substrate, while the spin-coating
process affects the spread of the AgNW solution on the substrate under centrifugal force.
The uniformity of AgNWs can be changed by adjusting the spin speed and the duration.
Generally, with the decrease in the concentration of the AgNW solution and the increase in
the spin speed and the duration, the distribution of AgNWs on the substrate will become
more dispersed and the thickness of the electrode will also decrease. Considering the
influence of air turbulence on the spin process, it is generally necessary to set a sufficient
duration to balance all the influencing factors. In order to ensure the uniformity of the
electrode, the duration of this experiment was set at 45 s.

Figure 1 shows the scanning electron microscope (SEM) morphology of AgNW trans-
parent electrodes prepared at different concentrations and spin speeds. In Figure 1a–c, the
concentration of the AgNWs solution was 2 mg/mL, and the spin speeds were 1000, 2000,
and 3000 rpm, respectively, in order to study the effect of spin speed on the distribution of
AgNWs. In Figure 1d,e, the spin speed was 2000 rpm and the concentrations of the AgNW
solutions were 1 and 3 mg/mL, respectively, in order to study the effect of concentration
on the distribution of AgNWs. As shown in Figure 1a–c, when the concentration remained
unchanged (2 mg/mL), the AgNWs were densely distributed with the phenomenon of
multiple wires being wound together at a relatively low spin speed (1000 rpm). With
the increase in spin speed (2000 rpm), the density of AgNWs decreased slightly and the
distribution of AgNWs was more uniform; meanwhile, the phenomenon of multiple wires
being wound together was alleviated. The density of AgNWs on the substrate decreased
significantly at a relatively higher spin speed (3000 rpm), the AgNW network was thinner,
and its uniformity decreased slightly. As shown in Figure 1b,d,e, when the spin speed
remained unchanged (2000 rpm), the distribution of AgNWs was very sparse at a relatively
low concentration (1 mg/mL), the phenomenon of multiple wires being wound together
was very rare, and there were only a few contact points between the AgNWs; as a result,
there were only a small number of conductive pathways in the network. With the gradual
increase in concentration (2 and 3 mg/mL), this situation gradually improved, and the
density of AgNWs increased, forming more points of contact and, thus, leading to the
appearance of a larger number of conductive pathways in the network.
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Figure 1. SEM morphology of AgNW transparent electrodes prepared at different concentrations
and spin speeds: (a) 2 mg/mL and 1000 rpm; (b) 2 mg/mL and 2000 rpm; (c) 2 mg/mL and 3000
rpm; (d) 1 mg/mL and 2000 rpm; (e) 3 mg/mL and 2000 rpm, respectively.

By comparison, it can be found that the effect of concentration on the distribution of
AgNWs is greater than that of the spin speed. The effect of viscosity on the film forming
process should be introduced here. Generally, for the AgNW solution, the higher the
concentration, the higher the viscosity, which means that the solution has a higher flow
resistance, the inner radial flow of droplets on the substrate surface from inside to outside
is weaker, and it is not easy for the solution to migrate to the substrate edge. In addition, as
the solvent (alcohol) evaporates, the viscosity of the solution will increase further. When
the AgNW solution is dropped onto the substrate with a pipette gun, the AgNWs will
pile up on the substrate under the action of gravity and get close to each other by van der
Waals forces. During the spin-coating process, under the action of the centrifugal force,
the solution will be further spread on the substrate, and the distribution of AgNWs on
the substrate will be reconstructed. After the solvent completely volatilizes, the AgNW
transparent electrode will be obtained. In general, the higher the viscosity of the AgNWs
solution, the thicker the AgNW electrode, and the concentration of the solution will play
an important role.

In general, when the concentration of the AgNW solution was 2 mg/mL and the spin
speed was set at 2000 rpm, the quantity density of AgNWs on the glass substrate was
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moderate and the distribution of AgNWs was uniform in all directions. There were also
fewer agglomerations between AgNWs, which was a relatively ideal situation.

3.2. Effects of Concentration and Spin Speed on the Sheet Resistance of Electrode

Sheet resistance is an important indicator of conductivity for the transparent electrode,
with units of Ω/sq, and the smaller the sheet resistance is, the stronger the ability of
the electrode to transfer charge along the plane direction. Jia defined the nonuniformity
factor (NUF) to evaluate the standard deviation of the sheet resistance of the transparent
electrode [31]. The calculation formula of NUF is shown in Equation (1):

NUF =

√√√√∑n
i=1
(

Ri − R
)2

nR2 (1)

where n represents the number of measurements, Ri represents the measured value of
sheet resistance, and R represents the average value of all measured values. The NUF can
reflect the uniformity of the transparent electrode, where the smaller the NUF, the better
the uniformity of the transparent electrode.

Table 2 lists the measured sheet resistance, average sheet resistance, and the NUF of the
AgNW transparent electrode at different concentrations and spin speeds. Figures 2 and 3
show, respectively, a 3D histogram of the variation in sheet resistance and NUF with
concentration and spin speed.

When the concentration of the AgNW solution was 1 mg/mL, the density of AgNWs
on the substrate was relatively low (Figure 1d); thus, there were only a few effective
conductive pathways. The sheet resistance of the electrodes at different spin speeds
reached hundreds of Ω/sq, representing a relatively poor electrical conductivity. Moreover,
these electrodes also had a relatively high NUF, meaning that they were relatively uneven
and rough. At the concentration of 1 mg/mL, the sheet resistance of the AgNW transparent
electrode increased rapidly with the increase in spin speed.

When the concentration of the AgNW solution was 2 mg/mL, the conductive path-
ways in the electrode were significantly increased (Figure 1b), and the sheet resistance of
the electrode decreased significantly, by nearly an order of magnitude. As the distribution
of AgNWs on the substrate became more saturated, the NUF of the electrode also decreased
significantly, indicating that the uniformity of the AgNW transparent electrode was better
at this concentration.

Table 2. Measured sheet resistance, average sheet resistance, and the nonuniformity factor (NUF) of AgNW transparent
electrode at different concentrations and spin speeds.

Concentration
mg/mL

Spin Speed
rpm

Measured Sheet
Resistance (1)

Ω/sq

Measured Sheet
Resistance (2)

Ω/sq

Measured Sheet
Resistance (3)

Ω/sq

Average Sheet
Resistance

Ω/sq
NUF

1 mg/mL
1000 104.25 117.52 181.55 134.44 0.251
2000 264.69 140.85 269.77 225.10 0.265
3000 523.48 436.7 114.16 358.11 0.492

2 mg/mL
1000 37.01 34.34 35.93 35.76 0.031
2000 39.26 39.46 39.11 39.28 0.004
3000 46.58 55.4 56.04 52.67 0.082

3 mg/mL
1000 17.82 22.2 20.26 20.09 0.089
2000 28.37 26.62 28.39 27.79 0.030
3000 40.78 31.98 30.6 34.45 0.131
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Figure 2. The 3D histogram of the variation in sheet resistance with concentration and spin speed.

Figure 3. The 3D histogram of the variation in the NUF with concentration and spin speed.

When the concentration of the AgNW solution was 3 mg/mL, the AgNWs were
oversaturated on the substrate (Figure 1e), leading to a slight decrease in the electrode’s
uniformity, and the phenomenon of multiple wires being wound together was obvious
and the electrode was thicker. Although there were more conductive pathways in the
network in this case, the contact resistance between the AgNWs also increased; thus,
the sheet resistance of the electrode only dropped by 10–20 Ω/sq compared with the
previous concentration (2 mg/mL), which was not very obvious. Meanwhile, the NUF of
the electrode rose slightly, which indicated that the uniformity of the AgNW transparent
electrode decreased slightly at a relatively high concentration.

As can be seen from Figure 2, with the increase in the concentration of the AgNW
solution and the decrease in spin speed, the sheet resistance of the AgNW transparent
electrode gradually decreased. As can be seen from Figure 3, when the concentration of the
AgNW solution remained unchanged, the NUFs of the electrode at 1000 and 3000 rpm were
generally larger than that at 2000 rpm, indicating that too high or too low a spin speed
would affect the uniformity of the electrode. When the spin speed remained unchanged,
the NUFs of the electrode using the AgNW solution of 1 and 3 mg/mL were generally
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larger than that of 2 mg/mL, indicating that too large or too small a concentration of
the AgNW solution would affect the uniformity of the electrode. In general, when the
concentration of the AgNW solution was 2 mg/mL and the spin speed was 2000 rpm, the
NUF of the electrode was only 0.004, which was smallest, indicating that the uniformity
of the AgNW transparent electrode was very good in this case. In addition, the electrode
prepared at 1000 rpm with a concentration of 2 mg/mL and that prepared at 3000 rpm
with a concentration of 3 mg/mL were very similar in terms of the average sheet resistance,
which were 35.76 and 34.45 Ω/sq, respectively.

3.3. Effects of Concentration and Spin Speed on the Transmittance of Electrode

Transmittance is the percentage of the luminous flux passing through the medium
and the incident luminous flux. As an important index of the optical properties of the
transparent electrode, transmittance indicates the ability of light of different wavelengths to
pass through the electrode. When the thickness of the electrode is less than the wavelength
of the incident light, only a small amount of light can be absorbed by the electrode, so in
general, the thinner the electrode is, the higher its transmittance will be. Figure 4 shows
the variation in transmittance spectra with concentration at different spin speeds. It can be
seen from Figure 4 that the transmittance of the electrode decreased with the concentration
at each spin speed, indicating that with the increase in the density of AgNWs, the ability of
light of each wavelength to pass through the electrode decreased gradually.

Figure 4. The variation in transmittance spectra with concentration at different spin speeds: (a) 1000;
(b) 2000; (c) 3000 rpm.

When evaluating the transmittance of the electrode, its transmittance at 550 nm is often
taken as a reference. Table 3 shows the transmittances of the AgNW transparent electrode
at 550 nm at different concentrations and spin speeds. As can be seen from Table 3, the
transmittance of each electrode at 550 nm was good, generally between 84.19% and 88.12%.
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With the increase in the concentration of the AgNW solution and the decrease in spin speed,
the transmittance of the electrode at 550 nm generally decreased due to the increase in the
density of the AgNW network. However, there was an exception. When the concentration
of the AgNW solution was 1 mg/mL, with the increase in spin speed, the transmittance
of the electrode at 550 nm first increased and then decreased, from 87.44% to 88.12% and
then to 87.89%. This might be related to the uniformity of the electrode. It can be seen
from above that, when the concentration of the AgNW solution was 1 mg/mL and the spin
speed was 3000 rpm, the NUF of the electrode was very high, indicating that the electrode
was very uneven and rough, where the decrease in transmittance might be caused by the
nonuniformity of the electrode. In addition, the electrode prepared at 1000 rpm with a
concentration of 2 mg/mL and that prepared at 3000 rpm with a concentration of 3 mg/mL
were also similar in terms of transmittance, which were 86.47% and 85.63%, respectively.

Table 3. The transmittance of the AgNW transparent electrode at 550 nm at different concentrations
and spin speeds.

Concentration
mg/mL

Spin Speed
rpm Transmittance

1 mg/mL
1000 87.44%
2000 88.12%
3000 87.89%

2 mg/mL
1000 86.47%
2000 86.90%
3000 87.21%

3 mg/mL
1000 84.19%
2000 85.19%
3000 85.63%

3.4. Effects of Concentration and Spin Speed on the FoM of Electrode

Due to the inherent contradiction between the conductivity and transmittance of the
AgNW transparent electrode, in order to better reflect the photoelectric characteristics of
the electrode, the quality factor FoM is generally introduced. FoM is defined as the ratio
between the conductivity of direct current σDC and the photoinduced conductivity σOP,
namely σDC/σOP. Generally, the larger the value of FoM, the better the photoelectric per-
formance of the electrode [32]. The FoM of an electrode with a high comprehensive quality
is generally greater than 35. The relationship between transmittance, sheet resistance, and
FoM can be expressed by Equation (2) [33]:

T =

[
1 +

Z0

2RS

σOP
σDC

]−2
(2)

where T is the transmittance of the electrode at 550 nm, Z0 is the impedance of free space,
whose value is 337 Ω, and Rs is the sheet resistance of the electrode. After simplification,
Equation (2) can be simplified to Equation (3):

FoM =
188.5

√
T(

1−
√

T
)

RS

(3)

By substituting the sheet resistance (Rs) and the transmittance at 550 nm (T) into
Equation (3), the FoM of each electrode can be calculated. Table 4 lists the calculated
FoM of the AgNW transparent electrodes at different concentrations and spin speeds, and
Figure 5 shows the 3D histogram of the variation in FoM with concentration and spin speed.
According to Table 4 and Figure 5, the FoM of different electrodes varied greatly. When
the concentration of AgNW solution was 1 mg/mL, the FoM of each electrode was all less
than 35 at different spin speeds, indicating that this concentration was not suitable for
the preparation of the AgNW transparent electrode with high comprehensive properties.
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When the concentrations of the AgNW solution were 2 and 3 mg/mL, the FoM of each
electrode was all more than 35 at different spin speeds, indicating that for the AgNWs
with a diameter of 40 nm and a length of 45 µm (aspect ratio: 1125), the concentration of
the AgNW solution should reach at least 2 mg/mL to make an electrode with a relatively
high comprehensive quality. Among all the prepared electrodes, when the concentration
of the AgNW solution was 3 mg/mL and the spin speed was 1000 rpm, the FoM of the
electrode was highest, reaching 104.42, showing great potential. The results showed that
the FoM of the electrode generally decreased with the spin speed, indicating that the spin
speed should not be too fast. As the concentration of the AgNW solution increased, the
FoM of the electrode generally increased, indicating that when the concentration of the
AgNW solution was low, with the increase in the concentration, the positive impact of
the improvement of conductivity on the FoM was greater than the negative impact of the
decrease in transmittance on the FoM. As the concentration continues to increase, there
will theoretically be a threshold that makes the FoM reach its maximum value, which will
not be studied further in this paper. In addition, the electrode prepared at 1000 rpm with a
concentration of 2 mg/mL and that prepared at 3000 rpm with a concentration of 3 mg/mL
were also similar in terms of the FoM, which were 69.92 and 67.84, respectively.

Table 4. The FoM of the AgNW transparent electrode at different concentrations and spin speeds.

Concentration
mg/mL

Spin Speed
rpm FoM

1 mg/mL
1000 20.20
2000 12.83
3000 7.90

2 mg/mL
1000 69.92
2000 65.98
3000 50.53

3 mg/mL
1000 104.42
2000 81.29
3000 67.84

Figure 5. The 3D histogram of the variation in FoM with concentration and spin speed.

3.5. Effects of Concentration and Spin Speed on the Haze Value of Electrode

The haze value is the percentage of the light flux of diffusion and the light flux passing
through the medium. As another important index of the optical performance of transparent
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electrodes, the haze value indicates the ability of the diffuse light to pass through the
electrode. The haze value can be calculated by Equation (4) [34]:

Haze =
(
Ttot − Tspec

)
/Ttot × 100% (4)

where Ttot is the total transmittance of light and Tspec is the specular transmittance of
light. A high haze value indicates a high degree of light scattering, which may lead to a
cloudy appearance of the electrode. Due to the disordered distribution of nanowires on the
substrate, it is easy for nanowire-based transparent electrodes to generate light diffusion,
so their haze values are generally high.

Table 5 lists the calculated haze value of AgNW transparent electrodes at different
concentrations and spin speeds. Figure 6 shows a 3D histogram of the variation in haze
value with concentration and spin speed. It can be seen from Table 5 and Figure 6 that
the clarity of each electrode was good and the haze value was generally low, with the
lowest being 1.48% and the highest being 2.82%. When the concentration of the AgNW
solution was 1 mg/mL, the haze value presented an increasing trend with the increase in
spin speed, which might be related to the uniformity of the distribution of AgNWs on the
substrate. As can be seen above, at a relatively low concentration, with the increase in spin
speed, the uniformity of electrode gradually decreased, and then the rough surface of the
electrode enhanced the scattering of light, which led to the increase in haze value. When
the concentrations of the AgNW solution were 2 and 3 mg/mL, the haze value presented a
decreasing trend with the increase in spin speed, which might be related to the density of
AgNWs on the substrate. As can be seen above, at a relatively higher concentration, the
distribution of AgNWs on the substrate was generally uniform. With the increase in spin
speed, the density of AgNWs on the substrate and the thickness of the electrode gradually
decreased; thus, the scattering effect of the AgNW network on light was weakened, which
led to a decrease in haze value. In addition, the electrode prepared at 1000 rpm with a
concentration of 2 mg/mL and that prepared at 3000 rpm with a concentration of 3 mg/mL
were also similar in terms of the haze value, which were 2.65% and 2%, respectively. The
results showed that although the concentration and the spin speed of these two electrodes
were different during the preparation, their photoelectric properties were very similar;
thus, they could be considered equivalent.

Table 5. The haze value of the AgNW transparent electrode at different concentrations and spin speeds.

Concentration
mg/mL

Spin Speed
rpm Haze Value

1 mg/mL
1000 1.48%
2000 1.52%
3000 1.90%

2 mg/mL
1000 2.65%
2000 2.59%
3000 1.59%

3 mg/mL
1000 2.82%
2000 2.27%
3000 2%
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Figure 6. The 3D histogram of the variation in haze value with concentration and spin speed.

4. Conclusions

(1) The distribution of AgNWs on the substrate increased in density with the increase
in the concentration of the AgNW solution and the decrease in spin speed. The
effect of concentration on the distribution of AgNWs was greater than that of spin
speed. Under different preparation conditions, the transmittance of each electrode
was generally between 84.19% and 88.12% at 550 nm, the average sheet resistance
was between 20.09 and 358.11 Ω/sq, the highest FoM was 104.42, and the lowest haze
value was 1.48%.

(2) Among the prepared electrodes, when the concentration of the AgNW solution was
2 mg/mL and the spin speed was 2000 rpm, the electrode was the most uniform,
and its test performance was the most stable. When the concentration of the AgNW
solution was 1 mg/mL, the haze value of the electrode was positively correlated with
the spin speed; when the concentrations of the AgNW solution were 2 and 3 mg/mL,
the haze value of the electrode was negatively correlated with the spin speed.

(3) The electrode prepared at 1000 rpm with a concentration of 2 mg/mL and that
prepared at 3000 rpm with a concentration of 3 mg/mL were very similar in terms of
the average sheet resistance, transmittance at 550 nm, FoM, and haze value; thus, these
two electrodes could be considered equivalent.

(4) When the concentration of the AgNW solution was low, with the increase in the
concentration, the positive impact of the improvement of conductivity on the FoM
was greater than the negative impact of the decrease in transmittance on the FoM. For
the AgNWs used in this experiment with a diameter of 40 nm and a length of 45 µm
(aspect ratio: 1125), the concentration of the AgNW solution should reach at least
2 mg/mL to ensure that the FoM of the electrode is greater than 35.
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