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ABSTRACT

MicroRNAs (miRNAs) are small endogenous regula-
tory molecules that modulate gene expression post-
transcriptionally. Although differential expression of
miRNAs have been implicated in many diseases (in-
cluding cancers), the underlying mechanisms of ac-
tion remain unclear. Because each miRNA can target
multiple genes, miRNAs may potentially have func-
tional implications for the overall behavior of entire
pathways. Here, we investigate the functional con-
sequences of miRNA dysregulation through an in-
tegrative analysis of miRNA and mRNA expression
data using a novel approach that incorporates path-
way information a priori. By searching for miRNA-
pathway associations that differ between healthy and
tumor tissue, we identify specific relationships at the
systems level which are disrupted in cancer. Our
approach is motivated by the hypothesis that if an
miRNA and pathway are associated, then the expres-
sion of the miRNA and the collective behavior of the
genes in a pathway will be correlated. As such, we
first obtain an expression-based summary of path-
way activity using Isomap, a dimension reduction
method which can articulate non-linear structure in
high-dimensional data. We then search for miRNAs
that exhibit differential correlations with the pathway
summary between phenotypes as a means of find-
ing aberrant miRNA-pathway coregulation in tumors.
We apply our method to cancer data using gene
and miRNA expression datasets from The Cancer
Genome Atlas and compare ∼105 miRNA-pathway re-
lationships between healthy and tumor samples from
four tissues (breast, prostate, lung and liver). Many of
the flagged pairs we identify have a biological basis
for disruption in cancer.

INTRODUCTION

Cellular functions are carried out by coordinated regula-
tion of genes on a pathway, which facilitate a series of in-
teractions among genes to produce behaviors as diverse as
cell metabolism to cell signaling. At the post-transcriptional
level, microRNAs (miRNAs, miRs) modulate gene expres-
sion by binding to a 6–8 nt target motif of mRNA tran-
scripts, preventing translation and/or inducing degrada-
tion of their target genes. Due to the short-binding motif,
miRNA targeting is non-specific, such that a single miRNA
may target multiple genes and likewise, a single gene may be
targeted by multiple miRNAs (1). Currently, it is estimated
that ∼103 known miRNAs regulate approximately a third
of genes in the genome (2–4). However, not all miRNA–
gene relationships are known; studies to predict miRNA
targets using sequence matching have had mixed success (5),
and the functional consequences of miRNA dysregulation
remains an area of active research. It is now thought that the
mutliplicity of targets enables miRNAs to exert a cumula-
tive effect at the systems level, by targeting several genes and
influencing their downstream interactions. miRNAs have
been hypothesized to modulate pathways by regulating tar-
gets constituting those pathways (6–10). Such systems-level
control may explain the association of aberrant miRNA
regulation with multiple diseases, including cancer (11,12),
endometriosis (13), inflammation (14) and several others.

High-throughput transcriptomics datasets now enable us
to investigate the role of miRNAs in regulating pathway ac-
tivity by integratively analyzing miRNA and gene expres-
sion from the same samples. Such analyses must address the
challenges inherent to high-throughput data, including the
fact that the number of features typically exceeds the num-
ber of samples by orders of magnitude, the data are inher-
ently noisy and many features may be irrelevant to the phe-
notype of interest. In addition, integrative analyses should
account for the multiplicity of interactions that collectively
contribute to phenotypic differences. Approaches for in-
tegrative miRNA–mRNA analysis generally fall into two
categories (15): (i) inferring interacting miR–mRNA pairs
from transcriptomic data (e.g. by searching for high corre-
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Figure 1. An example of two genes cycling out of phase with one an-
other, with the amplitude of the oscillation governed by the expression of
a miRNA. The relationship is apparent in the left panel, where the lower
values of the miRNA result in a smaller radius in the relationship between
gene X and gene Y, yet neither gene X nor gene Y are correlated with the
miRNA (right panels, top and bottom).

lations (16), using regularized linear regression (17,18) or
mutual information (19)); and (ii) combining miRNA and
mRNA expression data to identify a signature in the com-
bined feature space that predicts the phenotype of interest
(20,21) (e.g. using non-negative matrix factorization (22) or
clustering (23) to find combinations of miRNAs and genes
that most strongly predict outcomes). A comprehensive re-
view of integrative miRNA–mRNA analysis may be found
in (15).

Information about gene interaction networks obtained
from pathway databases (such as KEGG (24) or PID (25))
can be used to reduce dimensionality and improve inter-
pretability by focusing on functionally related gene sets. To
date, however, most miRNA–mRNA integrative analyses
do not explicitly incorporate this information a priori; in-
stead, the interactions and signatures identified in the anal-
ysis are tested for overlap with known pathways at the end
to lend a systems-level interpretation of the gene-level find-
ings (26,27). Because many pathway analysis approaches
(including enrichment methods, such as Gene Set Enrich-
ment Analysis (GSEA) (28)) rely on aggregating single-gene
statistics rather than treating the pathway as a whole, they
may miss crucial multi-gene interactions, such as the loss
of coordinated expression. For example, the relevance of a
miRNA that governs the relationship between two genes
(such as the amplitude of the oscillation shown in Figure
1) can be missed when considering the target genes in isola-
tion, since neither gene is independently associated with the
miRNA.

To overcome this limitation, several groups have pro-
posed schemes to summarize gene expression across the
pathway to quantify the overall level of pathway ‘activity’
in each sample (29,30). These approaches apply dimension
reduction techniques (such as singular value decomposition
[SVD] and principal components analysis [PCA]) to pre-
defined gene sets, effectively yielding a single value that en-
capsulates the coarse coexpression behavior of all the genes

in the pathway. In the Pathway Level Analysis of Gene Ex-
pression (PLAGE) method (29), SVD was used to obtain
a ‘pathway activity level’ quantification based on the ex-
pression of genes in the pathway. A similar approach using
PCA was employed in the GPC-Score (30) method. A non-
linear dimension reduction (NLDR) strategy for pathway
summarization was considered in (31), which was shown to
more faithfully summarize complex coexpression patterns
than linear methods. More recently, the Component Path-
way Analysis and Differential Expression Removal (COM-
PADRE) package (32) presented a framework for path-
way summarization using a variety of dimension reduc-
tion techniques (including SVD, PCA, ICA, non-negative
matrix factorization and non-linear Isomap). The resulting
pathway-level quantifications may then be tested for statis-
tical associations with the phenotype, allowing the pathway
to be treated as a single functional unit.

Here, we propose a method that identifies miRNAs that
differentially regulate the overall activity of pathways by
using a pathway summarization technique capable of ar-
ticulating non-linear and multi-gene effects. Motivated by
the observation that NLDR can yield more accurate re-
sults when applied to gene expression data (31,33,34), our
method uses Isomap (35), an NLDR method, to summarize
pathway expression to yield a low-dimensional summary
that we call the pathway activity summary (PAS). The PAS
provides a faithful ‘snapshot’ of the pathway, a coarse mea-
sure of pathway expression in all samples. Our method then
computes correlation coefficients between PAS and miRNA
expression to identify miRNAs whose expression is associ-
ated with the overall activity of the pathway. By compar-
ing class-conditional correlations in cases and controls, we
identify miRNA-pathway pairs that appear to have a dif-
ferential relationship in cases and controls, elucidating the
function of the miRNA and its potential mechanistic role
in the phenotype of interest.

The approach used here is similar in some respects to
our GPC-score method (30), which reveals novel regula-
tory relationships between genes and pathways. Using PCA
for pathway summarization, GPC-score was able to identify
differentially regulated gene-pathway pairs and accurately
detect the interaction of genes with pathways that were not
previously known to include them. The present work aug-
ments this prior analysis method in two novel ways. First,
by using the non-linear Isomap instead of PCA, we obtain
a more faithful summary of pathway activity. Second, by
applying the method to miRNA and mRNA data (rather
than simply mRNA data), we achieve an integrative analy-
sis of these datasets that can provide insight into the func-
tion of miRNAs. We apply this method to miRNA and
mRNA expression profiles from four cancers (breast, liver,
lung and prostate) using data from The Cancer Genome At-
las (TCGA, http://cancergenome.nih.gov/).

Previous analyses have integrated multiple omics plat-
forms to identify specific mechanisms regulating gene ex-
pression. Several pipelines have taken into account sample-
specific data from TCGA at the transcriptomic, genomic
and epigenetic levels and have linked them with cell-generic
data from other consortiums (36,37). These studies have
identified relationships between expression regulators and
genes in some cancer types. Recently, the TCGA Network

http://cancergenome.nih.gov/
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Table 1. Procedure for assessing disrupted pathways regulated by
miRNAs

miRNA-pathway algorithm

1. Subset gene expression data to the pathway genes, forming pathway
expression matrix of l genes × N samples.

2. Apply Isomap to pathway matrix using all samples, obtaining for
each sample a PAS value based on the first Isomap coordinate
(analogous to using the first principal component from PCA).

3. Compute the Spearman rank correlation between the miRNA and
the PAS in tumor samples, ρ(miR, PAS | T).

4. Compute the Spearman rank correlation between the miRNA and
the PAS in normal samples, ρ(miR, PAS | N).

5. Compute absolute correlation difference between phenotypes as
shown in Equation 1.

6. Repeat steps 3.–5. using randomly permuted phenotype labels for
105 resamplings to compute the null distribution of �ρ.

7. Compare the true miRNA-pathway �ρ to the permuted null
distribution obtained in step 6. to assess statistical significance of
�ρ.

surveyed miRNAs in the context of expression patterns and
clinical outcomes in ovarian cancer, and found widespread
impact on gene expression and molecular heterogeneity
(38). Our method is also integrative, but novel in that it sur-
veys miRNA regulation in the context of gene expression
from a pathway perspective. Importantly, because our ap-
proach uses both miRNA and mRNA expression data, it
avoids some of the pitfalls that were previously identified
(39) with making pathway-level inferences from miRNA
data alone.

In this study, we apply our methodology to gene and
miRNA expression datasets from TCGA, a freely accessi-
ble repository of high dimensional genomic and expression
data for several cancers. The datasets include both tumor
and adjacent-normal tissue samples across multiple exper-
imental modalities. After identifying class-conditional cor-
relation differences for all possible miRNA-pathway pairs,
we assess their significance through permutation testing. We
report miRNAs that appear to have pathway-wide effects
whose relationships change with the development of can-
cer, and report results for multiple distinct cancers.

MATERIALS AND METHODS

In order to elucidate the functional role of miRNAs in can-
cer, we seek to identify miRNAs that appear to influence
the overall activity of a pathway, and whose effects on that
pathway appear to differ between healthy and tumor tis-
sue. To do so, we first compute an PAS for each sample
in each pathway of interest using gene expression data. We
then compute, class-conditionally, the correlation between
the pathway expression summary and each miRNA in cases
and controls to quantify the miRNA-pathway relationship
in those tissues, and test whether tumor-normal differences
in the miRNA-pathway correlations are statistically signifi-
cant. We detail the steps of this algorithm below; a summary
may be found in Table 1 and Figure 2.

Algorithm

To identify miRNAs whose effects across entire systems dif-
fer between two conditions, we compute the association of

A

B

C

Figure 2. Illustration of the algorithm for a particular miRNA-pathway
pair. (A) Gene expression data is first subsetted by the genes in a path-
way and summarized by Isomap to produce the PAS, a one-dimensional
(1D) summary of pathway expression in all samples. (B) PAS and miRNA
expression are subsetted by phenotype, and miRNA-pathway correlations
are computed for tumor and normal tissue. The difference between corre-
lations gives �ρ. (C) To assess �ρ significance, the �ρ null distribution is
estimated by random permutation of the class labels.

miRNAs with pathways and compare associations between
phenotypes by correlating miRNA and pathway gene ex-
pression. Because a given pathway may comprise tens to
hundreds of genes, we use Isomap (35) to compute a 1D
summary of gene expression across the pathway, which we
call the PAS. Here, each sample can be be thought of as a
point in a high dimensional space whose coordinates corre-
spond to the expression of the genes on that pathway. Be-
cause the underlying biology places constraints on the ex-
pression of these genes with respect to one another, we make
the assumption that the samples lie on a low-dimensional
manifold within the gene expression space. Isomap attempts
to learn this manifold, yielding a coordinate that articulates
the variability among samples; projecting the gene expres-
sion data from sample j onto this coordinate obtains the
pathway activity score PASj for sample j across the pathway
of interest. (The approach is analogous to that of PCA; in
contrast to PCA, however, the Isomap coordinate need not
be a linear transformation of the gene expression space.) By
obtaining PAS values for each sample, we can then compare
pathway activity in cases and controls, and test the associa-
tion of pathway activity with other variables of interest.

Relationships between miRNA expression and pathway
activity are then compared between phenotypes as follows.
The correlation between the PAS for a pathway and expres-
sion for a miRNA is computed class-conditionally, i.e. sep-
arately for tumor and normal samples. We then compute
the absolute difference of the miRNA-pathway correlation
in tumor and normal tissue:

�ρ(miR, PAS) = ∣
∣ρ

(
miR, PAS |T) − ρ

(
miR, PAS |N)∣∣ (1)
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N = 1000

Figure 3. Swiss roll dimension reduction using PCA and Isomap. The roll
is colored from green to red along the roll axis.

where, ρ(x, y) is the Spearman rank correlation between x
and y, chosen for its insensitivity to outliers, and T and N
indicate tumor and normal tissue, respectively. A large cor-
relation difference �ρ between sample classes indicates ap-
parent differential regulation of a pathway by a miRNA.
Significance of the correlation difference is assessed by a
permutation test, wherein the tumor and normal labels are
randomly reassigned and Equation 1 is recomputed to ob-
tain a reference distribution for the miRNA-pathway pair.
The steps for the algorithm are listed in Table 1. Figure 2
illustrates the algorithm in visual form.

Implementation

Here we detail the implementation of the algorithm as ap-
plied to mRNA and miRNA data from TCGA. Additional
details are provided in the Supplementary Data.

Pathway summarization. The goal of pathway summariza-
tion is to reduce the dimensionality from that of l genes on
the pathway to a single value that encapsulates the path-
way activity for each sample. To this end, we define the PAS
as the 1D embedding of the pathway mRNA data using
Isomap.

The choice to use Isomap for pathway summarization
rather than SVD (29) or PCA (30) is motivated by its ability
to articulate non-linear geometries in the data. A toy exam-
ple comparing Isomap to PCA is shown in Figure 3. Here,
the data lie on a 2D manifold that is coiled upon itself in
three-dimensional space; dimension reduction via Isomap
articulates this surface, whereas PCA cannot.

For each pathway in the KEGG (24) database, mRNA
expression data are subsetted to the genes associated with
that pathway to produce pathway-specific matrices. A total
of 223 pathways are included in the analysis (after excluding
six pathways with fewer than five genes). Expression levels
for each gene are scaled to have zero mean and unit vari-
ance, allowing features to be measured on the same scale
and reducing the disproportionate influence of any outly-
ing samples. Isomap is then applied to the pathway gene ex-
pression data, and the projection of the sample on the first
Isomap coordinate is used as a measure of the overall activ-
ity of the pathway.

An example of the utility of Isomap for summarizing gene
expression data is given in Figure 4, where the 39-gene ‘Type
I diabetes mellitus pathway’ is summarized by PCA (left)
and Isomap (right) for the TCGA breast cancer and normal
tissue samples. Because Type I diabetes mellitus has been as-
sociated with an increased risk of breast cancer (40,41) and

Figure 4. Comparison of gene expression dimension reduction using PCA
(left) and Isomap (right) for genes in the Type I diabetes mellitus pathway.
Black circles represent TCGA breast cancer tumor tissue and red trian-
gles represent adjacent-normal. Plotted are the projections of the samples
in the first four PCA coordinates (left) and first two Isomap coordinates
(right). The Isomap embedding enables separation of the tumor and nor-
mal samples not achieved by PCA, suggesting that a non-linear pattern of
gene expression within the pathway distinguishes tumor and normal sam-
ples.

several genes in the pathway are known tumor suppressors
and cytokines that are commonly perturbed in tumors, we
expect that a low dimensional embedding of the data should
enable separation of the tumor and normal samples. How-
ever, we observe that this difference is not articulated using
PCA; in the left scatterplot matrix of Figure 4, the red and
black points overlap. By contrast, the Isomap embedding
enables separation of the tumor and normal samples, sug-
gesting that there exists a (non-linear) pattern of gene ex-
pression within the pathway that is associated with breast
cancer. This example motivates the choice of NLDR as a
means of quantifying the overall behavior of a pathway.

Isomap parameter choice. Isomap has one free parame-
ter, k, which defines the k-nearest neighbors used in re-
constructing the local geometry (35). Choosing the optimal
value of k is an open question, and different values have
the potential to produce different embeddings. We devised
a data-driven method for selecting k by employing a com-
parison between the spectra of PCA and Isomap.

Isomap applies Multidimensional Scaling (MDS) (42)
on a distance matrix that approximates geodesic distances,
constructed by a k-nearest neighbors search and computing
shortest paths. This may be thought of as a localized form
of MDS (or, equivalently, PCA (42)), which classically uses
distances between all pairs to articulate the global geom-
etry. Like PCA and MDS, Isomap also yields a spectrum
of eigenvalues whose magnitude indicates the proportion of
variability in the data that is articulated by the correspond-
ing coordinate.

We capitalize on this feature by comparing the spectra of
PCA and ISOMAP for different values of k. Spectral com-
parisons can help find embeddings most different from each
other, and may reveal those that articulate manifolds with
non-linear structures. In PCA, one chooses the number of
components to be retained such that the majority of the
variance in the data is captured. A common visualization
is the ‘scree plot’ in which the variance for each component
(eigenvalues λ1 ≥ λ2, ≥. . . ≥ λn) is displayed; one looks for
an elbow in the spectrum indicating that additional com-



Nucleic Acids Research, 2018, Vol. 46, No. 3 1093

k = 3

ISO 1

IS
O

 2
k = 6

ISO 1

IS
O

 2

k = 16

ISO 1

IS
O

 2

0.
0

0.
4

0.
8

k spectra

index

va
lu

es

1 2 3

3 6 16

Figure 5. 2D embedding of the Swiss roll using Isomap for different k val-
ues. The bottom right plot shows the spectra using PCA (black dots), and
for k = 3 (red), k = 6 (green) and k = 16 (blue) using Isomap. The spectrum
at the optimal k, k = 6, is most different from PCA’s spectrum, as computed
by the SGR ratio defined in the ‘Materials and Methods’ section.

ponents do not appreciably reduce the residual variance.
Mathematically, an elbow at the first component will have
a large ratio between the first two eigengaps (i.e. a large
change between the first and second eigenvalues, followed
by a much smaller change between the second and third),
which we call the spectral gap ratio (SGR), SGR = λ1−λ2

λ2−λ3
.

We choose Isomap k such that it maximizes the SGR ratio
between Isomap and PCA, SGRISOMAP

SGRPCA
, noting that when k =

N − 1 (all data treated as nearest neighbors), Isomap and
PCA yield equivalent spectra. The optimal k is guaranteed
to yield SGRISOMAP

SGRPCA
≥ 1; that is, it produces an embedding that

explains at least as much variance in the first component
as PCA. By choosing k to maximize this ratio, we obtain
the greatest improvement by Isomap over PCA, which will
occur when the data lie on a curved manifold that cannot
be articulated by PCA.

To illustrate our methodology, we apply Isomap to the
Swiss roll dataset using different values of k in Figure 5.
The ‘optimal’ k (k = 6) produces an embedding that reflects
the low-dimensional intrinsic geometry of the roll, the un-
raveled 2D surface. In comparison, a value that is too small
(k = 3) will be sensitive to local distortions, whereas a value
that is too large (k = 16) will produce an embedding that
poorly learns the intrinsic coordinates. The spectra for all
three Isomap embeddings, in addition to the PCA spectrum,
are shown in the right-most plot in Figure 5. The green
empty circles, corresponding to (k = 6), have the largest
SGRISOMAP

SGRPCA
, whereas other k’s have smaller SGR as shown by

the red (k = 3) and blue (k = 16) empty circles. The ‘op-
timal’ k produces a PAS that captures the geodesic of the
Swiss roll. We applied this methodology to pathway data
such that the PAS best represents the geometry of the data
in the high-dimensional space.

PAS correlation with miRNAs. Once the PAS is com-
puted, correlations between each pathway’s PAS with
each miRNA’s expression are computed class-conditionally.

miRNA-pathway correlation differences (�ρ) are com-
puted between tumor and adjacent-normal tissue samples
as shown in Equation 1. We emphasize that the PAS is com-
puted class-inclusively (both tumor and adjacent-normal
tissue) so that different phenotypes are summarized in con-
text with each other. Thus, we can compare phenotypes on
the same scale and quantify their gene expression differ-
ences across the pathway. Afterward, we restrict samples to
each phenotype and compute their correlation with miR-
NAs class-conditionally. This enables us to compare how
the relationship between a miRNA and a pathway differs in
tumor and normal tissue.

The significance of each �ρ is assessed by permutation
tests. Each miRNA-pathway pair’s �ρ null distribution is
estimated by randomly permuting class labels and recom-
puting �ρ for 105 resamplings. Within each resampling, the
same number of nominal tumor and adjacent-normal sam-
ples is preserved. Adjustment for the multiple hypotheses
tested is also achieved through permutation (43).

RESULTS

miRNAs with median expression above 0.001 (444 in
breast, 455 in liver, 484 in lung and 416 in prostate) and
pathways with greater than five genes (223 pathways repre-
senting a total of 5869 unique genes) were considered. Each
possible miRNA-pathway pair (∼105 pairs) was analyzed
for differential association between tumor and adjacent-
normal tissue within each organ (breast, prostate, lung and
liver) by computing its �ρ and assessing �ρ significance to
identify organ-specific relationships between miRNAs and
pathways that appear to be strongly altered in tumors. Mul-
tiple hypothesis correction was achieved through permuta-
tion (43).

We illustrate aberrant miRNA regulation of pathways
in tumor tissue by showing sample miRNA versus PAS
expression plots which have the most pronounced class-
correlation differences (Figure 6). In the plots, tumor sam-
ples exhibit distinct trends from adjacent-normal samples
for the same miRNA and pathway in the same organ.

In these particular cases, the PAS alone can distinguish
phenotypes, as demonstrated by the difference in the lo-
cation of the tumor and normal samples along the x-
axes. However, we emphasize that differential expression
within a pathway is unnecessary for achieving significance.
Our method also detects aberrant signaling even when no
marginal differences can be detected. Figure 7 shows a sam-
ple miRNA versus pathway expression plot in prostate can-
cer with a significant correlation change despite a lack of
differential expression across either the PAS or miRNA.
Such a pair would not be detected using methods which
rely on single gene association statistics, or by looking at
the pathway in isolation without the miRNA.

Importantly, other evidence from the literature supports
the association of this miRNA-pathway pair. The miRNA
in Figure 7, hsa-mir-193a, is a tumor suppressor implicated
in several cancers whose downregulation has been proposed
as a biomarker of oncogenesis (27,44,45). The p53 signaling
pathway, a tumor suppressing pathway which responds to
cell stress, can activate cell-cycle arrest, senescence or apop-
tosis. It is known as a prominent regulator which is com-
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Figure 7. Example of a miRNA-pathway pair (miRNA ID: hsa-mir-193a,
KEGG pathway ID: 04115) with significant �ρ (�ρ = −0.64, P < 10−4)
despite no differential expression in prostate cancer. Absence of differen-
tial expression is visualized by a rug plot on the top and right. Our method
is capable of articulating significant miRNA-pathway coregulation differ-
ences regardless of differential expression across either the pathway or
miRNA.

monly disrupted in cancer cells (46), and its main tumor
protein TP53 is the most mutated gene in cancer. In addi-
tion, the p53 pathway contains three genes which are pre-
dicted to be targets of hsa-mir-193a (CCND1, SIAH1 and

ZMAT3). This example serves to illustrate the capabilities
of the method to detect biologically meaningful relation-
ships between miRNA expression and pathway activity.

In the following sections, we list the top 15 pairs with the
most pronounced �ρ for each cancer type. The remaining
pairs at the same level of significance are listed in the Sup-
plementary Data. Many of the flagged miRNAs and path-
ways have a biological basis for disruption in cancer.

Breast cancer

Breast cancer pairs with large �ρ are shown in Table 2.
Within each pair we include the number of predicted targets
of the miRNA on the pathway using TargetScan (47) as well
as the target enrichment P-value as calculated by DIANA
mirPath v.3 (48). hsa-mir-146b and hsa-mir-135b each reg-
ulate multiple pathways class-conditionally and have func-
tional relevance to cancer in the literature. Specifically, hsa-
mir-146b is a known tumor suppressor (49,50) that inhibits
NF-kB induction of IL-6 to prevent inflammation in breast
cells, which chronically leads to oncogenesis. In breast can-
cer cells, however, promoter methylation decreases hsa-mir-
146b expression (51). hsa-mir-135b has previously been as-
sociated with several cancer types, including prostate, lung
and most prominently colon cancer. In colon cancer, up-
regulation of hsa-mir-135b promotes cancer progression
and activation of hsa-mir-135b is triggered by oncogenic
pathways (52). The IL-1R1 pathway, which involves regu-
lation of immune and inflammatory responses, has recently
been found to regulate hsa-mir-135b expression in smoke-
induced inflammation in lung cells (53).
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Table 2. Top breast cancer pairs sorted by the most pronounced �ρ (P < 10−5)

miRNA KEGG ID KEGG name �ρ ρT ρN size targets p.DIANA

hsa-mir-146b 00330 Arginine and proline metabolism 1.15 0.44 −0.71 49 (54) 1 (1) 0.933
hsa-mir-146b 05110 Vibrio cholerae infection 1.12 0.44 −0.68 51 (54) 0 (0) 0.933
hsa-mir-146b 05217 Basal cell carcinoma 1.11 0.45 −0.66 53 (55) 1 (1) 0.933
hsa-mir-146b 05200 Pathways in cancer −1.10 −0.49 0.61 316 (326) 10 (10) 0.933
hsa-mir-135b 00980 Metabolism of xenobiotics by cytochrome P450 1.10 0.48 −0.63 49 (71) 0 (0) 0.685
hsa-mir-146b 05120 Epithelial cell signaling in Helicobacter pylori infection 1.10 0.47 −0.63 66 (68) 0 (0) 0.962
hsa-mir-135b 05217 Basal cell carcinoma 1.08 0.48 −0.60 53 (55) 5 (5) 0.517
hsa-mir-146b 00980 Metabolism of xenobiotics by cytochrome P450 1.08 0.46 −0.61 49 (71) 0 (0) 1.52e−04
hsa-mir-99a 00590 Arachidonic acid metabolism 1.07 0.49 −0.58 48 (59) 0 (0) NT
hsa-mir-135b 00520 Amino sugar and nucleotide sugar metabolism 1.07 0.44 −0.63 47 (48) 0 (0) NT
hsa-mir-1307 00830 Retinol metabolism −1.07 −0.51 0.56 42 (64) 0 (0) NT
hsa-mir-1307 04976 Bile secretion −1.06 −0.61 0.45 56 (71) 0 (0) 0.046
hsa-mir-135b 00051 Fructose and mannose metabolism 1.06 0.44 −0.63 35 (36) 1 (1) NT
hsa-mir-135b 05120 Epithelial cell signaling in helicobacter pylori infection 1.06 0.41 −0.65 66 (68) 4 (4) NT
hsa-mir-224 01040 Biosynthesis of unsaturated fatty acids 1.06 0.40 −0.65 19 (21) 0 (0) NT

ρT and ρN are the within-tissue Spearman’s rank correlation for tumor tissue and normal tissue, respectively. A total of 671 tumor samples and 87 normal
samples were used to compute correlations. Size denotes the number of genes in the pathway that have been used in the computation of the the PAS.
Targets denotes the number of predicted targets of the miRNA on those genes using TargetScan (47). In parenthesis, the total number of genes and targets
of the miRNA on the pathway are shown. p.DIANA denotes the miRNA-pathway enrichment P-value as calculated by DIANA mirPath v.3 (48) using
TargetScan. NT = no targets found by DIANA on the pathway.

It is notable that several pathways which are listed, in-
cluding those differentially regulated by hsa-mir-146b and
hsa-mir-135b, are inflammatory. Infectious disease path-
ways, including Vibrio cholerae infection and Epithelial cell
signaling in Helicobacter pylori infection, activate proin-
flammatory responses including the upregulation of var-
ious inflammatory cytokines after infection. Cytochrome
P450, the main enzyme in Metabolism of xenobiotics by cy-
tochrome P450, is regulated by several inflammatory medi-
ators and its expression and activity is decreased with a host
response to inflammation and infection (54).

These miRNAs and pathways are of interest because
chronic inflammation is broadly associated with tumorige-
nesis and cancer. Chronic inflammation has been shown to
increase the risk of tumor formation, notably demonstrated
in the association between chronic inflammatory bowel dis-
ease and colon carcinogenesis. Inflammatory mediators and
inflammation in the tumor microenvironment have many
cancer-promoting effects including promotion of malignant
cells, angiogenesis, subversion of immune responses, metas-
tasis, induction of proneoplastic mutations and altered re-
sponse to hormones (55–57). Proinflammatory chemokines
and cytokines have been found in the tumor microenviron-
ment of many cancers and are typically induced by hypoxic
conditions, which are characteristic of tumors (58).

In addition, several metabolic pathways are represented.
Arginine and proline metabolism has been known to ex-
hibit changes in cancer (59), and the proline regulatory axis
and proline metabolism both undergo alterations that are
posited to sustain and promote tumor cell growth (60,61). A
plot of hsa-mir-146b differentially regulating Arginine and
proline metabolism is shown in Figure 6. Interestingly, two
cancer pathways (Pathways in Cancer and Basal Cell Carci-
noma) contain the most predicted miRNA targets, includ-
ing cancer genes NRAS, CCDC6, CSF1R, SMAD4, ITGAV
and several others. However, it should be noted that many
miRNA-pathway pairs contain no predicted miRNA tar-
gets. Sequence matching using TargetScan (47) will fail to
capture indirect interactions between miRNAs and path-

way genes that may indeed be captured using correlations.
For instance, the IL-1R receptor family, which regulates
hsa-mir-135b expression (see above), activates cytokines IL-
6 and IL-8 which are present or interact with multiple in-
flammatory pathways in Table 2, even though they are not
predicted targets of hsa-mir-135b.

Prostate cancer

hsa-mir-195 is flagged with many pathways in prostate can-
cer, shown in Table 3. hsa-mir-195 is frequently reported
as deleted or downregulated in tumors across multiple can-
cer types (62–64). In prostate cancer hsa-mir-195 is under-
expressed and has been shown to behave as a tumor sup-
pressor by regulating RPS6KB1 (65), BCOX1 (66) and
FGF2 (67). hsa-mir-195 itself is part of the hsa-mir-15 fam-
ily cluster, whose hsa-mir-15a has also been shown to be-
have as a tumor suppressor by regulating oncogenes BCL2,
CCND1 and WNT3 (68). In advanced prostate tumors, hsa-
mir-15a is downregulated or deleted and these oncogene lev-
els are markedly increased. Relatedly, the loss of the hsa-
mir-15 family in prostate cancer has been found to con-
tribute to metastatic potential including bone lesions (69)
(a marker of metastasis). hsa-mir-16, another hsa-mir-15
family member, is flagged with several pathways with com-
parable P-values in prostate cancer (refer to Supplemen-
tary Data), furthering evidence that the hsa-mir-15 family
is compromised in prostate cancer.

Many oncogenes are regulated by hsa-mir-195, including
BCL2, CCND1, WNT3, AKT3, CDC42, RAF1 and KRAS
that lie on the pathways flagged with hsa-mir-195 in Table
3. These pathways include two cancer pathways (melanoma
and basal cell carcinoma), morphological pathways (axon
guidance and focal adhesion) and several signaling path-
ways whose genes are expected to be altered in tumors. In-
terestingly, most miRNA-pathway pairs in Table 3, and par-
ticularly those with hsa-mir-195, exhibit much stronger cor-
relations in normal samples than in tumor samples. These
trends may indicate general loss of function in tumorigen-
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Table 3. Top prostate cancer pairs sorted by the most pronounced �ρ (P < 10−5)

miRNA KEGG ID KEGG name �ρ ρT ρN size targets p.DIANA

hsa-mir-195 04360 Axon guidance −0.93 −0.19 0.75 128 (129) 16 (17) 0.190
hsa-mir-195 04510 Focal adhesion 0.88 0.18 −0.70 194 (200) 30 (31) 0.013
hsa-mir-195 05218 Melanoma 0.88 0.18 −0.70 63 (71) 16 (16) 0.013
hsa-mir-1307 05410 Hypertrophic cardiomyopathy (HCM) 0.86 0.38 −0.49 75 (83) 0 (0) NT
hsa-mir-195 05217 Basal cell carcinoma −0.85 −0.17 0.68 54 (55) 10 (10) 0.309
hsa-mir-1307 05414 Dilated cardiomyopathy −0.85 −0.39 0.46 81 (90) 0 (0) NT
hsa-mir-1307 04122 Sulfur relay system −0.85 −0.23 0.62 10 (10) 0 (0) NT
hsa-mir-200a 03022 Basal transcription factors −0.84 −0.17 0.68 35 (36) 0 (0) 0.999
hsa-mir-944 00982 Drug metabolism - cytochrome P450 −0.83 −0.52 0.32 55 (73) 0 (0) NT
hsa-mir-141 00592 alpha-Linolenic acid metabolism 0.83 0.42 −0.42 16 (20) 0 (0) NT
hsa-mir-195 04964 Proximal tubule bicarbonate reclamation 0.83 0.15 −0.67 22 (23) 3 (4) 1
hsa-mir-195 04912 GnRH signaling pathway 0.83 0.13 −0.70 92 (101) 10 (10) 0.399
hsa-mir-195 05414 Dilated cardiomyopathy 0.82 0.14 −0.69 81 (90) 5 (5) 1
hsa-mir-195 04664 Fc epsilon RI signaling pathway 0.82 0.14 −0.69 70 (79) 10 (10) 0.243
hsa-mir-195 05100 Bacterial invasion of epithelial cells 0.82 0.20 −0.62 69 (70) 5 (5) 0.271

A total of 482 tumor samples and 52 normal samples were used to compute correlations.

esis, in concordance with documented underexpression of
hsa-mir-195 in tumors.

Liver cancer

In Table 4, flagged pairs for liver cancer are shown. miRNAs
hsa-mir-100, hsa-mir-34a and hsa-mir-210 are represented
several times and are each known to be involved in hepato-
cellular carcinoma. hsa-mir-100 downregulation, concomi-
tant with increased expression of its target PLK1, corre-
lates with poor prognosis and is an early event in hepato-
carcinogenesis (70,71). Several studies have shown hsa-mir-
34a to be a tumor suppressor that activates apoptosis and
cell senescence. In hepatocellular carcinoma, hsa-mir-34a
suppresses tumor invasion by modulating c-Met expression
and is typically underexpressed (72,73). In addition, hsa-
mir-210 upregulation is increased in hypoxic conditions and
contributes to metastatic potential in hepatocellular carci-
noma (74).

hsa-mir-100 and hsa-mir-34a are both found to differen-
tially regulate the p53 signaling pathway in Table 4. This
is of interest because TP53 is very commonly implicated
in cancer, and in liver cancer, TP53 loss is associated with
aggressive carcinomas and restoration of TP53 has been
shown to initiate tumor regression (75). Notably, hsa-mir-
34a and hsa-mir-34 family members are part of the p53
transcriptional network and are directly regulated by TP53
(76,77). TP53 induces the transcription of the hsa-mir-34
family, which downregulates CDK4 and CDK6 to induce
cell cycle arrest and BCL2 to promote apoptosis (78). hsa-
mir-34a itself is predicted to directly regulate eight targets
on the p53 signaling pathway, including tumor-associated
genes CCND1, CCNE2, TP73 and CDK6. In addition,
TP53 induces the transcription of other miRNAs (hsa-
mir-145, hsa-mir-192/215 and hsa-mir-107) that modulate
genes to induce cell cycle arrest, reduce cell proliferation
and suppress angiogenesis (78). We illustrate hsa-mir-34a
targeting the the p53 signaling pathway in Figure 8, with
genes colored by differential expression between tumor and
normal tissue in liver cancer. We note this figure does not
include connections to hsa-mir-34a since it is only a par-
tial representation of the gene regulatory network. Nev-
ertheless, hsa-mir-34a appears to target genes which have

variable degrees of differential expression in liver cancer.
Of the genes hsa-mir-34a is predicted to target using Tar-
getScan (47), several (79–83) contain direct literature sup-
port, while others lack literature support but are indirectly
linked through family members (84) or modulate hsa-mir-
34a expression (85). Notably, the bladder cancer pathway is
also present in Table 4 and contains TP53 as well as other
tumor suppressors and oncogenes that are implicated in
multiple cancer pathways.

Lung cancer

Flagged pairs in lung cancer are shown in Table 5. hsa-mir-
141 is represented frequently and is part of a miRNA family
containing five members arranged as two clusters, hsa-mir-
200a/200b/429 and hsa-mir-141/200c, that is thought to
suppress the epithelial to mesenchymal transition (EMT).
This is of interest because the EMT is believed to be an
important step in metastasis. The EMT is marked by de-
creased cell adhesions including repression of E-cadherin
and increased cell motility. This miRNA family has been
observed to play a role in the EMT of many cancer types, in-
cluding bladder, breast, melanoma, prostate and lung can-
cer. In lung cancer, it has been shown to suppress the EMT
with forced increased expression, while EMT was observed
in lung cancer cells with low expression of hsa-mir-200 (86).
In addition, hsa-mir-141 has been shown to be a prognostic
indicator in lung cancer (87) and promotes proliferation by
targeting PHLPP1 and PHLPP2 (88).

It is notable that many of the pathways in Table 5 are mor-
phological and dictate cellular processes remodeled during
the EMT. Gap junctions, Tight junctions and Focal adhe-
sions all undergo significant changes to decrease cell-cell
adhesions and promote invasion. In Table 5, miRNAs hsa-
mir-141 and hsa-mir-200c both differentially regulate Gap
junctions (hsa-mir-141 versus Gap junction PAS is shown
in Figure 6). Diminished Gap junctions or their elimination
are seen as important indicators of tumorigenesis (89,90). In
addition, many cancer genes targeted by hsa-mir-141 and
its family members are on the pathways in Table 5, includ-
ing SRC, PTEN, GRB2, CDK6, KRAS, DCC and various
protein kinases. These genes are reported to play significant
roles in multiple cancers in the literature.
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Table 4. Top liver cancer pairs sorted by the most pronounced �ρ (P < 10−5)

miRNA KEGG ID KEGG name �ρ ρT ρN size targets p.DIANA

hsa-mir-100 04115 p53 signaling pathway 0.85 0.38 −0.47 64 (68) 0 (0) NT
hsa-mir-3607 04320 Dorso-ventral axis formation 0.82 0.26 −0.56 20 (24) 0 (0) NT
hsa-mir-34a 04115 p53 signaling pathway 0.81 0.29 −0.53 64 (68) 8 (8) 0.411
hsa-mir-100 00360 Phenylalanine metabolism 0.81 0.53 −0.28 17 (17) 0 (0) NT
hsa-mir-210 03030 DNA replication −0.81 −0.45 0.36 36 (36) 0 (0) NT
hsa-mir-210 05219 Bladder cancer −0.81 −0.41 0.40 41 (42) 0 (0) NT
hsa-mir-210 05322 Systemic lupus erythematosus −0.81 −0.35 0.46 103 (136) 0 (0) NT
hsa-mir-210 04110 Cell cycle −0.81 −0.42 0.38 117 (124) 0 (0) NT
hsa-mir-148b 04614 Renin-angiotensin system 0.80 0.19 −0.61 14 (17) 1 (1) 0.582
hsa-mir-139 00053 Ascorbate and aldarate metabolism −0.80 −0.36 0.45 24 (26) 0 (0) NT
hsa-mir-34a 00620 Pyruvate metabolism 0.80 0.29 −0.51 37 (40) 1 (1) 0.999
hsa-mir-34a 00591 Linoleic acid metabolism 0.80 0.32 −0.47 23 (30) 0 (0) NT
hsa-mir-1247 00460 Cyanoamino acid metabolism −0.80 −0.46 0.34 7 (7) 0 (0) NT
hsa-mir-100 00983 Drug metabolism - other enzymes 0.79 0.56 −0.24 49 (52) 0 (0) NT
hsa-mir-139 00330 Arginine and proline metabolism 0.78 0.58 −0.20 51 (54) 2 (2) NT

A total of 347 tumor samples and 50 normal samples were used to compute correlations.
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Pathway miRNA targets

It is reasonable to ask whether the associations detected be-
tween miRNAs and pathways are driven by an abundance
of targeted genes on those pathways. Tables 2–5 list the
number of genes on the pathway that are targetted by the
associated miRNA. As noted above, several pathways do
contain multiple targets of a miRNA. However, we detect
many more pathways that exhibit a differential association
with a miRNA despite the fact that the pathways are not
known to contain miRNA targets. To address this question
systematically, we tested whether an abundance of miRNA
targets in a pathway was predictive of a strong association in
the analysis above. Briefly, we were unable to detect any re-

lationship between the strength of the differential miRNA-
pathway association and the proportion of miRNA targets
on the pathway. Further details may be found in the Sup-
plementary Data.

This is also revealed by comparison of miRNA-pathway
associations as predicted by DIANA mirPath v.3 (48) with
our results. Briefly, DIANA is a software suite that identi-
fies miRNA regulatory control of functional pathways by
looking for targets on annotated pathways, using standard
and empirical statistical tests along with database function-
alities. In Tables 2–5, DIANA P-values do not appear to
correspond with �ρ significance. DIANA is based on pre-
dicted miRNA targets within pathways, analogous to our
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Table 5. Top lung cancer pairs sorted by the most pronounced �ρ (P < 10−5)

miRNA KEGG ID KEGG name �ρ ρT ρN size targets p.DIANA

hsa-mir-141 04540 Gap junction −1.26 −0.52 0.74 84 (90) 8 (8) 0.357
hsa-mir-141 05146 Amoebiasis 1.19 0.54 −0.65 102 (106) 5 (5) 0.958
hsa-mir-203 04530 Tight junction 1.13 0.44 −0.69 121 (132) 14 (14) 0.165
hsa-mir-141 05100 Bacterial invasion of epithelial cells −1.13 −0.55 0.58 68 (70) 5 (5) 0.471
hsa-mir-141 04510 Focal adhesion 1.11 0.55 −0.56 195 (200) 8 (8) 0.958
hsa-mir-141 04916 Melanogenesis −1.11 −0.45 0.66 98 (101) 5 (5) 0.745
hsa-mir-141 04670 Leukocyte transendothelial migration 1.10 0.57 −0.53 109 (116) 2 (2) 0.999
hsa-mir-141 04974 Protein digestion and absorption −1.09 −0.53 0.56 70 (81) 3 (3) 0.999
hsa-mir-150 04973 Carbohydrate digestion and absorption 1.08 0.52 −0.56 35 (44) 1 (1) NT
hsa-mir-222 05146 Amoebiasis 1.07 0.43 −0.64 102 (106) 1 (1) 0.977
hsa-mir-141 05200 Pathways in cancer 1.06 0.53 −0.53 315 (326) 25 (25) 0.357
hsa-mir-150 04660 T cell receptor signaling pathway −1.05 −0.62 0.43 103 (108) 4 (4) NT
hsa-mir-200c 04540 Gap junction −1.05 −0.39 0.66 84 (90) 13 (13) 0.091
hsa-mir-141 04145 Phagosome 1.05 0.54 −0.51 142 (153) 6 (6) 0.924
hsa-mir-141 00260 Glycine, serine and threonine metabolism −1.04 −0.44 0.60 29 (32) 0 (0) NT

A total of 342 tumor samples and 38 normal samples were used to compute correlations.

calculations of abundance and enrichment in the Supple-
mentary Data. Both measures are quite distinct from our
miRNA-pathway algorithm, which searches for dysregula-
tion by comparing phenotypes using expression data. Thus,
target enrichment is a poor predictor of miRNA-pathway
dysregulation.

DISCUSSION

We have described a new method for integrating miRNA
and gene expression data to elucidate the role of miRNAs
in regulating functional pathways and identifying miRNA-
pathway pairs whose co-regulation may be disrupted in can-
cer.

Our approach improves upon other methods that have re-
cently been proposed to study miRNA regulation of path-
ways in cancer. Many of these approaches rely on miRNA
target prediction coupled with enrichment analyses. For in-
stance, Sehgal et. al. (91) identified prognostic miRNAs
based on survival analysis and then used functional network
analysis to identify potential pathways regulated by those
miRNAs using gene ontology terms, and Suzuki et. al. (92)
developed GSEA-FAME (Functional Assignment of miR-
NAs via Enrichment) to infer miRNA activity from mRNA
expression data using enrichment and weighted miRNA–
mRNA interaction methods. Both methods have been ap-
plied to TCGA data in order to identify biomarkers and
interpret miRNA function in cancer. However, functional
enrichment has been shown to contain bias (93), and com-
monly used in silico approaches tend to identify highly re-
lated biological processes (39). In addition, these methods
typically ignore context dependent changes in miRNA reg-
ulation; it is well known that miRNAs exhibit heteroge-
neous effects across cell, tissue and tumor types.

In contrast, our method does not rely on miRNA tar-
get prediction and functional enrichment, avoiding those
sources of bias. Rather, our approach is fully data driven,
integrating sample-specific miRNA and mRNA expression
data for identifying miRNA-pathway regulation. This takes
into account any context dependent behavior of miRNAs,
since miRNA and mRNA expression are compared using
the same biological samples. By summarizing the gene ex-
pression behavior on the pathway with the PAS instead of

performing enrichment analysis, we capture the overall ef-
fect of the miRNA on the pathway, avoiding the bias intro-
duced by correlated genes (93). The use of NLDR to ob-
tain the PAS also enables this method to articulate complex
coregulatory dynamics (such as that illustrated in Figure 1).
By comparing the miRNA-pathway relationship in tumor
tissue to that in adjacent normal tissue, the method is able
to identify regulatory relationships which are disrupted in
disease. Other methods typically focus only on tumor tis-
sue and therefore cannot distinguish regulation uniquely af-
fected in tumors.

Our pathway summary compresses high-dimensional ex-
pression of all constitutive genes using samples of both phe-
notypes in the same organ. Because it computes the sum-
mary collectively, in the context of all other genes and sam-
ples, it does not rely on independent statistical associations
with the phenotype of interest. Importantly, this approach
takes into account systemic effects and has the ability to
articulate non-linear geometries, which may separate out
phenotypes even if their boundaries are not convex. Class-
conditional correlations of the pathway summaries with
miRNA expression between phenotypes can identify aber-
rantly regulated miRNA-pathway relationships even in the
absence of differential expression across either the miRNA
or pathway. This is in contrast to other approaches which
rely on individual differential expression of miRNAs or
genes to detect systemic differences across phenotypes. The
use of pathways, rather than individual genes, significantly
reduces the search space of relevant processes while increas-
ing interpretability.

We integrate sample-specific miRNA and mRNA expres-
sion data from TCGA and compare tumor to adjacent-
normal tissue samples from breast, prostate, liver and
lung cancers. We find that within each cancer type, more
miRNA-pathway relationships are aberrantly regulated in
tumors than expected by chance. This supports the notion
that complex diseases like cancer contain perturbations to
entire systems rather than to a few individual genes. Addi-
tionally, many of the flagged miRNAs and pathways have a
biological basis for disruption in cancer. We find specific re-
lationships related to inflammatory processes, EMT modu-
lation and tumor suppression (p53 signaling) that are highly
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perturbed in tumors. Comparison of results across cancer
types exhibited differences in the miRNA-pathway pairs
detected, suggesting that the underlying molecular mech-
anisms differ across tissues.

Because our method relies on statistical associations of
expression data, it does not incorporate known miRNA–
gene target relationships a priori. To investigate whether our
findings of significant miRNA-pathway paris were driven
by an abundance of miRNA targets on the pathway, we
tested whether flagged miRNA-pathway pairs were more
likely to be enriched with predicted miRNA targets and
found poor association in all cancer types (see Supplemen-
tary Data). We found no association between the signifi-
cance of the miRNA-pathway results and the number of
miRNA target genes on the pathway, suggesting that in-
direct coregulation of the miRNA and the pathway genes
contributes to our results. Notably, the significance of many
miRNA-pathway pairs would be missed using methods that
rely on miRNA target lists to identify miRNA-regulated
pathways. Other potential artifacts that could influence sig-
nificance, such as miRNA differential expression and path-
way size, also showed little association with our findings
(see Supplementary Data), suggesting that these too are not
driving our findings. Together, this supports the view that
the method is capable of detecting biologically significant
miRNA-pathway relationships at the systems level that ei-
ther cause or emerge from a phenotype change, and which
may be missed using other approaches.

We note that our method is limited by its input data. Be-
cause we use pathways as annotated systems, the expres-
sion of genes in TCGA data that do not map to pathways
are disregarded in our analysis, and, in addition, pathway
genes which are not assayed are also removed. This limits
the amount of genes we can incorporate into our analysis.
Our study is also limited by the amount of samples avail-
able. Currently, TCGA contains the largest amount of tu-
mor and healthy control samples, although obtaining other
comparable datasets would further validate the results of
the study. In addition, our method only considers expres-
sion data while ignoring other biological factors influencing
miRNA regulation of pathways, including the genomic in-
formation. Finally, our method only considers one miRNA
regulating one pathway at a time, whereas biologically path-
ways are regulated by hosts of miRNAs simultaneously.

Given miRNA-pathway pairs identified in this study, fu-
ture work could hone in on these systems to disentangle
their causes. For instance, studies could integrate germline
or somatic mutations within affected pathways to deter-
mine specific miRNA–gene relationships that are compro-
mised in specific cancer types, which may collectively con-
tribute to dysregulation of entire pathways. Other directions
could include modifying the algorithm to identify multiple
simultaneous miRNAs and pathways in dysregulated sub-
networks, rather than a single miRNA, single pathway ap-
proach. Currently, TCGA is the largest publicly available
consortium of cancer data containing healthy tissue con-
trols, to our knowledge. Increased data collection or ap-
plications to other datasets would further validate these
results. In addition, experiments could be undertaken to
knockdown or upregulate expression patterns of miRNAs

and genes in affected miRNA-pathway pairs. These experi-
ments could validate the findings of this study.

Finally, while we apply our algorithm to miRNA and
gene expression data in cancer, we note that it can be gen-
eralized to other experimental modalities and diseases, pro-
vided sufficient data for cases and controls. Future appli-
cations could include other regulatory mechanisms such
as transcription factors, epigenetic modifications or small
molecule inhibitors. In addition, other complex diseases
could be investigated that are thought to undergo signifi-
cant perturbations at the systems level. Identifying altered
associations at the systems level helps narrow down the
search space for responsible mechanisms that contribute to
tumorigenesis.
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