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Abstract

Background: Exploration of large data sets, such as shotgun metagenomic sequence or expression data, by
biomedical experts and medical professionals remains as a major bottleneck in the scientific discovery
process. Although tools for this purpose exist for 16S ribosomal RNA sequencing analysis, there is a growing
but still insufficient number of user-friendly interactive visualization workflows for easy data exploration and
figure generation. The development of such platforms for this purpose is necessary to accelerate and
streamline microbiome laboratory research.

Results: We developed the Workflow Hub for Automated Metagenomic Exploration (WHAM) as a web-based
interactive tool capable of user-directed data visualization and statistical analysis of annotated shotgun metagenomic
and metatranscriptomic data sets. WHAM! includes exploratory and hypothesis-based gene and taxa search modules
for visualizing differences in microbial taxa and gene family expression across experimental groups, and for creating
publication quality figures without the need for command line interface or in-house bioinformatics.

Conclusions: WHAM! is an interactive and customizable tool for downstream metagenomic and metatranscriptomic
analysis providing a user-friendly interface allowing for easy data exploration by microbiome and ecological experts to

facilitate discovery in multi-dimensional and large-scale data sets.
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Background

As metagenomic and metatranscriptomic shotgun se-
quencing data become both less expensive to generate
and more readily available, researchers have turned to
automated pipelines such as MetaPhlAn [1], HUMAnN2
[2, 3] MEGAN [4] and SAMSA [5] for annotation and
analysis. While these applications provide high quality
functional and taxonomic annotations, a computational
hurdle still exists between the data output and biologic-
ally interpretable results. Output formats from annota-
tion pipelines are typically cumbersome tables and large
matrices of genes, assigned taxa, and abundance or
expression levels. Researchers then must sift through the
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data for their genes of interest to test their stated
hypotheses. Further because of the size and density of
information, exploration of the data presents an even
more overwhelming task for experimentalists, inhibiting
data-driven discovery.

Concurrently with the increasing interest in the field,
many of the tools described above have been employed
to analyze and characterize the human microbiome.
Two widely used tools, HUMANn2 and QIIME2,
provide extensive frameworks for gene annotation and
taxonomic analysis, respectively. However, both of these
tools have limitations for downstream visualization and
user-based data exploration. While HUMAnN2 includes
a visualization script to generate relative abundance
plots for a particular pathway or gene family of interest,
users are limited in figure customization and must use
the command line. Requiring users to specify the feature
of interest hinders exploration of the data set in its entir-
ety. However, other platforms such as QIIME2 have
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recognized the utility of command line independence
and user-defined exploration of sequencing data. A
novel feature of the QIIME2 platform includes a
Graphical User Interface (GUI)-based Shiny derivative
where users can visualize taxonomic information and
download high-quality figures. Nevertheless, QIIME
users are limited to taxonomic investigations and
therefore miss the opportunity to correlate gene ex-
pression observations with taxonomic abundance. In
addition to these commonly used resources, new
tools and methods are continuously being developed
to deal with the challenges of visualizing these com-
plex datasets. Several R-packages or command line
tools exist for this purpose, including MG-RAST [6],
CAMERA [7], and ASAR [8]. Others only focus only
on 16S rRNA sequence data input and are unable to
accommodate shotgun metagenomics data containing
information on both taxa and functional elements
[9-13]. Therefore, there is a growing a need for tools
addressing the specific challenges biomedical experts
face when analyzing metagenomics data.

Our Workflow Hub for Automated Metagenomic
Exploration (WHAM!) aims to provide a platform for
simple and intuitive exploration and targeted analysis
of metagenomic sequencing data. Our platform re-
quires no computational background or processing on
the part of the user to generate publication-quality figures.
Furthermore, this application allows users to interactively
explore their dataset for patterns and changes in expres-
sion or taxonomic composition while also providing a
platform for analyzing specific biological features and their
taxonomic contributors.

Implementation

WHAM! Ul architecture

WHAM! is described here as an easy to use, web-based,
R-shiny application that generates publication-quality
figures for metagenomic sequencing analyses (https://
ruggleslab.shinyapps.io/wham_v1/). The application em-
ploys a number of R packages including, ggplot2 [14],
psych [15], gplots [16], and plotly [17] for visualization
(For source code and full list of packages and dependen-
cies please see https://github.com/ruggleslab/jukebox/
tree/master/wham_v1). However, all dependencies are
packaged within the application, so users only need web
access and input data. Currently, the application accepts
two input options, based on commonly used metage-
nomics pipelines and the platform is open to adding
additional input options as they are developed by the
community. The first is a tab-delimited output of gene
families, pathways or Gene Ontology (GO) terms and
their abundance or expression levels in the specified for-
mat shown in Additional file 1: Table S1. This format is
based on the Huttenhower Biobakery pipeline [18]
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which is comprised of a suite of tools including FastQC,
Kneaddata [19], MetaPhlAn [1] and HUMAnN?2 [2, 3].
We chose this pipeline, in part, because the next iter-
ation of the human microbiome project uses a workflow
that includes Biobakery-based tools [20] and a cu-
rated database of metagenomics studies which have
been processes through this pipeline are available
through the Bioconductor ExperimentHub platform
[21]. Creating user-friendly web-tools downstream of
these analyses steps will allow researchers to explore
the ongoing large-scale metagenomics projects with-
out having to do the computational heavy lifting.
The second input option is the European Bioinfor-
matics Institute (EBI) Metagenomics service, in
which the user can upload up to two files containing
functional features (Interpro protein families, GO
terms, etc.) and/or a taxa file, in the specified for-
mats shown in Additional file 2: Table S2.

Once uploaded, the file(s) are automatically pre-
viewed showing 25 searchable rows of data on the
main application page to allow for visual inspection
(Fig. la). A variance filter slider control is provided
for filtering out low variance features in order to
speed up differential abundance calculations and visuali-
zations based on a variance percentile cutoff. Users can
then navigate to the ‘Groups’ tab where they are prompted
to manually separate their samples into as many as 10
experimental groups allowing for automated statistical
comparisons between experimental groups in the down-
stream analysis (Fig. 1b).

Pipeline architecture and visualization methods

Methods for the analysis of metagenomics data are
rapidly being developed to meet the need of the
community (see reviews [22—24]). The choice of statis-
tical methods, in particular, must be tailored to the
specific challenges inherent to metagenomics data
analysis. For differential expression analysis, we chose
the ANOVA-Like Differential Expression (ALDEx2)
method, which takes into account within-condition
variation, the compositional characteristics of high-
throughput sequencing data and multiple testing cor-
rections. This method evaluates differential expression
between experimental groups using a combination of
statistical significance and effect size estimates, both
of which are included in our pipeline [22]. The
WHAM! ‘Explore Your Data’ module has user input
sliders for absolute effect size selection and Wilcoxon
test p-value cutoffs to isolate meaningful findings in
the data. A non-parametric Spearman correlation ana-
lysis was chosen for our cross correlation tests, with
Benjamini-Hochberg correction for false discovery
rates (FDR) [25].
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Further, we have carefully considered the options avail-
able for metagenomic data visualization during application
development. In terms of visualization, we have chosen to
focus on a combination of stacked bar plots (for taxa
contribution) and heatmaps (for relative abundance, cor-
relation analysis and pairwise statistics). Stacked bar plots
are able to efficiently represent the proportion of taxa
present in each sample across many metagenomes and are
commonly used in microbiome studies. Heatmaps are
particularly useful in highlighting the taxa and gene abun-
dance in a collection of samples or for taxa correlation
plots, where other methods such as box or bar plots can
become cumbersome [23].

Data exploration

WHAM! has several built-in calculation modules for
both data exploration and hypothesis-driven analyses
(Fig. 1). Within the “Explore Your Data” module, users

can navigate to the subtabs ‘Explore Taxa’ and ‘Explore
Features; which provide users with a global view of the
functional and taxonomic composition of their dataset
by visualizing all gene families, pathways or GO
term-based classification and taxa present according to
their relative abundance (Fig. 1c, Fig. 2). Users can
analyze their taxa at different levels (e.g. genus, species,
class) and a differential abundance analysis is also auto-
matically completed to identify taxa that significantly
differ across groups, using the ALDEx2 differential
expression test [22]. Features found to be significantly
different across any group comparison based on user
supplied adjusted p-value and effect size cutoffs are then
visualized as a heatmap (Fig. 2b). Hovering over and
clicking on a specific feature in the heatmap expands the
results below to show the pairwise adjusted p-value sig-
nificance across groups (Fig. 1c, Fig. 2c). The ‘Explore
Features’ tab also completes the differential abundance
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Fig. 2 Exploratory modules show broad differences in taxa and GO-terms across body sites. Relative abundance levels of all genera detected in 47
human microbiome samples across four body sites: arm, saliva, stool, and vagina. a Sample plot downloaded from the ‘Explore Taxa' module including a
full list of the relevant genera displayed and their relative abundance levels across the user-specified groups. b, ¢ Interactive sample heatmap showing
differentially abundant taxa across body sites with a plot of pairwise adjusted p-values for Cutibacterium acnes. d Sample plot downloaded from the
‘Explore Features’ module showing the differentially abundant GO terms across groups. e Pairwise adjusted p-values for the drug transmembrane
transport GO term, obtained by selecting the heatmap feature in d. f Taxa contributing to the drug transmembrane transport GO term

analysis again using the ALDEx2 R package, creating
an associated heatmap for significantly changing
genes, pathways or GO terms based on user-defined
adjusted p-value and effect size cutoffs (Fig. 2d).
Clicking on a feature in the heatmap visualizes the
statistical differences across groups (Fig. 2e) and a
breakdown of taxa contributing to the feature abun-
dance as stacked bar plots to better understand which
microbial taxa are contributing to the differentially
abundant features in each sample (Fig. 2f). Both the
heatmap and stacked bars are interactive, where
hovering over any of the plot elements displays the
corresponding gene and/or taxa details.

Hypothesis-driven analysis

The ‘Query Your Data’ module then provides an infrastruc-
ture for user-friendly and interactive hypothesis-driven
analysis (Fig. 1d). In the ‘Feature Search’ tab, users are
prompted to select features of interest which automatically
generates an interactive heatmap plotting the relative
abundance levels for each selected gene or pathway across
samples (Fig. 3a). Clicking on a feature in the heatmap
propagates a stacked bar plot showing taxa abundance
contributing to that gene or GO term (Fig. 3c) and, in the
case where groups significantly differ in the abundance of
that feature and an adjusted p-value matrix showing the
pairwise comparisons (Fig. 3b). Lastly, the ‘Correlation’ tab
calculates the pairwise correlations between user-defined
genes across all samples and within each experimental
group to provide insight into the relative relationships
between biological features across all samples and under
different experimental conditions (Fig. 3d). Correlation
values and their significance are calculated using Spearman
correlation and plotted as a clustered heatmap (using
hclust algorithm defaults [26]) with significance levels indi-
cated by an asterisk. This module allows, not only for a
user-driven exploration of specific features of interest in
the dataset, but also for the creation of publication quality
figures and statistics. Due to the nature of EBI-related in-
put, taxa contribution calculations specific to functional
features are not available for both modules.

Results

To demonstrate the utility of WHAM!, we used two in-
dependent, publicly available test datasets. The first was
derived from 47 human microbiome samples from four

body sites made available by the Human Microbiome
Project (HMP) [27]. Shotgun metagenomic sequencing
data were processed through an analysis pipeline utiliz-
ing the Huttenhower Biobakery pipeline [18], including
FastQC, Kneaddata [19], MetaPhlAn [1] and HUMAnN2
[2, 3] to obtain an annotated gene abundance matrix.
After host decontamination and quality filtering, the es-
timated counts in each sample were calculated by multi-
plying the relative abundances for each feature by the
total sum of profiled counts. Following count estimation,
the gene family identifiers were further collapsed by GO
term mapping via the “humann2_regroup_table” func-
tion provided within HUMANnN2. This dataset has been
mounted as a test case to our web-app in the “Try a
Sample Dataset’ mode on the application homepage.
Although an already well-studied dataset, our analysis of
these HMP sequencing data highlights the utility and ex-
ploratory capabilities provided by our visualization suite.
As expected, body sites vary widely in the taxonomic spe-
cies present and in the abundance of these taxa (Fig. 2a).
Arm samples were dominated by the genus Cutibacterium
(previously classified as Propionibacterium), which was
also observed in the original HMP analysis (Fig. 2b, c)
[27]. Furthermore, stool and saliva samples exhibited
much greater microbial diversity when compared to arm
and vaginal samples, at the depth of resolution provided
in the original data (Fig. 2a). As demonstrated, WHAM! is
able to readily identify and visualize taxonomic differences
based on group classifications which could include varied
diets, drug treatment groups, disease states, or any
other user-defined classification. We can similarly ex-
plore the GO term abundance across samples using the
‘Explore Features’ tab, automatically identifying differ-
entially abundant GO terms across samples based on
user-controlled p-value and effect size cutoffs (Fig. 2d).
Of those found to be significantly different, several anti-
biotic resistance-related GO terms were represented, in-
cluding drug transmembrane transport, differing between
stool and all other body sites tested (Fig. 2e). The taxa
contributing to the abundance of this pathway also differed
between sites, with high diversity, including E. coli and
Bacteroides, found in stool samples (Fig. 2f).

Because of our interest in the emergence of antibiotic re-
sistance, we chose to explore our test data set for patterns
in pathway abundances for antibiotic resistance mecha-
nisms based on GO-term categories. By searching for these
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keywords in the ‘Feature Search’ tab, we detected several
antibiotic resistance-related GO-term categories across the
four body sites (Fig. 3a). Clicking on the features in the
heatmap revealed significant differences in relative abun-
dance levels of a subset of GO terms across the four body
sites. These included the ‘response to antibiotic’ GO-term,
which was significantly different in abundance in compari-
sons between stool and vagina, stool and saliva, vagina and
saliva, and arm and saliva (Fig. 3b). Our analysis also dem-
onstrates relatively high abundance levels of antibiotic re-
sistance gene families in saliva and a wide dispersion of
these gene families in stool samples (Fig. 3a).

Further investigation via the ‘Feature Search’ tab
also provided taxonomic identification corresponding

to the differences in ‘response to antibiotic’ GO-term
abundance across the four body sites. In arm sam-
ples, the ‘response to antibiotic’ GO-term was almost
exclusively present in C. acnes, while in saliva and
stool samples the contributing taxa were more di-
verse, with the highest prevalence occurring in
Streptococcus oralis in saliva and Prevotella copri in
stool (Fig. 3c). Such observations in other data sets
can address a number of biologically relevant ques-
tions, including how commensal bacteria contribute
to the spread of antibiotic resistance, and how par-
ticular bacterial species are able to inhabit multiple
different body sites, and whether or not their attri-
butes differ across body sites.
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(*p < 0.05, **p <0.01, ***p <0.001)

Fig. 4 Gene family level analysis of antibiotic resistance across body sites. a Relative abundance of 114 user-selected Unirefo0 gene family
identifiers mapping to the “Response to Antibiotic” GO term. b Associated taxonomic contribution indicates greater diversity in stool samples
compared to saliva samples. ¢ Statistical details for the selected Tetracycline resistance protein TetQ gene family across 47 human microbiome
samples from four body sites. Differential abundance (d) and cross correlation (e) analysis of tetracycline resistance gene families indicate
prevalence of resistance mechanisms in both body sites. Columns/rows are labeled as shown to the right. Asterisks indicate statistical significance

Correlation analyses of functional features can enable
users to obtain information about shared selection, or inter-
actions between gene families, according to abundance
patterns across different classification groups in the studied
datasets. From this information, the highly correlated
antibiotic transporter activity (GO term 9), kanamycin
kinase activity (GO term 11), and response to antibiotic
(GO term 7) pathways, suggest shared selection. These three
pathways also were found to be anti-correlated with anti-
biotic metabolism (GO term 3) and beta-lactam antibiotic
catabolism (GO term 5) (Fig. 3d). Establishing and evaluat-
ing these relationships in real time provides the opportunity
to test and generate on-the-fly hypotheses by biomedical
experts.

Based on our findings at the GO-term level, we then in-
vestigated these samples at the gene family level, further
demonstrating the utility of our tool at analyzing specific
gene features in addition to a broad-level feature analysis.
Analysis of 114 Uniref90 gene families that mapped to the
‘response to antibiotic’ GO-term based on the HUMANnN2
mapping files showed relatively high levels of antibiotic re-
sistance gene families in saliva and stool, with scattered
extreme values also found in arm samples (Fig. 4a). Tar-
geting a specific gene, the Tetracycline resistance protein
TetQ, we found that the contributions in saliva came pri-
marily from Prevotella pallens with more diverse contri-
butions found in stool samples (Fig. 4b). There were
significant differences in abundance levels occurring in all
pairwise body site comparisons with the exception of the
comparison between arm and vagina (Fig. 4c). Focusing
further on the tetracycline resistance genes, there was
shared expression in stool and saliva samples with
non-zero abundance of tetracycline resistance protein class
B found in saliva only (Fig. 4d). Cross comparison of the
tetracycline gene families identified high correlation for a
subset of genes (TetQ, TetW, TetO) (Fig. 4e), all found to
be abundant across stool samples.

Lastly, we demonstrate the use of WHAM! for exploration
and visualization of a second test dataset derived from the
EBI metagenomic service describing the metagenomic pro-
filing of 15 preterm infants [28]. We used the ‘Explore Your
Data’ module to visualize relevant taxa present and the rela-
tive abundance of taxa in the babies born via vaginal or
cesarean delivery (Fig. 5a). This analysis identified 17 taxa
that differed significantly between experimental groups,

including clinically important strains of Staphylococcus,
such as S. aureus, which was significantly more abundant
with cesarean delivery (adjusted p = 0.005) (Fig. 5b). Fur-
ther analysis using the ‘Explore Features’ tab identified sev-
eral Staphylococcus associated virulence proteins including
a Staphylococcal hemolytic protein family and Staphylo-
coccal AgrD which is involved in quorum-sensing signaling
to release exoproteins involved in virulence [29] (Fig. 5c).
Both features were identified as differentially abundant be-
tween the conditions (adjusted p = 0.0014 and p = 0.0042
respectively). We provide this information to illustrate how
WHAM! can facilitate the discovery of taxa and their genes
that could be of clinical significance. Although S. aureus
can be an important pathogen in infants [30] the available
metadata do not permit assessment of its clinical signifi-
cance in this study.

These implementation examples demonstrate how
WHAM! can be applied to metagenomics data to easily
identify and visualize biologically relevant relationships
and to generate novel hypotheses. Recently developed
tools, Metaviz [31], BURRITO [32] and MetaComp [33],
address similar challenges, however, WHAM! has several
important differences. Although visually striking and
useful, Metaviz focuses on taxonomic analysis without
factoring in biological processes, gene features or path-
ways [31]. Like WHAM!, BURRITO enables uses to
interactively explore their metagenomics data, but lacks
the capability of feature searching and hypothesis testing
and provides fewer statistical tests for relative abundance
across groups when compared with WHAM! [32].
MetaComp has robust statistics and accepts a range of
inputs, but it requires an external download and installa-
tion, which can lead to unexpected issues depending on
the user’s compute platform [33]. WHAM! allows for
web-based hypothesis generation based on both taxa
and functional features, permitting on-the-fly confirm-
ation and figure generation, substantially adding to the
current suite of tools available for metagenomic analysis.

Conclusions

WHAM! is an interactive and customizable tool for
data exploration, hypothesis generation and figure
generation for downstream metagenomics and meta-
transcriptomics analysis. Offering these capabilities as
an R Shiny web tool provides a user-friendly interface
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Fig. 5 Antibiotic resistance in a study of premature babies (Rose et al, 2017). a Taxonomic contributions across cesarean and vaginal delivery
samples propose clear differences in microbial genera. b Statistically significant differentially abundant taxa are visualized as a heatmap,
highlighting a clinically relevant strain of Staphylococcus aureus. ¢ Differentially abundant Staphylococcus-associated virulence genes demonstrate

clear differences in early life microbial environment in preterm infants based on delivery mode

allowing for easy data exploration by ecologists and mi-
crobiologists to streamline discovery in multi-dimensional
and large-scale data sets. Overall, WHAM! strives to pro-
vide users with the opportunity for in-depth exploration
and targeted analysis of metagenomic and metatrascrip-
tomic sequencing information with special emphasis on
microbiome-related investigations. As demonstrated, the
ease and utility of the WHAM! visualization suite enables
users to explore patterns in the microbiome, to under-
stand relationships between taxonomic communities and
the processes in which they engage. For 16S rRNA taxo-
nomic analysis, QIIME and Mothur have dominated the
field as user friendly comprehensive bioinformatics pipe-
lines for microbial taxonomic analysis [34, 35]. QIIME2
improved upon the pipeline, not only in the taxonomic in-
ference algorithm [36], but also in its user interface, now
including interactive web-based visualization and no lon-
ger requiring the use of a command line interface [37].
Currently, there is a growing, but insufficient number of
tools that allow for real-time exploratory visualization of

complex shotgun metagenomics data that are de-
signed specifically for biomedical scientists and med-
ical professionals lacking computational training.
WHAM! helps to fill this gap and we will continue to
expand upon the capabilities of our tool by increasing
the allowable input data structures and supported
statistical packages to reflect the evolving analysis
methods as they are adopted by the field.

Availability and requirements
Project name: Workflow Hub for Automated Metage-
nomic Exploration (WHAM!)

Project home page: https://ruggleslab.shinyapps.io/
wham_v1/

Operating system: Platform independent.

Programming Language: R/Rshiny.

Other requirements: None.

License: None.

Any restrictions to use by non-academics: None.
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