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Abstract—Goal: Augment a small, imbalanced, wound
dataset by using semi-supervised learning with a sec-
ondary dataset. Then utilize the augmented wound
dataset for deep learning-based wound assessment.
Methods: The clinically-validated Photographic Wound As-
sessment Tool (PWAT) scores eight wound attributes: Size,
Depth, Necrotic Tissue Type, Necrotic Tissue Amount,
Granulation Tissue type, Granulation Tissue Amount,
Edges, Periulcer Skin Viability to comprehensively assess
chronic wound images. A small corpus of 1639 wound
images labeled with ground truth PWAT scores was used
as reference. A Semi-Supervised learning and Progres-
sive Multi-Granularity training mechanism were used to
leverage a secondary corpus of 9870 unlabeled wound
images. Wound scoring utilized the EfficientNet Convolu-
tional Neural Network on the augmented wound corpus.
Results: Our proposed Semi-Supervised PMG EfficientNet
(SS-PMG-EfficientNet) approach estimated all 8 PWAT sub-
scores with classification accuracies and F1 scores of
about 90% on average, and outperformed a comprehensive
list of baseline models and had a 7% improvement over the
prior state-of-the-art (without data augmentation). We also
demonstrate that synthetic wound image generation using
Generative Adversarial Networks (GANs) did not improve
wound assessment. Conclusions: Semi-supervised learn-
ing on unlabeled wound images in a secondary dataset
achieved impressive performance for deep learning-based
wound grading.
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Impact Statement—Our envisioned smartphone wound
assessment system can reduce the significant burden that
manual wound grading imposes on wound care nurses.

I. INTRODUCTION

MOTIVATION: More than 6.5 million people in the US
have chronic wounds (or approximately 2% of the pop-

ulation) [1]. Chronic wounds are often painful and are prevalent
in the elderly population [2], [3], which costs the healthcare
system over $25 billion annually [4]. In order to heal properly,
chronic wounds require proper treatment including cleaning,
debridement, changing of dressings and using antibiotics [5].
Without proper care, such wounds may become infected [6] or
cause limbs to be amputated. The number of chronic wounds
is large and growing, increasing the need for more efficient
chronic wound care especially information technology solutions
that assist the work of medical personnel and reduce the cost of
care. Additional background and detailed descriptions of various
types of chronic wounds can be found in the Supplementary
Materials.

A. Background of Our Research

Smartphone-based image analyses provide a new method for
remote wound assessment [7], [8], [9], [10]. Since 2011, our
group has been researching and developing the Smartphone
Wound Analysis and Decision-Support (SmartWAnDS) [11],
[12], [13], [14] since 2011. SmartWAnDS analyzed the smart-
phone captured chronic wound images autonomously and pro-
vide wound care recommendations to patients and their care-
givers. The SmartWAnDS system can provide standardized
feedback on wounds for patients when they are at home between
hospital visits and engage patients in the care of their wounds It
can also support the work of wound nurses with care recommen-
dations when they are in remote locations and wound doctors are
unavailable temporarily. The recommended wound care is based
on its current status and healing progress since the preceding
examination. Consequently, it is necessary to grade the wound
before making treatment decisions. The research described in
this paper focuses on the SmartWAnDS module that uses deep
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Fig. 1. (a) Examples of diabetic, venous, arterial and pressure ulcers wound types (left to right) (b) Example wound images corresponding to
PWAT Necrotic Amount scores 0 (left) to 4 (right). The target sub-classes (Necrotic amount scores) can appear quite similar visually, posing a
fine-grained image classification problem.

TABLE I
STATISTICS OF TYPES OF WOUNDS AND PWAT SUB-SCORES OF IMAGES IN

WOUNDNET DATASET

learning to autonomously grade the wound’s healing status based
on its visual appearance in a smartphone image.

In collaboration with wound experts (1 wound doctor
and 1 wound nurse) who labeled all images, our group
created WoundNet, a chronic wound image dataset with 1639
chronic wound images totally, as mentioned in our previous
research [15]. WoundNet contains four types of wounds: diabetic
foot ulcers, pressure ulcers, vascular ulcers and surgical wounds,
which are the most common types seen by wound experts at
hospitals [16]. Table I(a) summarizes the statistics of the four
wound types in WoundNet. Example images of diabetic, venous,
arterial and pressure ulcers are shown in Fig. 1(a).

Prior work including ours [15] has explored using machine
and deep learning models to grade wound healing status. As
ground truth healing assessment scores that machine learning
models can predict as target labels, each wound in WoundNet

was comprehensively graded using the Photographic Wound
Assessment Tool (PWAT), a clinically validated wound grading
rubric [17], [18], [19]. The PWAT evaluates eight attributes of
wounds [19] from an image: 1) Size 2) Depth 3) Necrotic Tissue
Type 4) Necrotic Tissue Amount 5) Granulation Tissue Type
6) Granulation Tissue Amount 7) Edges and 8) Skin viability.
Each PWAT sub-score grades a single wound attribute with
a score of 0 (best), 1, 2, 3 or 4 (worst) and higher scores
indicate a worse wound condition. All 8 PWAT sub-scores
are summed to generate a total PWAT wound score (max =
32). The PWAT sub-scores for Necrotic Tissue Type, Necrotic
Tissue Amount, Granulation Tissue Type and Granulation Tis-
sue Amount are abbreviated as Nec Type, Nec Amount, Gran
Type and Gran Amount respectively in this paper. A table with
detailed descriptions of each PWAT sub-score and their corre-
sponding grading criteria can be found in the Supplementary
Materials.

B. Problem

Due to the high cost associated with collecting medical
datasets and variability in the occurrence of various wound sever-
ities, many medical datasets are small and imbalanced, which
presents a challenge to machine and deep learning. Labeling
is manual and often has to be done with experts whose time
is expensive. As shown in Table I(b), the number of images
corresponding to several PWAT sub-scores in WoundNet was
inadequate and the distribution of sub-scores was imbalanced.
This presented a challenge to deep learning wound assessment
model development, and prevented clinically usable classifi-
cation performance from being performance achieved.Table II
summarizes related work. Prior research on assessing PWAT
wound attributes from images [20], [21], [22], [23], [24], [25],
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TABLE II
PRIOR WORK ON ASSESSING PWAT ATTRIBUTES AND MEDICAL IMAGING (WOUND AND NON-WOUND) DATA AUGMENTATION
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[26], [27], [28], [29] typically only assessed a few wound at-
tributes instead of assessing all clinically important attributes
of wounds comprehensively. Prior research that explored data
augmentation of wound images [30], [31], [32], [33], [34],
[35] applied both traditional data augmentation techniques or
GAN-based methods. Prior research on other medical image
problems used data augmentation methods [36], [37], [38],
[39], [40], [41] including GANs methods and transform models,
which improved the performance of machine learning models.
The previous state-of-the-art neural networks model for PWAT
wound assessment was our Patch Attention DenseNet [15] but it
achieved only about 82% in accuracy and F1-score, which was
not clinically usable. Prior research on various medical imaging
problems [36], [40], [41] have demonstrated improvements in
their model’s performance using synthetic images generated us-
ing traditional data augmentation methods and GANs. However,
in our experiments, we discovered that synthetic images gener-
ated using GANs and traditional data augmentation methods
did not improve the performance of wound assessment neural
networks model. Consequently, in this paper, we proposed a
novel method for leveraging a large, external dataset of unlabeled
wound images using semi-supervised learning, which improves
PWAT-based wound assessment using neural networks models.
A detailed analysis of the limitations of prior work is presented
in the supplementary materials.

C. Our Approach

Semi-supervised learning is used to augment a small, labeled
corpus by leveraging a large unlabeled corpus. In this paper, we
propose a semi-supervised learning aiding [42] [43], [44], Pro-
gressive Multi-Granularity mechanism [45] based EfficientNet
B0 architecture [46], named Semi-Supervised PMG EfficientNet
(SS-PMG-EfficientNet), to improve the number and balance of
our WoundNet dataset and utilize the augmented dataset to im-
prove the accuracy of our wound assessment system. SS-PMG-
EfficientNet was a creative integration of the semi-supervised
learning method and Progressive Multi-Granularity mechanism
with the EfficientNet B0 CNN model. SS-PMG-EfficientNet
was trained on our WoundNet dataset and used to analyze wound
images to assess their healing status. The PMG mechanism
was a state-of-the-art fine-grained image classification method
with its own data augmentation method designed specifically.
The semi-supervised learning method enabled our deep learning
wound assessment model to utilize other secondary sources of
unlabeled wound image dataset for data augmentation while
using our WoundNet as a labeled reference dataset. EfficientNet
is a state-of-the-art image classification architecture that has
achieved good performance on wound image related research. In
our research to develop SS-PMG-EfficientNet, simpler variant
architectures named PMG EfficientNet and Semi-Supervised
EfficientNet were also developed, which were integrated mod-
els generated by combining the PMG mechanism and Ef-
ficientNet B0, and the Semi-Supervised learning component
and EfficientNet B0 respectively. Finally SS-PMG-EfficientNet
was developed from integrating the semi-supervised learn-
ing method and the PMG mechanism into EfficientNet B0

in order to improve the model’s performance as much as
possible.

1) Semi-Supervised Learning: Semi-supervised learning
jointly learns from unlabeled data using an unsupervised loss
function as well as from labeled data using traditional supervised
loss function [42], [43], [44]. The unsupervised loss from the
unlabeled data acts as a regularization term for the labeled data’s
loss. Typically the labeled dataset and unlabeled dataset are
sampled from the same distribution. This approach facilitates
sampling from a different yet related distribution. To facilitate
semi-supervised learning on wound images, the labeled dataset
we utilized was our WoundNet with all 8 PWAT sub-scores la-
beled on all 1639 wound images, in conjunction with a larger un-
labeled DFUC (Diabetic Foot Ulcer) 2021 dataset [33], [47] with
9870 wound images. We considered the DCUC 2021 dataset
as the unlabeled source dataset because while it had infection
and ischaemia ground truth assessments by wound experts, the
images contained no PWAT sub-scores labels. As Diabetic Foot
Ulcers (DFUs) are common chronic wound types and all chronic
wounds types have similar appearance with similar features, it
was reasonable to utilize DFU images from DFUC 2021 dataset
as unlabeled images for semi-supervised learning in order to im-
prove model performance and reduce overfitting. This innovative
method of applying semi-supervised learning method using our
labeled WoundNet dataset and unlabeled images from the DFUC
2021 dataset can be considered a type of data augmentation. The
DFUC 2021 dataset was not directly added to the WoundNet
dataset for the PWAT classification problem but it provided the
CNN model with more Diabetic Foot Ulcer images. Allowing the
CNN models to see more highly related images, especially when
our own dataset was relatively small, encouraged the model to
better learn chronic wound features.

2) Progressive Multi-Granularity Mechanism: The Pro-
gressive Multi-Granularity mechanism [45] was proposed
in a research that combined part granularity learning and
cross-granularity feature fusion to work simultaneously. It
had a progressive training strategy that fused features from
different granularities and a random jigsaw patch gener-
ator that forced the model to learn features at specific
granularities. The PMG (Progressive Multi-Granularity) mech-
anism was built on the assumption that fine-grained discrim-
inative information could be extracted from different visual
granularities. The PMG mechanism allowed the model to learn
at different granularities while fusing multigranularity features
simultaneously, instead of detecting image parts first then fus-
ing them later. This PMG framework started with stable finer
granularities first and then coarser granularities so that it could
avoid the confusion from large intra-class variations in large
regions. However, the progressive training tended to focus on
learning multi-granularity information from similar region. This
problem was tackled by the jigsaw puzzle generator, which
generated different granularity levels at each training step that
are input to the model. It forced the model to focus on local
patch levels that corresponded to specific granularity level,
instead of learning the entire image. The Progressive Multi-
Granularity mechanism can be viewed as a combination of
modifying the CNN model’s architecture and providing this
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new architecture with specific type of images generated from
the jigsaw puzzle generator. Sourced from WoundNet images,
the jigsaw puzzle generated images could be considered as
another type of images for data augmentation, as shown in
Fig. 3(b). Chronic wound images augmented in this specific
way improve the learning of information contained in different
granularities by the PMG mechanism based CNN model, which
improves the model’s performance on the PWAT classification
problem.

D. Novelty of Our Work

In order to solve related problems of inadequate labeled
data and data imbalance, we explored innovative data augmen-
tation and semi-supervised learning approaches. Specifically,
the Progressive Multi-Granularity mechanism [45] and semi-
supervised learning method [42] [43], [44] were innovatively
integrated into the EfficientNet B0 CNN architecture [46], which
improved our model’s performance significantly by 7% and
achieved almost 90% accuracy and F1 score for all 8 PWAT
scores. We also demonstrate that our proposed approach outper-
forms a comprehensive set of baselines that included Generative
Adversarial Networks (GANs), which are widely considered
the state-of-the-art for data augmentation. In addition to solving
data insufficiency and imbalance issues, our model also compre-
hensively analyzed wounds based on the comprehensive PWAT
rubric.

The fine-grained nature of PWAT sub-score prediction is
illustrated in Fig. 1(b), which shows example images of the
subscore Nec Amount with scores 0 to 4 (left to right) based
on the PWAT wound grading rubric for necrotic tissue. As
shown in Fig. 1(b), wounds with different Nec Amount scores
are quite challenging to distinguish visually, as well as grad-
ing other PWAT subscores that are based on the type or
amount of a specific type of tissue shown in the wound im-
ages. The Supplementary Materials shows a brief description
of the fine-grained image classification problem in computer
vision.

E. Our Contributions

There are three main contributions in this paper:
1) We innovatively adapted a semi-supervised learning

method inspired mainly by the rotation degree Self-
Supervised Learning [42] and the SESEMI method [43],
and partially from FixMatch method [44] to the problem
of generating synthetic wound images.

2) We proposed a deep learning framework that inno-
vatively integrated the Progressive Multi-Granularity
(PMG) mechanism and the semi-supervised learning
method with the EfficientNet B0 neural network to
comprehensively predict all 8 PWAT sub-scores, which
solved challenging fine-grained image task of recog-
nizing clinically-important grades of wound. The semi-
supervised learning method worked as a new way of
data augmentation to solve our WoundNet’s problem of
insufficient and imbalanced data and PMG improved the

prediction of PWAT-based wound scores, a fine-grained
image classification problem.

3) We performed rigorous evaluations and comparison of
our proposed model and its variants. Our results show
that our proposed semi-supervised learning aiding Pro-
gressive Multi-Granularity mechanism based Efficient-
Net B0 architecture achieves classification accuracies and
F1 scores of almost 90% for fine-grained classification of
all 8 PWAT sub-scores with more than 7% improvement
of our previous model [15]. Our approach was compared
to various state-of-the-art baseline CNN models, data
augmentation methods and fine-grained image classifi-
cation techniques. We also demonstrate that state-of-the-
art GAN-based data augmentation methods including
pix2pixHD [48] and semi-supervised GANs [49] did
not improve PWAT wound image classification perfor-
mance, an unexpected finding. Facilitated by the proposed
research, the performance of our deep learning model
for PWAT wound assessment system made our wound
assessment system clinically usable.

II. MATERIALS AND METHODS

This section introduces Semi-Supervised PMG EfficientNet
(SS-PMG-EfficientNet), our proposed deep learning architec-
ture for estimating PWAT subscores for chronic wounds. Sec-
tion II-A describes WoundNet, our chronic wound dataset and the
secondary DFUC 2021 dataset [33], [47]. Section II-B describes
our wound assessment system and the deep learning architecture.
Section II-C describes the PMG (Progressive Multi-Granularity)
mechanism. Section II-D describes the semi-supervised learn-
ing approach. Section II-E describes our rigorous evaluation
including definitions of our evaluation metrics and experiments
conducted.

The supplementary materials introduces the detail for data
augmentation using pix2pixHD GANs [48] and using semi-
supervised GANs [49]. The supplementary materials also in-
cludes details of the MMAL ResNet50 architecture [50].

A. WoundNet Dataset, DFUC 2021 Dataset and
Preprocessing

1) WoundNet Dataset: There are 1639 images in our
WoundNet chronic wound image dataset. 1323 of them were
provided by the University of Massachusetts Memorial Medical
Center from their archives. 114 of them were captured by our
research group using a mechanical wound imaging box that
ensured consistent imaging distance, angle and lighting. 202 of
them were collected from the Internet using an image search. All
images in WoundNet were labeled with their 8 PWAT sub-scores
calculated based on the PWAT subscore scoring instruction.
PWAT sub-scores 1 through 7 were assigned values 0, 1, 2,
3 and 4 and were modeled as 5-class classification problems.
PWAT sub-score 8 can only be assigned values 0, 1 and 2 and
was modeled as a 3-class classification problem. The number
of WoundNet images for each of the 8 PWAT sub-scores are
summarized in Table I(b), which shows that WoundNet has
problems of insufficient images corresponding to some PWAT
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Fig. 2. Our wound annotation app, wound segmentation mask and the
Histogram of WoundNet and DFUC 2021.

scores and consequently, imbalance in the distribution of PWAT
sub-scores.

Wound image pre-processing: Some of the original WoundNet
images were poorly captured, which challenged image analyses.
For instance, some images had small wounds with large back-
ground areas. Some images had large wounds or were mostly
occupied by wound and skin area. The WoundNet corpus was
pre-processed using the following steps in order to make the
wound images more consistent and then the WoundNet was
used for all PWAT sub-scores classification research. First, the
wounds and the skins were segmented out of the whole im-
ages with our previously developed wound annotation app [51],
which is shown in Fig. 2(a.a). This segmentation app applied
the deep extreme cuts algorithm [52] that ensured consistent,
systematic wound image segmentation. The segmentation mask
of the wound image was then utilized as a bounding box to

crop the skin and the wound area out from the original wound
image. The cropped wound images were resized to a dimension
of 512× 512× 3. Fig. 2(a.b) shows an example original wound,
its segmentation mask, and cropped image.

2) DFUC 2021 Dataset: The Diabetic Foot Ulcers Grand
Challenge (DFUC) 2021 dataset [33], [47] contained DFU im-
ages collected from the Lancashire Teaching Hospital with the
approval for research from the U.K. National Health Service
(NHS) Research Ethics Committee (REC) (NHS REC reference
no. 15/NW/0539). About 3000 images for each class were
captured in stable room lighting with a distance of 30–40 cm
to the plane of the foot ulcer. The images were acquired by a
podiatrist and a diabetic ulcers consultant physician, both with
more than 5 years of professional experience, who produced
ground truth labels on infection and ischemia status. The size of
the original DFU images varies between 1600 × 1200 and 3648
× 2736 and they were resized to a dimension of 640 × 640,
which was suitable for deep learning in optimizing performance
and minimizing computational costs.

The workload of annotating all images in the DFUC 2021
dataset with all 8 PWAT subscores would have been very large.
Consequently, the DFUC 2021 dataset is utilized without PWAT
subscores labels, as a secondary dataset, by our model. There-
fore, a semi-supervised learning method was applied by our
deep learning architecture to utilize both the labeled WoundNet
dataset and unlabeled DFUC 2021 dataset, which is described
in more detail in Section II-D. Using this approach, our pro-
posed deep learning model was trained on our own WoundNet
dataset as well as the DFUC 2021 dataset so that the model’s
performance could be further improved. Fig. 2(b) is a histogram
showing the percentage of each Red, Green, Blue value in
the WoundNet and DFUC 2021 datasets, which demonstrates
that the distributions of pixel values for these two datasets are
similar.

B. Overview of Proposed SS-PMG-EfficientNet
Wound Assessment System

Semi-Supervised PMG EfficientNet (SS-PMG-EfficientNet),
our deep learning architecture for accessing all 8 PWAT sub-
scores, is shown in Fig. 3(a). This architecture is composed of
3 main components: the semi-supervised learning component,
the PMG (Progressive Multi-Granularity) component and the
baseline deep learning model: EfficientNet B0.

The PMG mechanism and semi-supervised learning compo-
nent are two separate techniques from different prior research
and they can both improve the deep learning model’s perfor-
mance. The PMG mechanism was designed specifically for
fine-grained image classification problems. It can be built on
top of any state-of-the-art baseline CNN models. The PMG
mechanism first focuses on discriminative information in local
regions then progressively training on higher stages and global
structures eventually. The semi-supervised learning method was
originally designed for the model to train on both the small
labeled subset and large unlabeled subset sampled from the same
distribution of images. In our research, this semi-supervised
learning method was modified to train the baseline model on
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Fig. 3. (a) Our chronic wound image analysis system including annotation app, segmentation and our novel semi-supervised PMG EfficientNet
(SS-PMG-EfficientNet); (b) PMG (Progressive Multi-Granularity) mechanism.
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our labeled WoundNet and DFUC 2021 dataset [33], [47] that is
not labeled with PWAT subscores. Detailed descriptions of the
PMG mechanism and semi-supervised learning are presented in
subsequent Sub-sections.

These two techniques can both improve the baseline model
EfficientNet B0’s performance, which was proven via extensive
evaluation of PMG EfficientNet and Semi-Supervised Efficient-
Net. The semi-supervised learning component and the PMG
component were integrated and assembled innovatively with
the EfficientNet B0 model and became SS-PMG-EfficientNet.
It was also tested and evaluated extensively to show that SS-
PMG-EfficientNet outperformed both PMG EfficientNet and
Semi-Supervised EfficientNet, which illustrated that the PMG
mechanism and semi-supervised methods worked simultane-
ously in SS-PMG-EfficientNet to boost the model for the best
performance.

C. Progressive Multi-Granularity (PMG) Mechanism

1) Network Architecture: The PMG (Progressive Multi-
Granularity) mechanism [45] can be implemented as a feature
extractor with any state-of-the-art image analysis models such
as ResNet [53]. Suppose F is the feature extractor with L
stages. Its intermediate stages have output feature-map: F l ∈
RHl×Wl×Cl . Here Hl, Wl, Cl are the height, width and number
of channels of the feature map at l-th stage, l = 1, 2, . . ., L. The
next step is to calculate the classification loss on the feature-map
from different intermediate stages. The new convolution block
H l

conv takes l-th intermediate stage output, F l, as input. Its
output was reduced to a vector representation:

V l = H l
conv

(
F l
)

(1)

Then, a classification module H l
class with two fully-

connected stage, Batchnorm [54] and Elu [55], calculates the
probability distribution for each classes for the l-th stage:

yl = H l
class

(
V l
)

(2)

After calculating the last S stages: l = L,L− 1, ..., L−
S + 1, the outputs from them are concatenated as:

V concat = concat
[
V L−S+1, . . ., V L−1, V L

]
(3)

It is then input into a classifier:

yconcat = Hconcat
class

(
V concat

)
(4)

2) Progressive Training: In traditional CNN models, train-
ing the entire network directly in traditional CNN models means
learning all the granularities simultaneously. In progressive
training, the low stage is trained first and then new stages are
added for training progressively. The PMG mechanism allows
the network to first exploit discriminative information from local
details such as textures because the low stage has a limited
receptive field and representation ability. When the features are
gradually input into higher stages, the model can locate discrim-
inative information from local details to global structures.

The outputs from each stage and the output from the concate-
nated features are input into the cross entropy (CE) LCE . The
loss between ground truth label y and prediction probability

distribution is calculated as

LCE

(
yl, y

)
= −

m∑
i=1

yli × log
(
yli
)

(5)

and

LCE

(
yconcat, y

)
= −

m∑
i=1

yconcati × log
(
yconcati

)
(6)

In each training iteration, the data d will be used for S + 1
times but only to obtain the output for each stage in each time.
All parameters used in each stage are updated even though they
may already be updated in the previous stages, which helps all
stages in the model work together.

3) Jigsaw Puzzle Generator: The notion of Jigsaw Puzzle
is used here to generate input images for different stages of
progressive training. It generates different granularity regions
so that the model can learn the corresponding granularity level’s
information which is specific at each training step. The input
image d ∈ R3×W×H is equally split into n× n patches with
3× W

n × H
n dimensions. The patches are shuffled randomly and

merged together into a new image P (d, n) so that the hyper-
parameter n controls the patches’ granularities.

The correct hyper-parameter n for each stage should guar-
antee that the patches’ size should be smaller than the receptive
field at the corresponding stage and the patches’ size should
increase proportionately as the receptive fields of the stages
increase. For the l-th stage, n is chosen as:

n = 2L−l+1 (7)

During training, the jigsaw puzzle generator augments train-
ing data batch d to generate several augmented batches P (d, n),
which all have the same label y. The batch P (d, n) with
n = 2L−l+1 is input to the l-th stage which generates the output
yl, then all the parameters used in this process will be updated
in this propagation. All the jigsaw generator augmented data
batches are input sequentially into the network by S + 1 steps.
The training procedure is shown in Fig. 3(b).

4) Inference: During inference, the original images are in-
put into the trained model without the jigsaw puzzle generator.
To only utilize yconcat for prediction, the FC layers for the other
three stages are removed and the final result C1 is:

C1 = argmax
(
yconcat

)
(8)

The prediction from each stage has unique and complemen-
tary information from a specific granularity. To obtain a bet-
ter performance, all outputs are combined together with equal
weights and the multi-output combined prediction C2 is:

C2 = argmax

(
L∑

l=L−S+1

yl + yconcat

)
(9)

D. Semi-Supervised Learning

The semi-supervised learning method applied in our research
was inspired mainly from the rotation degree Self-Supervised
Learning [42] and the SESEMI method [43], and partially from
FixMatch method [44]. It is a simple but effective algorithm for
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semi-supervised image classification via self-supervision. The
dataset for the semi-supervised learning method consists of pairs
of images and labels (x, y) ∈ SL and unlabeled images x ∈ SU .
Usually SL and SU are sampled from the same distribution
p(x) and SL is SU ’subset with labels. However, SL is our
WoundNet dataset and SU is the DFUC 2021 dataset [33], [47]
in our case, as mentioned in Section II-A. It is possible to sample
SL from p(x) but sample SU from q(x), a different yet related
distribution [56]. This semi-supervised learning method trains a
prediction function fθ(x) with parameter θ on a combination
of SL and SU to obtain better model performance than training
on SL alone. During the training process, two batches of data
are sampled from the labeled dataset SL and unlabeled dataset
SU separately in each step:

sL = b (xi ∈ SL) (10)

sU = b (xj ∈ SU ) (11)

Then they are input into the shared baseline model fθ(x),
which is EfficientNet B0 in our case. The labeled batch sL and
the unlabeled batch sU are input into fθ(x) so that its softmax
layer generates prediction vectors from them respectively:

zi = fθ(sL) (12)

zj = fθ(sU ) (13)

The ground truth labels yi are used for computing the su-
pervised cross-entropy loss Llabeled(yi, zi). The DFUC 2021
dataset’s label is considered as the dataset SU ’s label, which is
used as the proxy labels yj to compute the cross-entropy loss
Lunlabeled(yj , zj) for the unsupervised cross-entropy loss.

Llabeled(yi, zi) = − 1

|sL|
∑
i∈sL

∑
k∈K

yiklog(zik) (14)

Lunlabeled(yj , zj) = − 1

|sU |
∑
j∈sU

∑
t∈T

yjtlog(zjt) (15)

The final loss function is defined as the weighted sum of the su-
pervised cross-entropy loss and the unsupervised cross-entropy
loss:

Lfinal = Llabeled(yi, zi) + ωLunlabeled(yj , zj) (16)

The parameter θ will be updated in backpropagation after
minimizing the final loss function Lfinal. The unsupervised
cross-entropy loss Lunlabeled(yj , zj) can be considered as a
regularization term in the final loss function and ω > 0 is a
regularization hyperparameter that controls the relative contri-
bution of unsupervised learning in the semi-supervised learning
process.

E. Evaluation

1) Evaluation Metrics: Our deep learning architecture was
evaluated using metrics: testing accuracy, weighted F1 score,
multi-class sensitivity and multi-class specificity.

Synthetic wound images generated by GANs methods were
evaluated using the FID score. The Frechet Inception Distance
(FID) is a metric that evaluates the quality of synthesis images

from generative adversarial networks (GANs) [57]. The FID
compares the distribution of synthesis images and the distribu-
tion of real images.

The detailed description and the equations of the evaluation
metrics are shown in the Supplementary Materials.

2) Baseline Models: ResNet50 [53] and EfficientNet
B0 [46] were utilized as baseline models for the comparison of
data augmentation methods. Detailed descriptions of ResNet50
and EfficientNet B0 can be found in the Supplementary Mate-
rials. The Patch Attention DenseNet deep learning model [15]
was also used in the comparison of data augmentation using
GANs. ResNet50 and EfficientNet B0 were also used as baseline
models for the comparison of wound assessment deep learning
architectures.

F. Experiments

1) Hardware, Software and Hyperparameters: All the ex-
periments were run on the same Ubuntu system desktop with an
NVIDIA GTX 1080 Ti GPU. PyTorch was the library used for
running the deep learning models. The regularization hyperpa-
rameter ω in the semi-supervised learning method mentioned in
Section II-D was set to ω = 0.8 after experiments to evaluate
different values of ω between 0.5 to 1.2, which revealed that the
model performed best when ω was set to values between 0.6 to
1.0. The learning rate for training SS-PMG-EfficientNet was set
to 0.0004 after experiments using different values.

2) Experiment 1, Comparison of SS-PMG-EfficientNet,
the PMG EfficientNet and the Semi-Supervised EfficientNet
on All 8 PWAT Sub-Scores: The goal of this experiment was
to compare our proposed model SS-PMG-EfficientNet to vari-
ants PMG EfficientNet (no Semi-Supervised (SS) Learning)
and Semi-Supervised EfficientNet (no PMG) on all 8 PWAT
subscores and demonstrate the non-trivial contribution of the
Semi-Supervised Learning (SS) and PMG to our overall archi-
tecture. To facilitate a fair comparison, SS-PMG-EfficientNet,
the PMG EfficientNet, the Semi-Supervised EfficientNet and
EfficientNet B0 were trained and tested in the same way. 3
training and testing sets were generated for each PWAT subscore
with no overlapping images among the 3 testing sets and each
of these testing sets contained 10% images of the entire dataset.
All four deep learning architectures were trained and tested on
these three training and testing sets for all 8 PWAT subscores.

Due to various randomness in the deep learning model, such
as the random weight initialization and batch gradient descent
during training, the training and testing results can be different
and unstable. Each training and testing set was trained 2 times to
evaluate whether the models were stable, generating 6 training
results for each PWAT subscore for each deep learning architec-
ture.

EfficientNets’ run times are very fast and EfficientNet B0
is still very fast even though integrated with PMG mechanism
component and semi-supervised learning mechanism. This ad-
vantage made it possible to run and test all 8 PWAT subscores 6
times with 3 different EfficientNet B0 based architectures.

3) Experiment 2, Comparison of Various Deep Learning
Architectures and Data Augmentation Methods on PWAT
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Sub-Score 2. Depth: The goal of this experiment was to com-
pare our proposed data augmentation method (PMG) and SS-
EfficientNet classification architecture to a comprehensive set
of baseline methods for augmenting and predicting the Depth
PWAT sub-score. Due to time and resource constraints, we
selected to provide in-depth comparisons on only the depth
sub-score but believe that the results for depth are representative
of all PWAT sub-scores. All baselines deep learning architec-
tures and data augmentation methods were trained and tested
on the PWAT subscore 2. Depth with a test set of 10% of
the entire dataset. These deep learning architectures include
EfficientNet B0, the Semi-Supervised EfficientNet, the PMG
EfficientNet and SS-PMG-EfficientNet, as well as the PMG
ResNet50 [45] and MMAL ResNet50 [50]. EfficientNet B0,
PMG ResNet50 [45] and MMAL ResNet50 [50] were first
trained on the PWAT subscore 2. Depth to show whether these
architectures had good performance on the WoundNet dataset.
The Semi-Supervised EfficientNet, the PMG EfficientNet and
the SS-PMG-EfficientNet were also trained on the PWAT sub-
score 2. Depth to show their performance.

The data augmentation methods include applying
pix2pixHD [48] and semi-supervised GANs [49] for the
data augmentation of the WoundNet dataset. The pix2pixHD
model was first trained with the WoundNet dataset and it was
used for generating synthesis chronic wound images. 2000
synthesis chronic wound images were generated and 1000 of
them were labeled with PWAT subscore 2. Depth. The labeled
synthesis chronic wound images were added to the training
set of the original WoundNet dataset and this augmented
WoundNet dataset was trained with both the Patch Attention
DenseNet from our previous work [15] and EfficientNet B0.
The semi-supervised GAN model was trained with WoundNet
as the supervised dataset and DFUC 2021 dataset [33], [47] as
the unsupervised dataset.

Although it is more convincing to test and compare different
architectures and methods with more PWAT subscores, it is
time-consuming to run these many experiments. On the other
hand, one PWAT subscore can indicate the general performance
of different architectures on the WoundNet dataset. Therefore,
testing different architectures and methods on the most impor-
tant subscore 2. Depth enabled discovery of the best architectures
and methods for estimating PWAT subscores without loss of
generality.

III. RESULTS

A. Training and Testing Accuracy Trajectories

A sample of the trajectories of the training and testing set
accuracies for all 8 PWAT sub-scores are shown in Fig. 4(a) and
(b). The training and testing accuracy trajectories plotted are
from the best set results of the 6 results mentioned in II-F2. The
number index i represents the ith PWAT sub-score in these two
figures. For example, train1 is the training accuracy for the sub-
score 1. Size. The training and testing accuracies converged and
stabilized after about 35 to 45 epochs. The differences between
training and testing accuracies were relatively small indicating
that the model did not overfit and generalized well to the test set.

Fig. 4. Training and testing accuracy trajectory and synthesis wound
image examples from GANs method.

B. Model Performance for Predicting All 8 PWAT
Sub-Scores

The mean and standard deviation of testing accuracy on ap-
plying SS-PMG-EfficientNet, the PMG EfficientNet, the Semi-
Supervised EfficientNet, EfficientNet and the Patch Attention
DenseNet from our previous work [15] to all 8 PWAT sub-
scores are shown in Table III(a) for comparison. As shown
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TABLE III
RESULTS FROM THE SS-PMG-EFFICIENTNET, THE PMG EFFICIENTNET, THE SEMI-SUPERVISED EFFICIENTNET, EFFICIENTNET AND THE PATCH ATTENTION

DENSENET
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in Table III(a), the means of testing accuracy of SS-PMG-
EfficientNet for all 8 PWAT subscores achieved the best results
among all these 5 deep learning architectures for comparison.
The PMG EfficientNet achieved the second-best results and the
Semi-Supervised EfficientNet achieved the third-best results in
terms of the means of testing accuracy for all 8 PWAT subscores.
The results of EfficientNet B0 and the Patch Attention DenseNet
were close to each other generally and EfficientNet B0 had better
results in 6. Gran Amount, 7. Edges and 8. Skin while the Patch
Attention DenseNet had better results in Nec Type and Gran
Type.

Table III(b)–(e) showed the mean and standard deviation of
testing accuracy, weighted F1 scores, Sensitivity and Specificity
for all 8 PWAT subscores of SS-PMG-EfficientNet, PMG Effi-
cientNet, Semi-Supervised EfficientNet and the Patch Attention
DenseNet.

The means of weighted F1 score of SS-PMG-EfficientNet
achieved the best results for all 8 PWAT subscores when com-
pared to the other three deep learning architectures. The means
of sensitivity of SS-PMG-EfficientNet also achieved the best
results for 7 PWAT subscores except for 5. Gran Type, which
was 0.8789 for Semi-Supervised PMG EfficientNet and 0.8795
for PMG EfficientNet. The mean of the Specificity of SS-
PMG-EfficientNet also achieved the best results for all 8 PWAT
subscores compared to other 3 deep learning architectures. The
standard deviation of the testing accuracy, weighted F1 scores,
Sensitivity and Specificity for all 8 PWAT subscores of SS-PMG-
EfficientNet were relatively small. The Sensitivity for 8. Skin
had the largest standard deviation of SS-PMG-EfficientNet with
only 0.0447. This demonstrates that SS-PMG-EfficientNet was
relatively stable on the WoundNet dataset.

Generally, the scores of SS-PMG-EfficientNet were the high-
est, while the scores of PMG EfficientNet were the second
highest and scores of Semi-Supervised EfficientNet were the
third highest, which were all higher than the Patch Atten-
tion DenseNet model, the previous state-of-the-art for wound
grading. There was a 7% improvement between SS-PMG-
EfficientNet and Patch Attention DenseNet in testing accuracy,
weighted F1 scores and Sensitivity. However, it can be observed
that the sensitivity of 3. Nec Type had the lowest scores of SS-
PMG-EfficientNet, PMG EfficientNet and Semi-Supervised Ef-
ficientNet with 0.8047 as the highest one. It was obviously lower
than other PWAT subscores’ sensitivity and was only a small
improvement from Patch Attention DenseNet with sensitivity in
3. Nec Type: 0.7711. On the other hand, the improvement of
specificity between SS-PMG-EfficientNet and Patch Attention
DenseNet were relatively small, which was likely because the
specificity of Patch Attention DenseNet were already high with
little room for improvement. Examples of misclassified images
for each PWAT sub-score are shown in Fig. 5.

C. Box Plot Showing k-Fold Cross-Validation
Results of All 8 PWAT Sub-Scores

Fig. 6 shows the boxplots of all 8 PWAT subscores from the
results of SS-PMG-EfficientNet, the PMG EfficientNet and the
Semi-Supervised EfficientNet. For each PWAT subscore from

Fig. 5. Examples of misclassified images for each PWAT sub-score.
Row 1 to 8 is PWAT sub-scores 1 to 8.

each deep learning model, there were 6 results, as mentioned
in Section II-F and these 6 results were made into the boxplots.
There are four sub-boxplots: (a) Testing Accuracy, (b) Weighted
F1 Score, (c) Sensitivity and (d) Specificity.

Each of the sub boxplots contains 24 boxes drawn from the
results of these 3 deep learning model on all 8 PWAT subscores
for that particular metrics. The blue, green and red boxes repre-
sent results from SS-PMG-EfficientNet, the PMG EfficientNet
and the Semi-Supervised EfficientNet. It can be observed that
the results from SS-PMG-EfficientNet generally had the highest
average scores, while the results from the PMG EfficientNet
and the Semi-Supervised EfficientNet had the second and third



416 IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, VOL. 5, 2024

Fig. 6. Boxplots of all 8 PWAT sub-scores from the results of SS-PMG-EfficientNet, the PMG EfficientNet and the Semi-Supervised EfficientNet.

highest average scores. On the other hand, the distribution range
of results for all 4 metrics from all 3 different models varied on
different PWAT subscores. Test accuracy and F1 Scores for all 8
PWAT subscores from these 3 models were high relatively and
the difference between different subscores were small from all
3 models.

With regards to sensitivity, the difference between different
PWAT subscores from all 3 models were relatively large. The
sensitivity for subscore 3 (Nec Type) were lower than those of
other subscores’ for all 3 models, especially Semi-Supervised
EfficientNet, The specificity of all 3 models were relatively high
for all PWAT subscores except subscore 8. Skin.
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TABLE IV
MODEL COMPARISON FOR PWAT SUBSCORE: 2. DEPTH AND CONFUSION

MATRICES

D. Comparison of Variations of Our Proposed
Architecture and Baseline Methods With PWAT
Subscore 2. Depth

The comparison of results from different deep learning archi-
tectures and data augmentation methods we used on the PWAT
subscore 2. Depth is shown in Table IV(a). Semi-Supervised

PMG EfficientNet achieved the highest mean of testing ac-
curacy: 0.9039. SS-PMG-EfficientNet, the PMG EfficientNet
and the Semi-Supervised EfficientNet were all able to com-
plete model training within 30 minutes with relatively high
mean testing accuracy, due to the very fast run time of Ef-
ficientNet. PMG ResNet50 achieved higher mean of testing
accuracy when comparing to MMAL ResNet50, which came
from the result of exploring and testing novel fine-grained image
classification mechanism. Consequently, we selected the PMG
mechanism when designing and developing our deep learning
architecture.

PMG ResNet50 achieved a relatively high testing accuracy
mean: 0.8671 but PMG EfficientNet achieved a better mean
of testing accuracy: 0.8916, which demonstrated that choosing
to integrate the PMG mechanism into EfficientNet B0 was the
correct design choice. ResNet50 was the first baseline model we
used in the research of estimating PWAT subscores and had the
mean of testing accuracy: 0.7915, which could be considered
as the PWAT subscore performance baseline and could indicate
how much improvement we made with the newly developed
deep learning architectures. By researching and studying the
WoundNet dataset and deep learning related works such as
state-of-the-art baseline deep learning models, data augmenta-
tion and fine-grained image classification techniques, the newest
architecture we designed, Semi-Supervised PMG Efficient-
Net, showed significant improvement. SS-PMG-EfficientNet
achieved a mean testing accuracy of 0.9039, outperforming the
ResNet50 baseline model by more than 10%.

The data augmentation methods using pix2pixHD and semi-
supervised GAN decreased the model’s performance and re-
sulted in testing accuracy with only about 60%. By examining
the method and testing the model multiple times, it was observed
that the performance of model with these two data augmentation
methods remained the same, which was counter intuitive. The
Frechet Inception Distance (FID) between the GAN-synthesized
images and the WoundNet was 70.6107, which is acceptable
and indicates that the quality of the synthesis wound images
was acceptable but decreased the model’s performance for some
reason. It is possible that our PWAT subscore classification is
a fine-grained image classification problem and required the
images to show high resolution, detailed features of the wounds
while the wound features in images augmented from GAN
methods are not clear enough. Therefore, we decided not to use
GAN based data augmentation method in developing our wound
deep learning architecture. Fig. 4(c) shows some examples of the
synthesis chronic wound images.

E. Confusion Matrices

Table IV(b) and (c) show a sample of the confusion matrices
of the test set results from SS-PMG-EfficientNet for all 8 PWAT
sub-scores. Due to space limitations, although there were 3
different results from 3 set of training and testing set, only
confusion matrices of the best results are shown here.

The numbers on the diagonal position represent images clas-
sified correctly in the confusion matrices. It can be observed that
the majority of test images are on the diagonals of the confusion
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matrices and the misclassified images are mainly distributed
beside the diagonal position. The confusion matrices and the
small difference between accuracy and F1 scores in our results
show that the imbalanced data does not significantly affect our
models’ performance.

IV. DISCUSSION

The proposed PMG-SS-EfficientNet effectively augmented
our small labeled wound dataset and predicted all 8 PWAT
sub-scores with clinically usable accuracy In general, improving
the machine learning model and providing it with adequate
data, especially when the original dataset is small, are two
important approaches to improving a machine learning model’s
performance. Most research on fine-grained image classification
problems focused on proposing novel and sophisticated deep
learning architectures [58], [59]. These architectures typically
had large capacities and performed well when trained and eval-
uated on large datasets. However, since our WoundNet dataset is
relatively small, deep learning architectures with large capacity
would overfit on our dataset. The original PMG mechanism
integrated into ResNet50 was a relatively simple but effective
design that did not add too much capacity to the baseline
ResNet50 model. Therefore, it enables EfficientNet B0 to better
learn fine-grained features in wound images and improve its
performance by integrating the PMG mechanism, which also
keeps the architecture’s capacity relatively small.

State-of-the-art data augmentation methods including GANs
did not work well on the PWAT wound classification problem
An alternate approach to improve the model’s performance is to
provide it with more data through data augmentation. However,
traditional data augmentation techniques did not significantly
improve the model in our chronic wound scoring problem,
which prior research has demonstrated [15]. This paper utilized
semi-supervised learning with DFUC 2021 [33], [47] as large,
secondary dataset and our own WoundNet dataset as reference,
to facilitate another form of data augmentation and improve the
model’s performance. This method allowed our model to learn
chronic wound features from both our own dataset and the DFUC
2021 dataset. On the other hand, to train the PMG mechanism
model to learn the corresponding granularity level’s information
for different stages, the jigsaw puzzle generator generates differ-
ent images with different granularity regions from the original
dataset image. The original image and the generated images
were all input into the PMG mechanism model for training,
which could be considered as another form of data augmentation.
These two data augmentation methods both helped to improve
the model’s performance and showed significant improvement
after integrating together.

As mentioned in Section III-D, the data augmentation us-
ing GANs method, including pix2pixHD and semi-supervised
GAN, decreased our model’s performance. Although data aug-
mentation using GANs methods can increase model’s perfor-
mance in other medical imaging research [36], [40], [41], it is
proved to be unhelpful in our chronic wound scoring problem
after multiple times of examining the method and testing the
model. In some computer vision tasks, it is possible that models

can still benefit from large amount of synthetic images even
when they are of low quality with rough shapes and unclear
features. However, our chronic wound scoring problem is a
fine-grained image classification problem, which is difficult even
for human eyes to distinguish the detail. To improve the model’s
performance on this problem, it requires the wound images to
have clear detail and wound features so that the model is able to
classify the images based on this subtle information. It can be ob-
served in Fig. 4(c) that although the synthetic wound images have
good quality, their details and wound features, such as textures
and colors, are not as good as the original high-resolution wound
images.

V. CONCLUSION

Due to challenges with collecting and labeling adequate
image data on all wound severities, existing wound datasets
frequently are imbalanced and relatively small, which limits the
accuracy of deep learning-based wound grading models. The
goal of this paper was to augment a small, imbalanced, wound
dataset by using semi-supervised learning with a secondary
dataset. The augmented wound dataset was then utilized for
deep learning-based wound assessment. The primary, labeled
wound dataset utilized in the semi-supervised approach was
labeled with ground-truth wound assessments based on the
comprehensive, clinically-valid wound grading rubric called
PWAT. We proposed a Semi-Supervised PMG EfficientNet deep
learning architecture, which estimated all 8 PWAT sub-scores.
We applied transfer learning to SS-PMG-EfficientNet model to
learn each of the 8 PWAT subscores separately. In rigorous
evaluation, the proposed Semi-Supervised PMG EfficientNet
architecture performed well on assessing chronic wounds in-
cluding diabetic foot ulcers, pressure ulcers, vascular ulcers
and surgical wounds. Our proposed Semi-Supervised PMG
EfficientNet (SS-PMG-EfficientNet) approach estimated all 8
PWAT sub-scores with classification accuracies and F1 scores
of about 90% on average, and outperformed a comprehen-
sive list of baseline models and had a 7% improvement over
the prior state-of-the-art (without data augmentation). We also
demonstrate that synthetic wound image generation using Gen-
erative Adversarial Networks (GANs) did not improve wound
assessment.

In future work, we plan to systematically investigate the
reason why data augmentation using GANs-generated images
does not improve our wound assessment model’s performance.
We will also explore methods to further improve our proposed
model’s performance for predicting PWAT sub-scores that it did
not perform well on, such as subscore 3. Necrotic Type. We will
also investigate whether the focal loss can further improve our
model’s performance on imbalanced data.
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