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Abstract: Asthma is a major global health issue. Over 300 million people worldwide suffer from this
chronic inflammatory airway disease. Typical clinical symptoms of asthma are characterized by a
recurrent wheezy cough, chest tightness, and shortness of breath. The main goals of asthma man-
agement are to alleviate asthma symptoms, reduce the risk of asthma exacerbations, and minimize
long-term medicinal adverse effects. However, currently available type 2 T helper cells (Th2)-directed
treatments are often ineffective due to the heterogeneity of the asthma subgroups, which manifests
clinically with variable and poor treatment responses. Personalized precision therapy of asthma
according to individualized clinical characteristics (phenotype) and laboratory biomarkers (endotype)
is the future prospect. This mini review discusses the molecular mechanisms underlying asthma
pathogenesis, including the hot sought-after topic of microbiota, add-on therapies and the potential
application of probiotics in the management of asthma.
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1. Pathophysiology of Asthma

Asthma is one of the most common chronic diseases in industrialized countries.
According to the 2016 Global Burden of Disease Study, it was estimated that more than
339 million people worldwide suffer from asthma, representing a notable 3.6% increase
in age-standardized prevalence since 2006 [1]. Asthma is not just a public health problem
for high-income countries; it occurs in all countries regardless of the level of economic
development. There were 417,918 deaths due to asthma at the global level, and most
asthma-related deaths occur in low- and lower-middle-income countries [1]. Asthma
symptoms most commonly develop for the first time in early childhood, but no more than
half of them go on to have characteristic asthma at school age. The prevalence of asthma-
like symptoms in children are varied widely between countries. The global prevalence of
current wheeze in adolescents and children was estimated to be 14.1% and 11.7%, with a
mean increase of 0.06% and 0.13% per year, respectively, whilst the highest prevalence of
over 20% was observed in higher-income countries in both age groups [2,3]. New data on
asthma prevalence and severity in children, adolescents and adults around the world are
pending to be reported this year by the Global Asthma Network.

Wheezy respiration, coughing, chest tightness and shortness of breath are characteris-
tic symptoms during asthma exacerbations. The dogma of asthma pathogenesis is that the
aberrant airway epithelial sensing of environmental harmless antigens, such as pollens,
mites or cockroaches or certain occupational exposures, triggers release of inflammatory
mediators from the epithelia, such as thymic stromal lymphopoietin (TSLP), interleukin
(IL)-25 and IL-33, which, through a cascade of mucosal immune activation involving den-
dritic cells (DCs), innate lymphoid cells, eosinophils, mast cells, the adaptive type 2 helper
T cells (Th2) and the nerves innervating the airways, lead to tissue structural cell activation
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and remodeling of the endothelial cells, the goblet cells and airway smooth muscles. Recur-
rent allergen stimulations elicit chronic allergic inflammation of the airways, and result
in irreversible structural changes and permanent lung function loss [4]. Most childhood
asthma is caused by Th2-mediated airway inflammation. Th2-cell activation produces
a series of cytokines. Among them, the most investigated are IL-4, IL-5, IL-9 and IL-13.
IL-4 induces B-cell immunoglobulin (Ig)G to IgE class switch and IgE synthesis [5]. IL-5
enhances eosinophil proliferation and differentiation in the bone marrow, and promotes
eosinophil tissue trafficking, activation as well as survival [6,7]. IL-9 supports mast-cell
growth and modulates the property of type 2-driven inflammation [8,9], whilst IL-13 acti-
vates epithelial expression of inducible nitric oxide synthase (iNOs) [10], induces goblet
cell hyperplasia [11] and mucus production [12], airway hyper-responsiveness (AHR) and
fibrosis, bridging allergic inflammatory cells to structural non-immune cells [13].

The Th2-allergy paradigm came from observations predominantly made in western
high-income countries. The association between allergy and asthma is not as strong in low-
or middle-income countries. Occupational causes of asthma often do not involve allergy. It
is now widely conceived that no more than half of asthma is caused by allergic mechanisms.
In many people, asthma is caused by non-allergic inflammation of the airways, although
the mechanisms involved are not yet completely understood (Table 1).

Table 1. Clinical and laboratory characteristics differentiating allergic vs. non-allergic asthma.

Allergic Asthma
(Th2-High)

Non-Allergic Asthma
(Th2-Low or Non-Th2)

Prevalence [14] 60% 10–33%

Age of onset Occurs early in life Mostly occurs later in life

Triggers House dust mites, pollen, pet dander and
cockroaches, etc.

More diverse. Cold air, smoke, obesity,
occupational exposure, and exercise

Inflammatory mediators IL-4, IL-5, IL-13, IL-25, IL-33 and TSLP IL-1β, IL-6, IFN-γ, TNF-α and IL-17

Severity Milder than Th2-low More severe than allergic asthma

Treatment Responds well to ICS Require higher doses of ICS or
non-responsive to ICS [15,16]

Recruiting cells in the airway Eosinophilic inflammation [17] neutrophilic or pauci-granulocytic
inflammation [18–20]

Serum total IgE High Normal

Skin prick test Positive Negative

ICS: inhaled corticosteroids.

2. Asthma Endotypes

Eosinophils have been long considered pathognomonic in Th2-mediated asthma;
however, clinical trials have found weak correlation between eosinophilic inflammation
and AHR [21,22]. For example, although anti-IgE antibody omalizumab [23] and anti-IL-5
antibody mepolizumab [24,25] reduced airway eosinophilia, they failed to show a signifi-
cant effect on AHR. In contrast, anti-TNF antibody etanercept improved lung functions
and reduced AHR in refractory asthma without affecting eosinophils or neutrophils [26].
In addition, patients with severe asthma may present with persistent eosinophilic inflam-
mation in the absence of specific IgE [27,28]. Phenotypic heterogeneity of asthma and the
variable treatment responses to Th2-directed trials and therapies have brought out the
speculation of non-Th2 inflammation in the pathogenesis of allergic airway inflammation;
the categorization of asthma based on distinct mechanistic pathways was proposed as an
algorithm to tailor treatment strategies [29–32]. With the intention to leverage laboratory
evidence for precision asthma treatment, two major asthma endotypes have been described
(Table 1). The long-known Th2-high endotype is characterized by increased eosinophils in
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the sputum and airways of patients [17], whereas the Th2-low endotype manifests with
increased neutrophils or a pauci-granulocytic profile [18–20].

Asthma endotype classifications combined with specific biomarkers hold great poten-
tial for new therapeutic modalities and better treatment efficacies [33]. Whilst a standard-
ized protocol is still lacking, endotype classification is often performed according to the
absolute blood/sputum eosinophil counts, serum total IgE, fractional excretion of nitric
oxide (FeNO), and various allergen sensitization tests. For example, high levels of IgE,
FeNO and eosinophils are biomarkers indicative of Th2-high asthma [34–36]. In accordance
with this protocol of stratification, most of the archetypal childhood asthma falls into the
Th2-high endotype, characterized by atopy, elevated IgE and FeNO levels, as well as in-
creased sputum and blood eosinophils [37,38]. In contrast, Th2-high airway inflammation
is observed in only half of adult patients with mild to moderate asthma [29], whilst among
patients with moderate to severe disease, only one third of them are driven by Th2-type
inflammation [39]. Th2-low endotype is characterized by neutrophil-dominated or pauci-
granulocytic inflammation with high levels of IFN-γ, IL-17A/F and IL-17A/IL-22 cytokines
released from Th1, Th17 or type 3 innate lymphoid cells (ILC3) [40,41]. Patients with Th2-
low asthma are prone to respond poorly to corticosteroid therapy. The cause of neutrophilic
inflammation in Th2-low asthma is still unclear. The nature of the inciting agents/allergens
and the immediate downstream signaling pathways as elicited by the inciting agents, such
as differential Notch receptor-ligand pair signaling, are tentative regulators for Th2-low
inflammation [42,43]. Nonetheless, the off-target effect of high-dose corticosteroid on
neutrophilia and the masking of eosinophilic inflammation by steroid therapy should
be taken into consideration in Th2-low asthma presented as neutrophilic inflammation.
Biomarkers for Th2-low asthma have not been widely investigated. Neutrophils, matrix
metallopeptidase 9 (MMP-9) and IL-6 have all been proposed as potential candidates,
but none have been shown to represent all phenotypic subgroups of the Th2-low asthma
endotype [29,32]. Application of multi-omics approaches encompassing transcriptomics,
epigenomics, metagenomics, metabolomics, and proteomics, in combination with clinical
features and laboratory data will enable asthma endotyping to be more informative and
allow the designation of precision treatment strategies [44,45].

3. Add-On Therapy

A stepwise adjustment for asthma medication on an as-needed basis is suggested by
the Global Initiative for Asthma (GINA) guideline [46]. The use of an inhaled corticosteroid
(ICS) is an effective controller strategy in long-term management of asthma. However,
the prevalence of severe or uncontrolled asthma despite good adherence to GINA-guided
treatments are still as high as 10–19.8% [47,48]. For patients with poorly controlled asthma
despite high-dose ICS in combination with add-on long-acting beta-agonists (LABAs), an
alternative approach guided by the underlying inflammatory pathways, i.e., the endotypes,
is mandatory. Add-on therapies using pharmacological non-biologic agents or biologics
have been shown to improve symptom control and provide a dose-reduction strategy
to limit the side effects of corticosteroid therapy [49–51]. Conventional add-on therapies
include LABAs, long-acting muscarinic antagonists, leukotriene receptor antagonists, anti-
fungal agents, macrolides and theophylline. The more recent and still rapidly progressing
add-on therapies are biological agents, such as monoclonal antibodies specifically targeting
inflammatory molecules. In this article, we review the add-on biologics currently available
and the promising ones under clinical trials.

4. FDA-Approved Monoclonal Antibodies

There are currently five biologics licensed for severe asthma in adults: omalizumab
binds to IgE at FcεRI binding site; mepolizumab and reslizumab both bind to IL-5; and
benralizumab binds to IL-5 receptor α subunit and dupilumab, which binds to IL4 receptor
α subunit, thus blocking both IL-4 and IL-13 signaling (Table 2).
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Table 2. Monoclonal antibodies and small molecule drugs for allergic asthma treatment.

FDA-Approved Monoclonal Antibodies
Name Target Biological Effects Dosing Indication Sponsor

Omalizumab
(Xolair®)

FcεRI binding site of
IgE [52,53]

Decrease circulating total IgE
Decreased expression of FcεRI on inflammatory

cells
Decreased mediator release.

According to IgE levels
Every 2–4 wks (s.c.)

Moderate-severe allergic
asthma

IgE ≥ 30 IU/mL + skin
prick test

Genentech

Mepolizumab
(Nucala®)

IL-5 inhibiting the bioactivity of IL-5 by blocking its
binding to IL-5Rα complex expressed on the

eosinophil cell surface [54]
Reduces the production and survival of

eosinophils

100 mg
Every 4 wks (s.c.)

Severe eosinophilic
asthma
blood

eosinophils ≥ 400/uL

GlaxoSmithKline

Reslizumab
(Cinqair®)

IL-5
Inhibiting IL-5 signaling [55]

Decreased eosinophils in blood and sputum [56]
3 mg/kg

Every 4 wks (i.v.)

Severe eosinophilic
asthma
blood

eosinophils ≥ 400/uL

Teva
Pharmaceuticals

Benralizumab
(Fasenta®)

IL-5Rα
Decreased eosinophils and basophils though

ADCC [57]
30 mg

Every 8 wks (s.c.) [58,59]

Severe eosinophilic
asthma
blood

eosinophils ≥ 300/uL

AstraZeneca

Dupilumab
(Dupixent®) IL-4Rα Blockade IL-4/IL-4Rα binding

Blockade IL-13/IL-4Rα binding
300 mg

Every 2 wks (s.c.) [60]

blood
eosinophils ≥ 150/uL

FeNO > 25 ppb

Sanofi and
Regeneron



Int. J. Mol. Sci. 2021, 22, 4528 5 of 19

Table 2. Cont.

Biological Therapies under Clinical Trials
Name Target Biological Effects Dosing Indication Sponsor/Development Status

Tezepelumab TSLP TSLP blockade
[61–63]

210 mg/kg
Every 4 wks (s.c.) [64]

Patients with high (≥300
cells/µL) or low (<300

cells/µL) blood
eosinophil counts
Adults with oral

corticosteroid-dependent
asthma

AstraZeneca and Amgen/Phase III
(NCT03406078)

https://clinicaltrials.gov/ct2/show/NCT0
3406078 (accessed on 20 April 2021)

Etokimab
(ANB020) IL-33 IL-33 blockade 300 mg single dose (i.v.)

Adults with severe
eosinophilic asthma

blood eosinophil counts
≥ 300 cells/µL

Stably maintained on
ICS/LABA dose for at

least 3 months [65]

AnaptysBio/Phase IIa(NCT03469934)
https://clinicaltrials.gov/ct2/show/NCT0

3469934 (accessed on 20 April 2021)

Lebrikizumab
(RO5490255) IL-13

Binds to soluble
IL-13 and blocks

downstream
signaling

[66,67]

125 mg
Every 4 wks (s.c.) [68]

Adults with uncontrolled
asthma

On ICS and a second
controller medication

Hoffmann-La Roche/Phase II
(NCT02099656)

https://clinicaltrials.gov/ct2/show/NCT0
2099656 (accessed on 20 April 2021)

GDC-0334
(small

molecule)
TRPA1 TRPA1 inhibitor Orally with dose escalation between

cohorts
Phase I study in healthy

adult subjects

Genentech/Phase I
(NCT03381144)

https://clinicaltrials.gov/ct2/show/NCT0
3381144 (accessed on 20 April 2021)

The table includes published data of approved therapies and clinical trials from the database of ClinicalTrials.gov (provided by the U.S. National Library of Medicine). The clinical trials were searched with MeSH
keywords, including condition or disease—Asthma; study type—interventional studies; status—recruiting, enrolling by invitation, active, suspended, and completed from inception to March 2021.

https://clinicaltrials.gov/ct2/show/NCT03406078
https://clinicaltrials.gov/ct2/show/NCT03406078
https://clinicaltrials.gov/ct2/show/NCT03469934
https://clinicaltrials.gov/ct2/show/NCT03469934
https://clinicaltrials.gov/ct2/show/NCT02099656
https://clinicaltrials.gov/ct2/show/NCT02099656
https://clinicaltrials.gov/ct2/show/NCT03381144
https://clinicaltrials.gov/ct2/show/NCT03381144
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Omalizumab is the first biologic approved for the treatment of asthma in the U.S.
and European Union. Omalizumab is a humanized recombinant monoclonal antibody
with binding specificity at the FcεRI binding site of IgE, thus preventing IgE binding
to FcεRI on mast cells, basophils and DCs, and the subsequent release of inflammatory
mediators from these cells. It reduces asthma exacerbations and the maintenance doses of
ICS and improves quality-of life scores in clinical trials [18,69,70]. Omalizumab is currently
specifically indicated for moderate-to-severe persistent asthma with serum IgE greater than
30 IU/L in both adults and children 6 years of age and older. In adolescent and adult severe
asthmatic patients, omalizumab has shown beneficial real-world short-term effectiveness
at 1 year and strong evidence of long-term effectiveness for up to 4 years and beyond [71].

There are three licensed biologics targeting IL-5-mediated inflammatory pathway,
including mepolizumab, reslizumab, and benralizumab. Mepolizumab and reslizumab
are humanized monoclonal antibodies specifically targeting IL-5. Whilst reslizumab is
administered by intravenous infusion with weight-based dosing [56], mepolizumab is
delivered in a fixed dose of 100 mg subcutaneously to patients aged 12 years and above. In
young children 6–11 years of age, mepolizumab is used at a lower dose of 40 mg [72–74].
In oral corticosteroid-dependent patients, mepolizumab reduces the need for oral corticos-
teroid therapy [75]. Reslizumab reduces the exacerbation frequency and improves lung
function [76,77]. The other biologic targeting IL-5 signaling pathway is benralizumab. It
binds to the IL-5 receptor on eosinophils and basophils, and thus prevents binding of the
IL-5 receptor by IL-5 [78]. A systematic review and network meta-analysis showed that
reslizumab may be more effective than benralizumab in patients with eosinophilic asthma
receiving GINA step4/5 treatment [79].

Dupilumab was approved by the FDA for the treatment of adult moderate-to-severe
atopic dermatitis in 2017, and later for moderate-to-severe asthma in 2018 [80]. It inhibits
both IL-4 and IL-13 signaling and reduces Th2 response through direct binding to the
IL-4Rα, the shared subunit for IL-4 and IL-13 receptors, hence preventing IL-4 and IL-13
interaction with the receptors. Dupilumab notably reduced serum total IgE levels and
FeNO and increased blood eosinophil counts. The increase in blood eosinophils is plausibly
attributed to the blockade of IL-4 and IL-13 effects on eosinophil survival, activation, and
tissues trafficking by dupilumab, but not mobilization of eosinophils from bone marrow,
which is influenced by IL-5. Dupilumab reduced the exacerbation risk of severe asthma,
and improved FEV1 without an increased risk of adverse effects [81]. Comorbidities,
including atopic dermatitis, chronic rhinosinusitis, and allergic rhinitis, may also respond
to treatment with dupilumab [82].

The data on biologic therapies are mostly derived from studies on adults; it is ex-
tremely limited in the pediatric population, and even more limited in children younger
than 12 years of age. As of March 2021, the FDA has approved four biologic drugs for use
in pediatric patients with severe asthma: omalizumab, mepolizumab, benralizumab and
dupilumab. Whilst omalizumab and mepolizumab are the only two biologics approved for
children 6–18 years of age, benralizumab and dupilumab are licensed for use in adolescents
aged 12 years and older [83,84].

5. Biological Therapies under Clinical Trials

Currently available biologic therapies, including anti-IgE, anti-IL-5, anti-IL-5Rα and
anti-IL-4Rα, reduce asthma exacerbation rates in patients with Th2-high asthma. However,
there are no effective treatments for patients with severe Th2-low asthma. The airway
epithelium acts as the first line of defense against airborne substances. The classic features
of asthma exacerbations are initiated by the releasing of alarmins, including TSLP, IL-33
and IL-25, from the airway epithelium in response to inflammation or injury [85]. These
cytokines activate group 2 innate lymphoid cells (ILC2), which produce large amounts
of IL-5, IL-13, and a small amount of IL-4 without production of specific IgE [13]. These
findings may partially explain why patients with severe asthma lack an allergen-induced
Th2 response, but manifest with persistent eosinophilic inflammation. Currently, clinical
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trials for biologics antagonizing alarmins include tezepelumab against TSLP, etokimab for
inhibiting IL-33, and lebrikizumab for IL-13 blockage (Table 1).

Additionally, for alleviating airflow obstruction by preventing airway smooth muscle
contraction, a new biologic GDC-0334 is under trial for its effects in inhibiting transient
receptor potential cation channel member A1 (TRPA1) activation. TRPA1 is a nonselective
cation channel, monitoring changes in the chemical environment, and responds to physical
stimuli, such as mechanical stress or changes in temperature [86]. The conditional deletion
of TRPA1 in neuronal cells resulted in reduced inflammatory cell infiltration and IL-5
production [87]. These findings indicate that neuronal TRPA1 is critical in asthmatic in-
flammation. Recent preclinical studies showed that TRPA1 blockage with a small molecule
inhibitor GDC-0334 suppressed inflammation and airway smooth muscle contraction [88].
Instead of direct blockage of the immunologic factors mediating asthma pathogenesis,
alternative approaches targeting pathogenic factors, such as those involved in neurogenic
inflammation in asthma, hold great potential for the treatment of Th2-low asthma.

6. Microbiota and Allergic Asthma
6.1. Hygiene Hypothesis

The seminal study linking microbial exposures with the tendency of developing
allergic diseases was conducted by the British epidemiologist Professor David Strachan
over 30 years ago. The theory he proposed is nowadays widely known as the “hygiene
hypothesis” [89]. According to the theory, reduced exposures to environmental bacteria in
early life, including birth by cesarean section, being bottle-fed, growing up in the city, fewer
family members or contacts to various persons and less infections due to vaccinations,
are associated with an increased risk of developing allergies and asthma later in life. The
mechanistic thinking derived from the hygiene hypothesis is that microbial exposures
during the perinatal stage influence the establishment of a child’s gut microbiota. Microbial
alterations, i.e., dysbiosis, driven by these “hygienic” factors, acting through affecting the
infant immune development and responses, are causally related to the increased risks of
allergic diseases [90,91].

In line with this hypothesis, studies have shown that children growing up in developed
countries or in urban areas, where allergies are more prevalent, host different gut microbiota
compared to children growing up in underdeveloped countries or in farm fields, where
allergies are relatively rare [92–94]. In addition, phylogenetic differences in the home
microbiota in early life were associated with a subsequent risk of childhood asthma [95];
farm-like indoor microbiota has been shown to protect children living in non-farm homes
from developing asthma, suggesting that the indoor dust microbiota composition could
not only be a predictor of asthma risk, but also pose as a potential modifiable target for
asthma prevention [93].

6.2. Gut–Lung Axis and Microbial Mechanisms

With intensive research in the field of microbiota over the past decade, including the
completion of the NIH-funded Human Microbiota Project (HMP) [96,97], we have come to
appreciate more the role of microbiota in maintaining health and that alterations in the gut
microbiota, i.e., dysbiosis, not only causes perturbations of the immune responses within
the guts, but it also impacts on the well-being of distant organs, such as the lungs [98]. The
concept for the intricate and reciprocal interactions between the gut and lungs, i.e., the gut–
lung axis, was prompted by the observation that changes in the intestinal milieu influenced
or primed the progress of different lung diseases and vice versa. Whilst how communica-
tions between the gut and lungs are achieved are still not completely understood, it has
been suggested and well-accepted that mediators derived from intestinal epithelial cells,
immune cells, the microbial structural components and/or microbial metabolites traffic
through circulation and elicit changes in immune response in the lungs. One good exam-
ple demonstrating the role of microbiota in the gut–lung axis is the studies on abnormal
secretory IgA (SIgA) microbial binding. SIgA is the first line of defense of the mucosa
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against tissue invasion by pathogens and commensal bacteria. SIgA limits the overgrowth
of microbial species and hence guards the compositions and properties of the microbiota.
In this regard, studies have found that children with a lower IgA binding to fecal bacteria at
12 months of age are more likely to develop asthma and allergic diseases [99]. Interestingly,
altered IgA recognition patterns in children with allergies were observed at ages as early
as 1 month old, when IgA in breast-fed children are predominantly maternally derived.
Whether it indicates a dysbiotic state of the mothers warrants more investigation.

Mammals harbor over 100 trillion gut bacteria from over 1000 different species. Com-
mensal gut floras have been shown to induce the differentiation of particular CD4+ T cell
subsets. Examples include the induction of Th17 cells in the intestinal lamina propria by
segmented filamentous bacteria (SFB) [100], the development of systemic Th1 cells [101]
and local IL-10-producing Tregs [102] by Bacteroides fragilis and the induction of colonic
Treg cells by indigenous Clostridium species [103]. Whilst cumulating data point to a crucial
role of the commensal microbes in shaping and regulating the immune system [104–108],
the mechanisms underpinning this function are only gradually being uncovered.

In the context of the gut–lung axis in pathogenesis of allergic airway diseases, a
series of studies have elegantly demonstrated that short-chain fatty acids (SCFAs), acetate,
propionate, and butyrate, the metabolic products of microbial fermentation of indigestible
dietary fibers, promoted not only colonic but also peripheral Treg expansion [109–112].

Metabolites derived from gut microbial functions circulate systematically to distant
organs, including the lungs, and regulate the pathophysiological status therein, and vice
versa. In a murine asthma model, high-fiber diets increased circulating levels of SCFAs and
protected the mice against allergic inflammation in the lungs [113]. Treating the mice with
the SCFA propionate recapitulated the protective effect of a high-fiber diet against allergic
airway inflammation. In vivo, propionate enhanced the generation of macrophage and DC
precursors and subsequent trafficking of these cells to the lungs. However, propionate-
induced DCs were ineffective in promoting Th2 effector function [113]. In agreement with
these findings, others have shown that butyrate inhibited pulmonary ILC2 functions and
the subsequent development of airway hyperreactivity (AHR) through modulation of
GATA3 expression and metabolic pathways of pulmonary ILC2s. Association of germfree
mice with butyrate-producing gut bacteria effectively suppressed ILC2-driven AHR [114].
These studies highlighted the beneficial effects of high-fiber diets and SCFAs in the preven-
tion of asthma.

SCFAs are pleiotropic metabolites implicated in an array of physiological processes,
including the production of satiety hormones, GLP-1, PYY, and leptin, energy expenditure,
epithelial proliferation and epithelial barrier function [115]. In addition, SCFAs inhibit
LPS-induced NF-kB activation in neutrophils and macrophages by binding to receptors
GPR41, GPR43, and GPR109A and by inhibition of histone deacetylase [109–111]. With
the various beneficial effects of the SCFAs, development of microbiota-directed food or
fiber-based interventions to promote growth of SCFA-producing microbiotas provides an
alternative preventive and/or therapeutic modality for asthma.

6.3. Relation of Microbial Taxa and Asthma

The burgeoning of microbial studies in recent years is in a large part attributed to
the revolutionary advances in metagenomic sequencing, bioinformatics and multi-omics
technologies, which allow detailed analysis and identification of the non-culturable microor-
ganisms, in addition to the culturable ones, and their biological products [92]. Previously
unrecognized and underappreciated functions of the microbiota in shaping the immune
systems and in the pathogenesis of diseases, not only of the gastrointestinal tract, but also of
the distant organs, including the lungs and the brain, have been uncovered. Recent studies
have elegantly shown a critical window of life, during which the microbiota contributes to
education and maturation of the immune system, facilitating the establishment of tolerance
to environmental harmless exposures or perpetuate the development of disease later in
life [116].
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Early-life airway microbiota may predispose to the development of asthma in child-
hood through dynamic interactions with the developing immune system [117]. Altered
compositions of the airway [118–120] and gut microbiota [121–123] have both been linked
to higher risk of atopy and asthma [124–126]. Collectively, increased relative abundance
of Bacteroidaceae, Clostridiaceae, and Enterobacteriaceae and a lower abundance of Bifidobac-
teriaceae and Lactobacillaceae are associated with the development of allergic sensitization,
eczema, or asthma [127], whereas members of the Lachnospiraceae family and the genera
Faecalibacterium and Dialister are protective of developing atopy [128]. In one study, a group
of neonates with highest risk of developing atopy and asthma were identified when the
stool microbiome contained lower relative abundance of Bifidobacterium, Akkermansia and
Faecalibacterium and higher relative abundance of Candida and Rhodotorula [129]. Fecal
metabolome from these high-risk neonates showed enriched pro-inflammatory metabo-
lites, such as 12, 13-DiHOME. Both 12, 13-DiHOME and fecal water from these neonates
were able to induce IL-4-producing T cells and concomitantly reduced FoxP3+ regulatory
T cell differentiation. These findings plausibly support that dysbiosis perturbs the im-
mune system resulting in pathogenic T cell dysfunction that causes atopy and allergic
diseases [129].

In addition to predilection to atopy and allergic diseases, dysbiosis may also ham-
per therapeutic efficacies [130,131]. An analysis of the bronchoalveolar lavage micro-
biome found distinct microbial expansions in patients with corticosteroid resistant (CR)
asthma [130]. Among them, Haemophilus parainfluenzae was uniquely expanded only in
CR asthma airways. Incubation of asthmatic airway macrophages with H. parainfluenzae
resulted in TAK1/MAPK activation and corticosteroid resistance.

6.4. Contradictory Data—Take Ruminococcus gnavus as an Example

In a Canadian cohort of infants, bacterial genera Lachnospira, Veillonella, Faecalibac-
terium, and Rothia were found to be significantly decreased at 3 months of age in children
who later developed atopic asthma [122]. The causal effects of these bacterial taxa in
preventing asthma development were further verified in an animal model of asthma,
wherein offspring of the gnotobiotic mice harboring these four bacterial taxa were able to
resist allergen-induced airway inflammation. In a rural Ecuadorian cohort investigated
by the same group, increased relative abundance of Streptococcus and Bacteroides species
and decreased Bifidobacterium species and Ruminococcus gnavus at 3 months of age were
associated with a higher risk of atopy and asthma at 5 years old [121]. The gut micro-
biota regulates immune responses not only locally but also in distal organs at least partly
through microbial metabolites. In a recent study, microbial bile acid metabolism has been
linked with Foxp3+ Treg-cell induction [132]. Ruminococcus gnavus is in a particularly
important position in bile acid-elicited immune regulation for its capacity to epimerize
3α-hydroxydeoxycholic acid (DCA) to 3β-hydroxydeoxycholic acid (isoDCA), the most
potent de-conjugated bile acid to induce colonic Treg differentiation [133]. These findings
plausibly provide the mechanistic ground for the association between decreased R. gnavus
abundance and increased atopy and asthma risk in previous studies [121,134]. In con-
tradiction to the studies presented above, a twin cohort study has found an association
between increased relative abundance of Lachnospiraceae at 2 months of age and a higher
risk of developing allergic diseases before the age of 3 [123]. In this study, R. gnavus was
the dominant responsible species for increased allergy risk. When conventional naïve mice
and allergen-sensitized mice were colonized with R. gnavus, an enhanced allergic airway
inflammation was observed.

Whilst experimental settings, geographic, genetic and cultural differences among
individual study cohorts may underlie the non-concordant data seen in different studies,
interpretation of these data cannot, nonetheless, be too cautious. The quality or performance
of the metagenomics platforms as well as the physiological fidelity of the animal models in
microbial reconstitution should all be carefully evaluated. In this aspect, colonization of the
microbes of interest in conventional specific pathogen-free (SPF) mice may carry the risk of
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perturbing the gut commensal community and inducing advert immune responses to the
microbes by itself. In addition, the timing for colonizing the mice with the microbes, e.g.,
before allergen sensitization occurs or after, should also be taken into account to justify the
rationales underlying the hypothesis with regard to the role and function of the microbiota
in the pathogenesis of allergic diseases. To date, the optimal physiological way to avoid
these untoward effects is by using the offspring of the gnotobiotic mice inoculated with
the microbe of interest; the offspring are borne to parents carrying these microbes and are,
therefore, colonized by these microbes in a more physiological way.

6.5. Therapeutic Potential of Microbiota
6.5.1. Probiotics

Randomized controlled trials (RCTs) for using probiotics or in combination with
prebiotics in asthma prevention and control have shown mixed efficacy outcomes. For
this reason, several meta-analysis studies have been performed. We searched PubMed
for meta-analysis studies with the keywords, probiotics, microbiota, asthma, allergies
and atopy from 2010 to 2021. Four meta-analysis studies analyzing published trials from
inception to 2013–2018 with detailed descriptions for inclusion/exclusion criteria, methods
of analysis and analysis results were selected for review [135–138]. Collectively, these
meta-analyses have pointed to a concordant conclusion that there is no evidence to support
prenatal or postnatal administration of probiotics as a standard asthma prevention strategy
based on the RCT data published thus far. Although in some analyses, prenatal and/or
early-life probiotic supplementations did show protective association with decreased atopic
sensitization, IgE production and infantile eczema, they did not necessarily exert beneficial
effects in asthma prevention or wheeze risk [136,137,139,140].

One recent study published in 2020 analyzed 30 RCTs dated from 2003 to 2018, inves-
tigating the effects of probiotic supplements for asthma risk (primary outcome) or wheeze
incidence (secondary outcome) in infants [138]. The probiotics applied in these trials
included Lactobacillus (L.) reuteri, L. rhamnosus GG, L. rhamnosus LC705, L. acidophilus, L.
paracaseii, L. casei, Bifidobacillus (B.) lactis, B. bifidum, B. breve Bbi99 plus Propionibacterium
freudenreichii ssp shermanii, and B. longum BL999. The probiotics were administered either
alone or in combination with prebiotics as postnatal interventions or started since the
prenatal stage. No significant association of probiotic supplementations with lower asthma
risk or wheeze incidence was found [135,140–152]. In contrast, in subgroup analyses by
asthma risk, probiotic supplementations significantly reduced wheeze incidence among
infants with atopy, whilst there were still no significant associations in infants with other
asthma risk factors, such as family history or a cow’s milk allergy [140,144–147,153–161].

Therefore, despite various studies that have demonstrated a crucial and beneficial
role of microbiota in modulating the immune responses and preventing atopy and allergic
diseases, the use of probiotics as a therapeutic strategy for asthma is not, as of yet, conclu-
sive. Nonetheless, dietary fiber is nowadays regarded as part of a healthy diet worldwide,
and development of dietary fiber-based interventions, which selectively increase the abun-
dance of microbes, that provide metabolic benefits to the host, such as SCFA production, is
actively underway [162–164].

6.5.2. From Microbial Endotypes to Asthma Endotyping and Precision Medicine
for Asthma

The heterogeneity of asthma does not confine to diverse clinical phenotypes and
aetiologies; it also manifests with different airway microbiomes. Both bacterial and fun-
gal microbiota signatures were found to correlate with asthma endotypes and clinical
features. In recent studies employing the omics approach, decreased airway bacterial
and fungal diversity as well as increased relative abundance of Pseudomonas, Trichoderma,
Fusarium, Cladosporium and Aspergillus were associated with Th2-high endotype, whereas
increased Proteobacteria, Mycosphaerella and Penicillium were clustered with Th2-low type of
asthma [119,165,166]. The association of microbiome endotypes with asthma endotypes
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may further contribute to precision asthma endotyping and selection of treatment regimens;
however, it has to be taken into consideration that concurrent steroid treatment may change
the microbiome and obscure the true association [167].

The microbiome has been shown to affect corticosteroid responsiveness in
asthma [130,131]. It is largely unknown whether the microbiome also affects treatment
efficacies of the biologics targeting specific features of asthma-related immune mechanisms.
In one such study using nasal secretion samples collected from asthmatic children enrolled
in an omalizumab trial, nasal Moraxella species was found to associate with increased
asthma exacerbations and eosinophil activation. [168]. Therefore, whilst omalizumab
successfully reduced asthma exacerbations, the nasal airway microbiota composition
might remain largely unaffected. The persistence of pathogenic nasal airway microbiota,
such as the Moraxella species, which occurred more often in young children and caused
increased epithelial damage and eosinophil activation, is capable of evading targeting
biologic therapies.

The findings from these studies indicate that the importance of microbiota goes beyond
influencing the development of atopy and asthma at the early life, and the application of
microbiota is not restricted to probiotics. Instead, incorporation of microbiome endotypes
of individual asthmatic patients can further stratify asthma endotyping and enable the
identification of pathogenic microbiome endotypes, which collectively warrant optimal
treatment regimen tailoring. Future precision asthma therapies based on microbiome-
associated asthma endotypes may potentially comprise treatment targeting pathogenic or
dysbiotic microbiota and the biological therapies targeting the underlying inflammatory
processes, in addition to pharmacological drugs.

7. Conclusions

With advances in metagenomics, bioinformatics and single-cell platforms, we are
witnessing a rapid progress in translational research. In the context of allergic airway
diseases, it has become even more clear the heterogeneity of asthma, attributing in a large
part to the complex interactions between the host and the environment, including the
microbial community: those existing in the environment in which the host lives and those
inhabiting the host. Re-classification of asthma into distinct endotypes in a laboratory- and
clinical-evidence-based manner contributes to personalized precision medicine. In addition,
distinct microbiome endotypes and asthma endotypes’ association suggests the potential
utilization of microbiome-targeting as a novel add-on therapy strategy in precision asthma
treatment. Whist we understand more of the Th2-high asthma and successfully introduce
novel biologics as a Th2-high therapeutic strategy, more investigation is needed for Th2-low
asthma before we can leverage the advances in scientific research in designing optimal
therapies for these patients (Figure 1).
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Figure 1. Pathogenesis of allergic airway inflammation and therapeutic interventions currently available and those
with potential.
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