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Abstract

Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. Although genome-wide
association studies (GWAS) identify the risk ADHD-associated variants and genes with significant P-values, they may
neglect the combined effect of multiple variants with insignificant P-values. Here, we proposed a convolutional neural
network (CNN) to classify 1033 individuals diagnosed with ADHD from 950 healthy controls according to their genomic data.
The model takes the single nucleotide polymorphism (SNP) loci of P-values ≤ 1 × 10−3, i.e. 764 loci, as inputs, and achieved
an accuracy of 0.9018, AUC of 0.9570, sensitivity of 0.8980 and specificity of 0.9055. By incorporating the saliency analysis for
the deep learning network, a total of 96 candidate genes were found, of which 14 genes have been reported in previous
ADHD-related studies. Furthermore, joint Gene Ontology enrichment and expression Quantitative Trait Loci analysis
identified a potential risk gene for ADHD, EPHA5 with a variant of rs4860671. Overall, our CNN deep learning model
exhibited a high accuracy for ADHD classification and demonstrated that the deep learning model could capture variants’
combining effect with insignificant P-value, while GWAS fails. To our best knowledge, our model is the first deep learning
method for the classification of ADHD with SNPs data.

Key words: ADHD identification; deep learning; saliency map; GWAS

Introduction
Attention deficit hyperactivity disorder (ADHD) is one of the
most common mental disorders among children and adults with
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significant influence on attention, which causes the patient
to appear with inattention, impulsiveness and hyperactivity
[1, 2]. At least 5% of children have substantial difficulties with
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overactivity, inattention and impulsivity [3]. Family, twin and
adoption studies indicate that ADHD has high heritability of
74% [4]. Identifying risk variants of ADHD and classification of
ADHD cases from normal controls according to genomic data are
essential for clinical diagnosis and treatment for ADHD.

Genome-wide association study (GWAS) has been applied
to reveal genome-wide significant variants associated with
ADHD [5–8]. Using thousands of ADHD cases and controls,
GWAS examines thousands to millions of single nucleotide
polymorphisms (SNPs) within the whole genome to detect
significant variants. These variants with a P-value lower than
the threshold in 5 × 10−8 have been usually acknowledged as
robust variants associated with traits [9]. The study of Neale
et al. [10] investigated 2064 trios, 896 ADHD patients and 2455
controls and found a group of ADHD candidate genes. The
study of Demontis et al. [8] discovered 12 robust variants that
are significantly associated with ADHD using 20 183 ADHD
cases, and 35 191 controls. These studies provided evidence that
GWAS is an effective approach for identifying the risk variants
or genes associated with ADHD. However, GWAS merely cares
about the SNPs with significant P-values and may fail to capture
the cumulative effect of insignificant SNPs and their overall
contribution to ADHD.

Deep learning techniques, especially Convolutional Neural
Networks (CNNs), as a powerful tool for classification problems,
have been widely applied to the classification of many diseases,
such as skin cancers [11], interstitial lung diseases [12] and
Alzheimer’s disease [13]. Several studies have also been reported
for the classification of ADHD using deep learning model
[14, 15] on the functional magnetic resonance imaging or
structural magnetic resonance imaging data. These deep
learning models achieved an accuracy of up to 69.15% for the
classification of ADHD samples [15], which is insufficient for
clinical diagnosis of ADHD. Meanwhile, there is a lack of deep
learning models that use SNP data to identify ADHD.

In this study, we proposed a CNN-based deep learning model
for the classification of ADHD with the SNPs data on a real
dataset with 1033 individuals diagnosed with ADHD and 950
healthy controls. We test three single nucleotide polymorphism
(SNP) locus sets as the features: loci of P-values ≤ 1 × 10−5(10
SNPs), ≤ 1 × 10−4 (109 SNPs) and ≤ 1 × 10−3 (764 SNPs). Our
model achieved the classification performance with accuracy
of 0.9018, AUC of 0.9570, sensitivity of 0.8980 and specificity
of 0.9055 when using the SNP set with P-values ≤ 1 × 10−3.
Furthermore, we found a novel gene EPHA5 associated with
ADHD, by incorporating the saliency analysis for our CNN-based
deep learning model.

Materials and methods
Data collection

We used the data set from our previous study [16]. A total of 1033
ADHD patients (870 males, 84.2%) and 950 healthy controls (601
males, 63.3%) were included in the study (Figure 1A). This study
was approved by the Ethics Committee of Peking University Sixth
Hospital. The signed informed consent was obtained from all
cases or from the parents of the children.

SNP genotyping

The collected DNA samples were genotyped by both the
Affymetrix Genome-Wide Human SNP Array 6.0 [17] and the
Illumina Infinium HumanExome-12v1 BeadChip [18]. The SNP
genotypes were called by BIRDSEEDv2 and GenomeStudio
v2011.1. In summary, each sample genotyped in the Affymetrix

6.0 and the Exome array contains 908 288 SNPs and 247 870 SNPs,
respectively.

Quality control and association analysis

To conduct association analysis, samples and SNPs that meet the
standard quality criteria were retained to reduce the potential
bias due to genotyping technology and population size. Samples
were removed if they did not satisfy the SNP heterozygosity rate
(<50%) and SNP call rate (>90%) in either of the Affymetrix6.0 or
the Exome array. Low-quality SNPs were eliminated if they had
a low call rate (<0.95), low minor allele frequency (<0.05% for
the Exome array and 1% for the Affymetrix6.0) or unexpected
P-value(<1E-4) for Hardy–Weinberg equilibrium. The quality
control process was performed by the whole genome data
analysis toolset PLINK 1.9 [19]. After QC, all 1983 samples
passed the criteria and 677 860 SNPs in the Affymetrix6.0 and
45 485 SNPs in the Exome array were retained, respectively.
Association analysis between SNP genotypes and ADHD traits
was performed by PLINK 1.9 with the command ‘–assoc’.

Feature selection

After quality control (QC), our dataset contains 1471 male sam-
ples (1471/1983, 74.2%) and male samples have one copy of the X
chromosome. To eliminate the impact of the imbalance between
males and females on the accuracy of binary classification of
ADHD, only SNPs in the autosome were kept for further deep
learning model. The SNPs in the Affymetrix6.0 and the Exome
array were merged. For binary classification of ADHD, three sub-
sets of all SNPs after QC and association analysis were selected:
P-values lower than 1 × 10−5 (10 SNPs), 1 × 10−4 (109 SNPs) and
1×10−3 (764 SNPs). These three subsets were not mutually exclu-
sive relationships, but include relationships. The SNPs in these
subsets were regards as the features of each sample (Figure 1B).

Deep learning model

Our model was designed to identify ADHD cases for a given
sample. The first step occurs to encode an input SNPs data
(Figure 1C). Each SNP was encoded to an 1 × 4 vector based on
its genotype: AA to 1000, Aa to 0100, aa to 0010 and NA (missing)
to 0001, where we assume A is the major allele, and a is the minor
allele. Thus, the input SNPs data for each sample were encoded
to an n × 4 matrix. This encoded matrix will be passed into the
input layer of our deep learning model.

When using SNP sets with P-values ≤ 1 × 10−4 and ≤ 1 × 10−3

as input features, we built a CNN-based deep neural network
to achieve the binary classification of ADHD samples, shown
in Figure 1D. In detail, a new input sample is first passed to a
fully connected layer and is then reshaped to the original input
shape. The reshaped layer is accompanied by two convolutional
layers, followed by a rectified linear unit (ReLU). After each
convolutional layer, a maximum pooling layer is applied. This
is then connected by a fully connected layer with dropout (0.4)
and a sigmoid layer to indicate whether the input sample is an
ADHD candidate. While when using the SNP set with P-values
lower than 1 × 10−5 which contained only 10 SNPs, we developed
a basic deep neural network with three fully connected layers
followed by a sigmoid layer.

Training and evaluation

In order to train the model, the dataset (1983 samples) was
randomly split into a training dataset (1486 samples, 75%), a
validation dataset (100 samples, 5%) and a testing dataset (387,
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Figure 1. The overview of our ADHD classification pipeline. (A) The sample information of the our project. A total of 1033 ADHD patients (870 males, 84.2%) and 950

healthy controls (601 males, 63.3%) were included in this study. (B) The feature selection process for our deep leanring model. (C) The encoding schema for the genotype

data. An input genotype data of one sample are first encoded to a N × 4 input matrix where N is the total SNP number. The gray cells means the genotype missing for

SNPs. (D) The CNN architecture of our deep learning model. (E) The saliency analysis to find the candidate ADHD-associated SNPs.

20%). The deep learning model was constructed using Keras
package [20] of TensorFlow [21]. First, the model was trained
using the random weight initialization. The Adam method [22]
was applied to the optimization process with an initial learning
rate of 5 × 10−4 and a binary cross-entropy loss function. Then,
the model was trained for 100 epochs with a batch size 512. We
adopted the Dropout strategy to prevent the overfitting.

Benchmarking settings

To compare the performance of our model with other transi-
tional machine learning models, we also performed the Random
Forest model and the Support Vector Machine (SVM) model on
our data. The ‘RandomForestClassifier’ model and the ‘svm‘
model of sklearn package [23] were used to perform the Ran-
dom Forest model and SVM model, respectively. The default
parameters were used for these two model.

Evaluation metrics

We used the accuracy (the percentage of cases where our model
identified the correct class) to evaluate the performance of
our model. Also, we measured the area under the receiver
operating characteristic (ROC) curve (AUC), the sensitivity (the
percentage of correctly predicted positive cohort cases from all
positive cohort cases) and specificity (the percentage of correctly
predicted negative cohort cases from all negative cohort cases)
of our model.

Finding significant SNPs using saliency maps

Here, we performed the DeepExplain [24] using its ‘saliency’
method to determine a real saliency value for each input SNP.
This saliency map value indicates the positive contribution of
each SNP feature for ADHD binary classification. For each sample
in the test dataset with an input dimension of N × 4, a saliency
value matrix with the same dimension can be calculated using
DeepExplain. Since each SNP was encoded to a 4 × 1 vector in
the input matrix, the average saliency value of these four values
of each SNP was selected to represent the final saliency value
for this SNP. Thus, a saliency value matrix with the dimension
of N × 1 can be generated for each sample in the test dataset.
To find the significant SNPs for ADHD binary classification, we
took the average saliency value of all correctly predicted samples
in the test dataset for each SNP as the measurement for SNP
significance (Figure 1E). All samples in the test dataset with
mispredicted labels were excluded from this process.

Gene Ontology enrichment and expression Quantitative
Trait Loci analysis

To evaluate whether the SNPs with high saliency value are
associated with ADHD, we performed the Gene Ontology (GO)
terms for biological functions and expression Quantitative Trait
Loci (eQTL) analysis for top 100 SNPs sorted by saliency value.
The GO terms analysis was performed using FUMA [25] and
Benjamini–Hochberg correction (FDR) was used for multiple
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test correction methods in gene-set enrichment testing. The
maximum adjusted P-value for gene set association was 0.05.
The Protein–Protein Interaction Networks analysis was per-
formed using STRING online tool (https://string-db.org/). The
gene list of the top 100 SNPs was uploaded to STRING website
as the input gene set and the default parameters were used for
all analysis in STRING. The eQTL analysis was conducted using
BRAINEAC [26], the Brain eQTL Almanac, to investigate the genes
and SNPs associated with neurological disorders.

Quantitative analyses for genes of interested

For the genes of interest identified from the above analyses, we
further conducted quantitative analyses to explore the associ-
ation of the genetic variants with ADHD core symptoms and
cognitive functions which commonly showed deficits in ADHD
including inhibition, working memory, shifting and processing
speed [27]. The inhibition function was measured by Stroop color
and word test, with color interference (IC) and word interference
(IW) for analyses. Rey-Osterrieth complex figure test (RCFT)
and Digit Span test were conducted to assess for visual and
verbal working memory, respectively. For RCFT, structure and
detail forgotten scores were generated and analyzed. For the
Digit Span test, the forward, backward span number and total
score were used for analyses. Trail making test was used for
assessment of Shifting function with shift time for analyses.
For processing speed, scores in the Coding test in the Chinese-
Wechsler Intelligence Scale for Children (C-WISC) were used for
analyses. These quantitative analyses were only conducted in
ADHD samples using analysis of covariance (ANCOVA) with age
and gender as covariant. Considering the multiple analyses, the
corrected P-value was set as 0.05/8/18 = 3E-04 (8 represents the
cognitive features for analyses; 18 presents the number of SNPs
for quantitative analyses).

Results
Methodological development of deep learning model

Given an input SNPs data of one sample, the first step was
encoding it to numbers-coding format (Figure 1C). Each SNP was
encoded to a 4 × 1 vector based on its genotype (see methods).
Thus, the input SNPs data for each sample was encoded to an
n × 4 matrix. After encoding, the input matrix was fed into a
CNN-based deep learning model to obtain the final ADHD can-
didates’ probability (Figure 1D). The model was initially trained
using the training and validation dataset and then examined
using a pre-excluded testing dataset (see methods). The perfor-
mance of our model was evaluated by measuring the accuracy
(the percentage of cases where our model identified the correct
class). The accuracy emphasized the potential of our model as
a reference toolkit in clinical ADHD detection. Also, we reported
the area under the receiver operating characteristic (ROC) curve
(AUC), the sensitivity and the specificity.

Binary classification of ADHD

For binary classification of ADHD, three subsets of all SNPs after
QC and association analysis were selected: P-values lower than
1 × 10−5(10 SNPs), 1 × 10−4(109 SNPs) and 1 × 10−3(764 SNPs).
These three subsets of all SNPs are regarded as three different
feature sets to train the model. The model was trained using 837
samples as a positive cohort and 749 other samples as a negative
cohort. The test dataset contains 196 samples of ADHD and 201
non-ADHD samples. Figure 2 demonstrated the performance of

our deep learning model with three different SNP sets as input
features. As illustrated in Figure 2A–C, the model using SNP sets
with P-values lower than 1 × 10−4 and 1 × 10−3 achieved over-
fitting on the training dataset after around 20 epochs, while the
model using SNP set with P-value lower than 1 × 10−5 displayed
a low degree of accuracy (lower than 0.7) after 100 epochs. On
the validation dataset, the model using the SNP set with a P-
value lower than 1 × 10−3 exhibited the highest accuracy with
the value of about 0.85 among these three experiments (see
Figure 2A–C). Figure 2D–F demonstrated the performance ROC
curve of trained models for the testing dataset using these
three SNP sets. Consistent with the performance on validation
dataset, our model achieved the best performance using SNP
set with P-value lower than 1 × 10−3 on testing dataset with
the highest accuracy of 0.9018, AUC of 0.9570, sensitivity of
0.8980 and specificity of 0.9055 (see Table 1). We also compared
the performance of our model with two traditional machine
learning models, Random Forest and Support Vector Machine
(SVM). The result of evaluation metrics are displayed in Table 1.
Similar to our model, these two models also achieved the best
classification performance on the testing dataset when using
the SNP set with P-value lower than 1 × 10−3. For the results on
the dataset with the P-value lower than 1 × 10−3, the Random
Forest model achieved the lowest classification performance.
Compared with the other two models, its AUC and accuracy were
more than 10% lower than the values of the other two models.
Compared with the SVM model, our model still achieved the best
classification performance, which was around 3% higher on all
four evaluation metrics.

Common genome-wide association studies (GWAS) reveal
significant SNPs with a genome-wide significant threshold of
5 × 10−8, which has been accepted as a standard for strong asso-
ciation [9]. The different classification performance for using
above three SNP sets indicated that GWAS analysis focusing on
the SNPs with significant P-values may fail to capture the cumu-
lative effect of insignificant SNPs and their overall contribution
to the ADHD binary classification, which could be captured using
a deep learning model.

Finding significant SNPs using saliency map

Deep learning researchers have suggested that saliency map
can be employed to find the real attribution for deep neural
networks [24, 28, 29]. According to the result above, the model
using SNP set with P-value lower than 1 × 10−3 exhibited the
best performance for ADHD binary classification. Therefore, this
trained model was applied to saliency analysis. As described
in the methods part, we calculated the saliency value for each
SNP. To examine whether these SNPs with high saliency value
are associated with ADHD, we performed Gene Ontology (GO)
enrichment (biological processes) (http://amigo.geneontology.o
rg) and Protein–Protein Interaction Network (protein interaction)
(https://version11.string-db.org) analysis for top 100 SNPs out of
764 SNPs (see Supplementary Table S1).

As illustrated in Figure 3, two significantly enriched GO
terms were selected with a significant threshold of 1 × 10−8,
including ‘GO central nervous system development’ with P-
value = 2.16 × 10−8 (adjusted P-value = 8.02 × 10−5) and ‘GO
neurogenesis’ with P-value = 3.62 × 10−8 (adjusted P-value =
8.02 × 10−5), which indicated these SNPs with high saliency value
may be associated with ADHD. Those genes both involved in the
above two pathways included NRG3, TENM4, LIG4, MDGA2, BMP2,
EPHA5, EPHA7, LPAR1 and TLR4.

https://string-db.org/
http://amigo.geneontology.org
http://amigo.geneontology.org
https://version11.string-db.org
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab207#supplementary-data
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Table 1. Model performance using three different SNP sets.

Dataset of P-value < 1 × 10−5 Dataset of P-value < 1 × 10−4 Dataset of P-value < 1 × 10−3

Metrics Random Forest SVM Our Model Random Forest SVM Our Model Random Forest SVM Our Model

AUC 0.5898 0.5792 0.5840 0.7152 0.7878 0.7808 0.8027 0.9374 0.9570
Accuracy 0.5491 0.5840 0.5390 0.6751 0.7204 0.7229 0.7103 0.8640 0.9018
Sensitivity 0.4826 0.3930 0.5918 0.6119 0.7164 0.7449 0.5970 0.8607 0.8980
Specificity 0.6173 0.6888 0.4876 0.7398 0.7245 0.7015 0.8265 0.8673 0.9055

Figure 2. Model performance with three different number of SNPs. (A–C) The accuracy curve for training and validation datasets using three different SNP sets. (D–F)
The performance ROC curve of trained models for testing dataset using three different SNP sets.

Figure 3. Gene Ontology enrichment for top 100 SNPs.
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Table 2. Reported genes found in top 100 SNPs sorted by saliency value

Chr BP Index variant Gene Region P-value Saliency value Literatures

2 232318754 rs16828074 NCL UTR-3 1.12 × 10−8 0.4497 [31]
3 143545596 rs7621206 SLC9A9 intron 7.012 × 10−4 0.3306 [33]
4 66367589 rs4860671 EPHA5 intron 6.212 × 10−4 0.3432 [32]
6 72470319 rs4707940 RIMS1 upstream 3.056 × 10−4 0.3679 [34]
8 6104273 rs6559123 CSMD1 upstream 8.373 × 10−4 0.3457 [35]
10 85643777 rs12244269 NRG3 downstream 5.093 × 10−4 0.4221 [36]
11 79466812 rs1944959 TENM4 upstream 9.374 × 10−4 0.3327 [37]
13 108684837 rs9514807 LIG4 downstream 8.656 × 10−4 0.3703 [38]
14 25425964 rs17200947 STXBP6 intron 6.65 × 10−4 0.331 [39]
14 48219014 rs12232114 MDGA2 upstream 8.041 × 10−4 0.3311 [40]
16 6188504 rs9935453 RBFOX1 intron 4.843 × 10−4 0.3501 [41], [38]
16 82443459 rs8055161 CDH13 upstream 4.251 × 10−4 0.3507 [42], [43]
18 55771747 rs1620068 NEDD4L intron 2.939 × 10−4 0.3383 [44], [43]
20 6970831 rs952793 BMP2 downstream 4.73 × 10−5 0.3281 [43]

Protein interaction analyses based on STRING Interaction
Network indicated significantly associated domains containing
Ephrin receptor based on PFAM, INTERPRO or SMART database
(FDR-corrected P < 0.01). The involved genes included EPHA5,
EHPA6, EPHA7 and EPHA10 (see Supplementary Table S2).

Moreover, we queried all genes of the top 100 SNPs from
‘GWAS Catalog’ database [30] and found that 14 genes (out of
100 genes) have been reported in previous ADHD-related studies
(see Table 2), which proved that our model has the potential to
discover ADHD-related genes using saliency analysis. It should
be noticed that most of these ADHD-related genes were also
involved in the above two significantly enriched GO terms. We
further conducted quantitative analyses for the index variants
of these genes with ADHD core symptoms and cognition func-
tions. The NCL - rs16828074 was associated with ADHD core
symptoms, however, the risk G-allele carriers were with lower
hyperactive/impulsive [(9.61 ± 4.31) versus (15.48 ± 5.11), P =
2.85E-07] and total symptoms [(27.58±6.49) versus (34.44±7.49),
P = 1.27 E-10] than CC carriers. For the MDGA2 - rs12232114,
the A allele was associated with severer inattentive symptoms
(P = 0.004), indicating higher scores in AA carriers than that in
AG [(20.24 ± 3.59) versus (18.84 ± 3.72), P = 0.002]or GG carriers
[(20.2±43.59) versus (18.77±3.93), P = 0.001)]. However, the A allele
was with lower frequency in ADHD than controls. For CDH13
- rs8055161, the risk A-allele was nominally associated with
ADHD core symptoms indicating the higher hyperactive/impul-
sive [(16.29 ± 5.09) versus (14.99 ± 5.19), P = 0.007] and total
symptoms [(35.63 ± 7.83) versus (33.77 ± 7.44), P = 0.007] than
others.

When reviewing the above analyses, genes involved in
the Ephrin receptor-related pathway attracted our attention,
especially EPHA5 which have been revealed in Gene Ontology
(GO) enrichment, STRING Interaction Network analyses, and
previously reported ADHD-related genes. Then, we further
explored the genetic influence of EPHA5 - rs4860671 on ADHD
core symptoms and cognitive functions including inhibition,
working memory, processing speed and shifting. A significant
association was found for EPHA5 - rs4860671 with working
memory measured by Digit Span Total score (P = 4.73 E-06)
and processing speed measured by Coding score (P = 3.72
E-05), indicating the worse performance in the risk allele carriers
(see Table 3).

To explore the potential neurological mechanism, we further
conducted eQTL analyses (http://www.braineac.org/), indicating

that the risk G-allele was associated with lower expression of
EPHA5 in CRBL (P = 0.0029)(Figure 4). For the other gene, EPHA7
- rs16870710, no significant association with quantitative traits
was found.

Through the Brain eQTL analysis, we found a novel variant,
rs6958168, showed significant association with the expression of
gene CCM2 in temporal cortex (TCTX) with p-value = 7.9 × 10−6

and intralobular white matter (WHMT) with P-value = 3.2 × 10−5

(see Figure 5).

DISCUSSION
GWAS has been proved to be an effective approach for iden-
tifying the risk variants and genes associated with ADHD in
the last decade. However, GWAS only cares about these SNPs
with significant P-values and may fail to capture the cumulative
effect of insignificant SNPs and their overall contribution to
ADHD. Therefore, in this study, we proposed a CNN-based deep
learning model for the classification of ADHD. We selected three
SNP sets as the features of each sample: P-values lower than
1 × 10−5(10 SNPs), 1 × 10−4(109 SNPs) and 1 × 10−3(764 SNPs). As
demonstrated in Figure 2, the model using SNP sets with P-
values lower than 1 × 10−3 achieved the best classification per-
formance, compared with the other two models. This result
indicated that the deep learning model could capture the rela-
tionship between SNPs with insignificant P-values, while GWAS
failed. Also, compared with reported deep learning models for
the classification of ADHD [14, 15], which used the fMRI or sMRI
data as the input data, our deep learning model achieved higher
accuracy of 90.18%, compared with the accuracy of up to 69.15%
of these models. The higher classification accuracy of our model
proved the potential power of the deep learning model using
SNPs data as input features for the classification of ADHD and
this kind of model may be applied to the clinical diagnosis of
ADHD.

Deep learning researchers have suggested that a saliency
map can be employed to find the real attribution for deep
neural networks. Therefore, we conducted saliency analysis for
our deep learning model to detect novel variants associated
with ADHD. For the top 100 SNPs with high saliency values
for ADHD classification, we further conducted Gene Ontology
(GO) enrichment and STRING Interaction Network analyses.
Then, the Ephrin receptor genes attracted our attention,
especially EPHA5. Our further quantitative analyses of the SNP

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab207#supplementary-data
http://www.braineac.org/
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Table 3. Significant association of rs4860671-EPHA5 with ADHD diagnosis and ADHD-related cognitive functions.

Digit Span Total Score Coding Score

Genotype ADHD TDC P-value Mean ± SE P-value Mean ± SE P-value

AA 25 (2.5) 46 (5.0) 0.001 15.39 ± 0.71 4.73 E-06 86.80 ± 8.91 3.72E-05
AG 296 (29.4) 307 (33.2) 11.73 ± 0.21 49.04 ± 2.60
GG 685(68.1) 573 (61.9) 11.94 ± 0.14 45.89 ±1.70

Note: TDC, typically developed controls.

Figure 4. Analysis of the eQTL of EPHA5 - rs4860671 based on the data download from the UKBEC (http://www.braineac.org/). The significant association was found

for rs4860671 with CRBL (P = 0.0029). Note. UKBEC = UK Brain Expression Cohort; eQTL = expression quantitative trait loci; THAL = thalamus; MEDU = medulla; FCTX =

frontal cortex; TCTX = temporal cortex; WHMT = intralobular white matter; HIPP = hippocampus; SNIG = substantia nigra; OCTX = occipital cortex; PUTM = putamen;

CRBL = cerebellar cortex.

EPHA5 - rs4860671 with a saliency value of 0.343 indicated a
significant association with working memory and processing
speed performance in children with ADHD. When checking in
GWAS Catalog, EPHA5 has been found to be associated with
several ADHD-related deficits recently based really huge sample
size, including mathematical ability (rs60178806, rs7659227) [45],
cognitive function measurement (rs74944857) [45], educational
attainment (rs10019169, rs74944857, rs4458506, rs13145146)
[45], risk-taking behavior (rs28455852) [46] and intelligence
(rs7655988, rs62300402, rs13145146) [47, 48]. After carefully check,
the SNP rs4860671 found in our present study were independent
locus from these above loci, because of the weak linkage
disequilibrium (LD) with the above SNPs, showing the strongest
LD with r2 of 0.448, 0.34 in CEU and CHB database, respectively.
This suggested that the ADHD-associated SNP rs4860671 found
in our present study was independent of these above loci (see
Figure 6).

EPHA5 is located at 4q13, while duplication due to insertional
translocation in this region has been found in two siblings with
ADHD [32]. Besides, a genomic rearrangement that involved
or near the EHPA5 gene was found in patients with autism
spectrum disorder [49–51], which is often in co-occurrence with
ADHD. Based on previous reports of the structural genetic varia-
tion in EPHA5, our present study should be the first one report-
ing the SNP related to ADHD. Further efforts are needed to
explore the relationship between SNP and structural genetic
variation, and their combined effects on the genetic etiology
of ADHD. The EphA5 receptor, encoded by the EPHA5 gene, is
involved in brain development, synaptic remodeling, plays a role
in synaptic plasticity in the adult brain through regulation of
synaptogenesis together with Ephrin A5 (EFNA5). For the SNP
rs4860671, its precise function has not been reported. The eQTL
analyses showed that the risk G-allele was associated with lower

expression of EPHA5 in the cerebellar cortex. Notably, a recent
genome-wide association analysis indicated that variants in
EPHA5 might influence the volume of cerebellar vermal lobules
[52]. The important role of the cerebellum in information pro-
cessing speed has been supported in the existing literature [53,
54]. In the future, imaging genetic studies will be worth exploring
the potential gene (EPHA5) -brain (structural/functional alter-
ation in the cerebellum) -cognition (processing speed) relation-
ship which might help us to illustrate a novel mechanism under-
lying the etiology of ADHD. Also, EphA5 has been indicated to be
closely related to monoaminergic system [51, 55]; that gene–gene
interactions between EPHA5 and monoaminergic genes might
also be worth exploring.

In addition to EPHA5, consistent evidence from categorical
and quantitative analyses was indicated for CDH13 - rs8055161.
Several studies have supported the association of CDH13
with ADHD, especially the hyperactive-impulsive symptoms
which was consistent with our present finding (rs6565113 [56];
rs11150556 [57]). Another novel finding is from the eQTL analysis
of MYO1G - rs6958168 on the CCM2 gene. The CCM2 gene is asso-
ciated with Cavernous Malformation diseases and related- path-
ways with Cavernous Malformation diseases are ‘Development
HGF signaling pathway’ and ‘Development Endothelin-1/EDNRA
signaling’ [58]. The top 1 of affiliating genes of these two path-
ways is ITGB1 gene [58]. ITGB1 gene can upregulate expression
of CDC42 gene in ADHD neurodevelopmental signaling network
[43] and CDC42 plays a requisite role in dopamine transporter
endocytic trafficking [59]. These pieces of evidence indicate that
the variant, rs6958168, is a susceptibility variant associated
with ADHD. However, a more direct relationship of this SNP
rs6958168, CCM2, and related pathways with ADHD needs to
be investigated. The SNP rs6958168 is located upstream of CCM2
and is close to a long-noncoding RNA gene SNHG15. Future work

http://www.braineac.org/
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Figure 5. Brain eQTL analysis of gene CCM2 with rs6958168. The Significant association was found for rs6958168 with TCTX with P-value = 7.9 × 10−6 (A) and WHMT

with P-value = 3.2 × 10−5(B). Note. UKBEC = UK Brain Expression Cohort; eQTL = expression quantitative trait loci; THAL = thalamus; MEDU = medulla; FCTX = frontal

cortex; TCTX = temporal cortex; WHMT = intralobular white matter; HIPP = hippocampus; SNIG = substantia nigra; OCTX = occipital cortex; PUTM = putamen; CRBL =

cerebellar cortex.

Figure 6. The linkage disequilibrium (LD) of rs4860671 with the previously reported SNPs of EPHA5 which have been suggested to be associated with ADHD-related
deficits. The LD plots were determined by Haploview software, displaying LD values in r-squared.(i.e. 91 indicates r-squared of 0.91. Squares with no number indicate

a r-squared of 1).

could be conducted to explore whether long-noncoding RNAs
participate in the relationship of rs6958168, CCM2 and ADHD.

Although our deep learning model achieved high accuracy of
0.9018, AUC of 0.9570 on our testing dataset, there are still several

issues with our model. Firstly, the model performance only was
evaluated by our testing data and has not been examined using
other independent datasets, which weakens the credibility and
the application to clinical diagnosis of our model. Secondly,
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the risk variants discovered using saliency analysis of our deep
learning model still require further verification which can be
done in our further studies.

Key Points
• Common genome-wide association studies (GWAS)

neglect the combined effect of multiple variants with
insignificant P-values.

• We proposed a convolutional neural network (CNN) to
classify 1033 individuals diagnosed with ADHD from
950 healthy controls by using SNPs with insignificant
P-values and achieved an accuracy of 0.9018, AUC of
0.9570, sensitivity of 0.8980 and specificity of 0.9055.

• We applied saliency map analysis to the deep learn-
ing model and found potential ADHD-associated SNPs
and genes.

• To our best knowledge, our model is the first deep
learning method for the classification of ADHD with
SNPs data.
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