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Dynamic coordination of the perirhinal cortical
neurons supports coherent representations
between task epochs
Tomoya Ohnuki 1,2✉, Yuma Osako 1,2, Hiroyuki Manabe 1, Yoshio Sakurai 1 & Junya Hirokawa 1✉

Cortical neurons show distinct firing patterns across multiple task epochs characterized by

different computations. Recent studies suggest that such distinct patterns underlie dynamic

population code achieving computational flexibility, whereas neurons in some cortical areas

often show coherent firing patterns across epochs. To understand how coherent single-neuron

code contributes to dynamic population code, we analyzed neural responses in the rat peri-

rhinal cortex (PRC) during cue and reward epochs of a two-alternative forced-choice task. We

found that the PRC neurons often encoded the opposite choice directions between those

epochs. By using principal component analysis as a population-level analysis, we identified

neural subspaces associated with each epoch, which reflected coordination across the neu-

rons. The cue and reward epochs shared neural dimensions where the choice directions were

consistently discriminated. Interestingly, those dimensions were supported by dynamically

changing contributions of the individual neurons. These results demonstrated heterogeneity of

coherent single-neuron representations in their contributions to population code.
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Individual neurons across cortical areas show temporally flex-
ible responses to multiple task epochs characterized by dif-
ferent computational aspects, such as cue, action, and

reward1–3. Recent studies have indicated that such diverse single-
neuron responses are only interpretable in terms of their con-
tributions to population dynamics which flexibly realize different
computations, particularly in association and motor cortices4–9.
These studies highlight the complex changes occurring in neural
responses across epochs of a given task, which can provide
orthogonal neural subspaces for independent computations. In
contrast, individual neurons in many cortical areas have been
shown to often encode relevant information across multiple
epochs (anterior cingulate cortex10, insular cortex11, motor cor-
tex12, orbitofrontal cortex13–15, and perirhinal cortex (PRC)16),
suggesting their ability to support coherent representations
through different task epochs. Because of the differences in the
forms of explanations in these studies (that is, population or
single-neuron level), how coherent representations carried by
individual neurons can be reconciled with dynamically changing
population structure has not been well investigated.

In the present study, we explored the neural responses in the
PRC, which has been implicated in associative memory17–22. This
region receives sensory inputs from almost all the modalities,
reward-related signals from the amygdala, and contextual infor-
mation from the prefrontal cortex, entorhinal cortex, and hip-
pocampus23–25. Recent studies have shown that the PRC neurons
modulate their sustained responses to visual cues as a function of
time contexts26,27. It has also been shown that individual neurons
in the PRC flexibly encode graded visual stimuli during active
cue-sampling and response categories during movements for
choice17. These results suggest the capacity of the PRC neural
population to employ both population dynamics and coherent
representations through multiple task epochs.

To investigate how the PRC shows coherent single-neuron code
and dynamic population code across different epochs, we employed
a standard two-alternative forced-choice task and analyzed neural
responses in two epochs, where different computations are
demanded: making predictions about the outcome of choices (cue
epoch) and reinforcing the choices (reward epoch). By taking
advantage of the interleaved visual and olfactory cue stimuli, which
allowed us to evaluate modality-independent encodings, we ana-
lyzed dynamic population encodings related to different choices
during those epochs in relation to single-neuron level selectivity.
Our results suggest that individual neurons flexibly coordinate to
support computations associated with different epochs, while they
are holding temporally coherent representations.

Results
Individual neurons in the PRC encode choice directions. We
trained rats to perform a two-alternative forced-choice task where
they chose a target port (left/right) associated with a presented
cue to obtain the reward (Fig. 1a–b). The task performance was of
a similar level regardless of the cue modality (mean correct rate in
visual trials= 95.6 ± 5.5%; olfactory trials= 92.3 ± 4.3%). We
recorded spiking activities from the left PRC (n= 207 neurons)
during the task performance (37 sessions in five rats).

As shown in Fig. 1c, the PRC neurons typically showed distinct
temporal firing patterns between the left and right trials. To
characterize how the PRC was activated by different trial
conditions, we compared firing patterns among the different
cue modalities and choices across all the recorded neurons. The
neurons were sorted by their peak firing rates in visually cued left
choice trials (top left in Fig. 1d). As consistent with previous
studies in other brain regions28–33, the peak responses of the PRC
neurons tiled the duration of a trial. The response patterns across

the neurons were well preserved between the cue modalities
(comparison between the top and bottom in Fig. 1d) but much
less so between the choice directions (comparison between the left
and right in Fig. 1d). We found that the majority of the neurons
showed more strongly correlated response patterns between the
different modalities than between the different choice directions
(two-sided Wilcoxon signed-rank test; P= 1.186 × 10−24; Fig. 1e).
These results suggest that the firings of the PRC neurons are more
sensitive to the choice behavior than the cue information.

We thus quantified selective responses of the individual neurons
to the different choice directions by using ROC analysis. We defined
“choice-direction selectivity” broadly as signals reflecting a chosen
direction in each trial. The individual neurons encoded the choice
directions at different time points of the trial duration (Fig. 2a for
visual trials; Supplementary Fig. 1 for olfactory trials). Also, each
neuron often showed such encodings at the time points other than
its peak selectivity, suggesting that they flexibly respond to multiple
epochs of the task. We found two epochs where the selectivity in
both modalities reaches their peaks (Fig. 2b), the cue epoch (−400 to
0ms before withdrawal from the central port) and the reward epoch
(200–600ms after target choice). Many neurons encoded the choice
direction during these epochs (Fig. 2c; 51.21% and 70.53% of the
neurons showed significant selectivity in the cue and reward epochs,
respectively). We observed a slight bias toward the ipsilateral choice
in the cue epoch (two-sided sign test; mean visual choice-direction
selectivity= 0.006 ± 0.124, P= 0.889; mean olfactory choice-
direction selectivity= 0.025 ± 0.102, P= 5.104 × 10−4) but no bias
in the reward epoch (two-sided sign test; mean visual choice-
direction selectivity=−0.026 ± 0.154, P= 0.211; mean olfactory
choice-direction selectivity=−0.021 ± 0.154, P= 0.331). To further
characterize the ipsilateral bias in the cue epoch, we directly
compared the magnitude of selectivity between the ipsilateral-
selective and contralateral-selective neurons. In both modalities, the
magnitude of the selectivity was not significantly different (two-sided
Wilcoxon rank-sum test; P= 0.48 for visual choice-direction
selectivity, P= 0.07 for olfactory choice-direction selectivity). These
results show no reliable evidence for biased choice-direction
encodings in the PRC, which is in line with recent findings in
other cortical areas7,34. The choice-direction selectivity was highly
consistent across the cue modalities during both epochs (r= 0.593,
P= 5.180 × 10−21 for the cue epoch; r= 0.858, P= 2.837 × 10−61

for the reward epoch; Fig. 2c), and the PRC neurons were not tightly
clustered as a choice-direction selective subpopulation and the others
but rather showed graded selectivity as reported in other cortical
areas7,35. The neurons which showed significant selectivity across
both modalities were sparser in the cue epoch (26% of selective
neurons) than in the reward epoch (48% of selective neurons), but
we found that the neurons classified as non-selective during the cue
epoch (48.79%, 101 of 207 neurons) showed a moderate correlation
between the cue modalities (r= 0.357, P= 2.505 × 10−4; inset of
Fig. 2c). This suggests that even such non-selective neurons might
convey a fraction of the choice-direction information. Altogether,
these results suggest that sensory inputs from different modalities
evoke similar response patterns across the PRC neurons according
to learned cue–target associative relationships.

A potential caveat in this conclusion, however, is that the
choice-direction selectivity in the PRC can be attributed to some
fundamental behavioral or contextual variables such as body
posture, non-orienting movements, and spatial view30,34,36–39. To
evaluate the possible influence of those variables, we performed
two controls. First, we monitored head angles of the animals (n=
2) during neural recordings (Supplementary Fig. 2a–c) using a
head-mounted accelerometer40. To quantify the influence of body
posture and view angle on the PRC neural responses (n= 105),
we compared prediction performance between linear-regression
models with the choice and x-axis (interaural axis) head angle by
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computing correlations between the neural responses and the
model prediction across trials (Supplementary Fig. 2d). The
performance of the choice model was higher than the x-axis
head angle model in both of the cue and reward epochs by
4.28% ± 10.98% and by 32.07% ± 34.8% (median ± median abso-
lute deviation), respectively. The responses of the majority of the
PRC neurons were better explained by the choice than the x-axis
head angle (two-sided sign test; cue epoch, P= 0.019; reward
epoch, P= 1.365 × 10−7). Second, a delay period was inserted
between the target choice and reward onsets to dissociate the
influence of anticipatory licking behavior41 and spatial view

(position) from the choice-direction selectivity in the reward
epoch. We found that many of the neurons (69.52%, 73 of 105
neurons) encoded the choice directions after the onset of the
reward (0–400 ms after reward onset) in accordance with the
reward-epoch responses shown in Fig. 2c. The majority of these
selective neurons (71.23%, 52 of 73 neurons) showed stronger
selectivity after the reward onset than during the reward delay
(two-sided sign test; median difference in the magnitude of
selectivity= 0.08, P= 3.713 × 10−4; Supplementary Fig. 2e).
Although the other neurons (28.77%; 21 of 73 neurons) showed
stronger selectivity during the reward delay than after the reward,
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Fig. 1 Firing patterns of the PRC neurons in a two-alternative forced-choice task. a Schematic drawing of the behavioral apparatus and the cue–target
associative relationships in the two-alternative forced-choice task. b Schematic of the task timeline. c Raster plot and peri-event time histogram showing
the response of a representative neuron. Trial types are classified according to the cue modality and target choice as follows: blue, left target choices; red,
right target choices; solid line, visual trials; dashed line, olfactory trials. Neural responses in the correct trials were independently aligned to the cue,
withdrawal, and target-choice onset and then reconstructed because of variable time between them. Lines and shaded areas indicate mean and s.e.m.,
respectively. d Firing patterns across all the neurons (n= 207) for the different trial conditions. In each trial type, the mean firing rate of each neuron was
normalized to its peak. For all the trial types, the neurons were sorted by their peak firing time in the visually cued left choice trials (upper left). e
Comparison of temporal firing patterns of individual neurons between the different cue modalities and choice directions. For comparison between the
different modalities, for each neuron, a correlation coefficient was computed between peak-normalized firing rates in the visual left (upper left in d) and
olfactory left trials (bottom left in d). For comparison between the different choices, a correlation coefficient was computed between peak-normalized firing
rates in the visual left (upper left in d) and visual right trials (upper right in d). Nearly identical results were achieved when correlation coefficients were
computed between the visual right and olfactory right trials and between the olfactory left and olfactory right trials (two-sided Wilcoxon signed-rank test;
mean correlation for different modalities= 0.872 ± 0.13, mean correlation for different choice directions= 0.62 ± 0.358, P= 1.515 × 10−23).
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the size of such bias (that is, the difference in magnitude between
these epochs) was relatively small (0.058 ± 0.061; n= 21 neurons)
as compared to the bias to the reward onset (0.159 ± 0.122; n= 52
neurons). Taken together, these results suggest that fundamental
variables such as body posture, non-orienting movements, and
spatial view themselves are not major factors for the choice-
direction encodings in the PRC.

Dynamic temporal encoding patterns in the PRC. Thus far, we
showed that the PRC neurons encoded the choice directions
across the different cue modalities and that such signals were
apparent at multiple epochs of the task (Fig. 2, Supplementary
Fig. 2). Given the reduced correlation of temporal response pat-
terns between the choice directions (Fig. 1d–e), it is possible that
the individual neurons flexibly tuned to the different choice
directions at different time points of the trial duration. To
characterize how each neuron represented the choice directions
over the trial duration, we classified the neurons into two groups
based on their peak selectivity: left-selective and right-selective
neurons. As shown in Fig. 3a, we found similar numbers of
selective neurons for both choice directions. As expected, the
individual neurons showed selectivity to the opposite choice
direction in time points other than their peak responses.
Remarkably, when we sorted these neurons by their peak
responses to the opposite choice (that is, left-selective neurons by
right peaks and right-selective neurons by left peaks), encoding
patterns nearly tiling the entire trial duration appeared (Fig. 3b).
These results suggested flexible engagements of the individual

neurons for the different choice directions rather than the
recruitment of distinct subpopulations for each choice direction.

We next sought to understand how such dynamic encoding
patterns in the PRC appear and evolve through the trial duration
as a population. A time-resolved pattern analysis42 (“Methods”)
was performed to visualize the temporal evolution of the choice-
direction encoding patterns across the PRC neurons (n= 207).
Given the overall correlation of the choice-direction selectivity
between the cue modalities during the epochs where such
encodings peaked (Fig. 2b–c), we focused on modality-
independent encoding patterns (for comparison between the
visual and olfactory trials, see Supplementary Fig. 3). The
population response pattern evolved with two time-stable states
(Fig. 4a). An encoding pattern was sustained during the
presentation of the cue and was followed by a transient pattern
during the movements towards the target ports. Soon after the
rats chose a target port, the encoding pattern settled again into a
stable state. To test for reliability of such encodings, we computed
the mean performance of the classifier during the cue and reward
epochs and compared them with a baseline epoch (−400 to 0 ms
before the cue onset). As shown in Fig. 4b, the choice directions
were decoded during both epochs above chance (cue epoch: P ≈
0.002; reward epoch: P < 0.001). Importantly, the encoding
patterns were substantially inverted between the cue and reward
epochs (scatter plots in Fig. 4a). The mean classification
performance across those epochs revealed reliably inverted
encoding patterns (P < 0.001; Fig. 4c). It is noteworthy that the
inverted state was time-stable (Fig. 4a). This indicates that the
time-varying choice-direction encodings which we found in the
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previous section (Fig. 3b) are explicitly aligned to between the cue
and reward epochs. In other words, the inverted encodings might
be a form of coherent representation across different epochs,
which is mediated by the individual PRC neurons.

However, it is still possible that the inverted encoding patterns
were due to the reversal of orienting movements between these
epochs. To directly test this, we analyzed neural responses around
the time when the animals left the target ports in preparation to
the next trials (Supplementary Fig. 4): pre-return (−400 to 0 ms
before the choice offset) and post-return epochs (0 to 400 ms after
the choice offset). These epochs did not show the equivalent level
of inverted patterns from the cue epoch (cue × pre-return epochs:
P ≈ 0.016; cue × post-return epochs: P ≈ 0.1858; comparison
between cue × reward epochs and cue × pre-return epochs: P ≈
0.023; Fig. 4c) despite the fact that the choice-direction informa-
tion was robustly represented during both pre-return and post-
return epochs (P < 0.001; Fig. 4d). These results indicated little
influence of orienting movements on the dynamic choice-
direction encoding patterns.

We also asked whether the behavioral performance affect the
neural responses by performing the pattern classification
analysis with correct visual and erroneous olfactory trials
(n= 119 neurons with a sufficient number of erroneous trials;
Fig. 4e). As shown in Fig. 4f, the mean classification perfor-
mance during both epochs was the chance level in the
erroneous trials (error cue: P ≈ 0.1389; error reward: P ≈
0.1349). For an accurate comparison, the classification perfor-
mance for correct trials was obtained from the visual and
downsampled olfactory trials (“Methods”). After the down-
sampling, the mean classification performance was still above
chance for the reward epoch but did not reach significance in
the cue epoch (correct cue: P ≈ 0.073; correct reward: P < 0.001),
suggesting higher trial-by-trial variability in the cue epoch. We
tested whether the classification performance during each
epoch decreased from the correct trials to erroneous trials
and found a significant reduction only in the reward epoch
(cue: P ≈ 0.5385; reward: P < 0.001). These different results
suggest distinct neural computations underlying the choice-
direction encodings in these epochs.

Population structure and single-neuron representations. To
investigate how such coherent response patterns appeared and
worked under the entire population structure, we identified
neural subspaces for the cue and reward epochs by performing
the principal component analysis (PCA). Since our focus was to
compare population response patterns between these different
epochs, PCA was applied to time-averaged cue-epoch and
reward-epoch responses across the conditions (that is, PCA on
neurons × conditions matrix for each epoch)43,44. This allowed us
to clarify the population-encoding structure derived from the cue-
epoch and reward-epoch responses and directly investigate the
interrelationship between them. We projected the cue-epoch and
reward-epoch responses onto the first two dimensions of the cue-
epoch and reward-epoch subspaces (Fig. 5a, Supplementary Fig.
5a). The different choices and cue modalities were separated
when we projected the neural responses onto the corresponding
neural subspaces (Fig. 5a, cue epoch in upper left; reward epoch
in bottom right). Although we observed highly correlated choice-
direction selectivity between the visual and olfactory trials (Fig.
2c), the modality information was evident in these plots. In both
epochs, the first and second dimensions mainly captured the
difference of the choice directions and the cue modalities,
respectively. We quantified separation among the four different
conditions in those plots by comparing the average distance
among responses under the different conditions (across-condition
distance) with the average distance among responses under the
same conditions (within-condition distance). The former distance
indicates the discriminability of the different conditions, and the
latter indicates the variability of the population responses within
each condition. The results revealed that the across-condition
distance was significantly larger than the within-condition dis-
tance in both projections, indicating reliable encodings of the
different conditions during both epochs (P < 0.001; Fig. 5b and
“Methods”). We also determined whether these neural subspaces
depended on the entire neural population or only a fraction of the
neurons. We found that neural weights were highly distributed
across the neurons (Fig. 5d, Supplementary Fig. 5b) with no
neurons showing zero weight. This suggests that these subspaces
reliably reflect coordinated response patterns across the PRC
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neurons. To directly investigate the relationship between the cue-
epoch and reward-epoch responses, we projected the population
responses onto the interchanged neural subspaces (that is, the
cue-epoch responses onto the reward-epoch subspace and the
reward-epoch responses onto the cue-epoch subspace)4,8. The
results showed that the choice directions but not the cue mod-
alities were separable through the epochs (Fig. 5a, cue-epoch
responses onto reward-epoch subspace in bottom left; reward-
epoch responses onto cue-epoch subspace in upper right). To test
the reliability of the choice-direction discriminability sustained
across the epochs, we compared the across-condition distance for
different choice directions on the first dimension with the within-
condition distance. As shown in Fig. 5c, in both subspaces, we
found cluster separations above chance (reward-epoch responses

in cue-epoch subspace: P < 0.001; cue-epoch responses in reward-
epoch subspace: P < 0.001), revealing that the choice-direction
information was reliably sustained between those epochs. We also
projected the neural responses during the baseline epoch onto the
same neural subspaces as negative controls (Supplementary Fig.
5c). This analysis revealed no significant cluster separations (P ≈
0.998 for cue-epoch subspace; P ≈ 1 for reward-epoch subspace;
Fig. 5c), indicating no reliable encodings of the choice-direction
information. We then tested whether the temporal response
patterns of the individual neurons contributed to the observed
discriminability by projecting randomly shuffled data where the
temporal response patterns of the individual neurons were col-
lapsed (Supplementary Fig. 5d). The results showed no significant
separations (P ≈ 0.998 for shuffled reward-epoch responses in
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cue-epoch subspace; P ≈ 0.999 for shuffled cue-epoch responses
in reward-epoch subspace; Fig. 5c), suggesting that the coherence
between the cue and reward epochs at the single-neuron level was
critical for the discriminability observed at the population level.

It might be possible that only a handful of neurons had
strongly contributed to both cue-epoch and reward-epoch
subspaces, thus resulting in the shared neural dimensions (that
is, the first dimensions which consistently discriminated the

choice directions) shown in Fig. 5a. However, this was not the
case. As shown in Fig. 5e, the values of neural weights in the first
dimensions of the cue-epoch and reward-epoch subspaces
showed neither explicit clusters nor a tight correlation but rather
exhibited a continuous distribution with a moderate correlation
(r= 0.337, P= 7.12 × 10−7). This suggests that many neurons
dynamically changed their contributions to the shared dimen-
sions across the epochs, while a degree of temporal coherence
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supporting those shared dimensions was maintained at the
population level. Diverse relationships of the neural weights were
observed even among the neurons with significant choice-
direction selectivity (computed using ROC analysis in Fig. 2c)
across the epochs (blue points in Fig. 5e). This result indicated
heterogeneity of the temporally coherent single-neuron responses
in their contributions to the entire population structure. In other
words, each of those neurons might play a unique role in
population encodings under different computations.

To further establish population-level encoding7,9,35,45 in the
PRC, we directly examined the distribution of the choice-
direction information over the individual neurons. We asked
what fraction of the neurons is necessary to achieve the choice-
direction discriminability (that is, the across-condition distance
for different choice directions on the first dimension of a given
epoch) which is equivalent to the entire population (“Methods”).
The number of neurons incorporated was gradually increased,
beginning with ones with the highest magnitude of the weighting
values on the first dimension of the cue or reward epoch (Fig. 5f).
As expected from the shape of the distribution in Fig. 5d, when
the neurons were sorted by the cue-epoch weights, the choice-
direction discriminability in the cue subspace steeply increased
with the incorporation of neurons (left in Fig. 5f). However, the
top 73.43% of the neurons were necessary to achieve the
discriminability as high as the entire population. Similarly, when
the neurons were sorted by the reward-epoch weights, the
discriminability in the reward subspace reached as high as the full
population after including 85.02% of the neurons (right in Fig.
5f). These results support population-level representations in
which information is distributed across many individual neurons.
On the other hand, the choice-direction discriminability more
gradually increased for the epochs to which the orders of neurons
were not aligned (Fig. 5f), highlighting the dynamic changes in
the neural weights between the epochs observed in Fig. 5e. We
found that nearly all the neurons were necessary to achieve the
discriminability as high as the full population (neurons sorted by
cue-epoch weights, 100%; neurons sorted by reward-epoch
weights, 97.58%), indicating that the choice-direction representa-
tions across the two epochs were distributed widely over the
entire population. However, the discriminability in the epochs in
which the neurons were indirectly sorted more steeply increased
than the linear increase which is expected when the neurons were
added in a random order (two-sided Kolmogorov–Smirnov test;
cue epoch, P= 5.721 × 10−15; reward epoch P= 2.078 × 10−5).
As shown in Fig. 5f, by incorporating a small subset of the
neurons (~three neurons), those curves deviated from the linear
increase, and the deviation was sustained through almost all the
parts of the curves. Therefore, the choice-direction information in
the cue and reward epochs was highly distributed across the PRC
neurons, but its coherence was reliably sustained at the
population level.

Efficient encoding of choice directions and task epochs. As
shown in Fig. 5a, the population response patterns representing
the choice directions were substantially inverted on the first
dimension when we compared the cue-epoch and reward-epoch
responses in the same neural subspace (comparison between
horizontally arranged plots in Fig. 5a). In contrast, when the
population responses from one of these epochs were projected
onto the cue-epoch and reward-epoch subspaces (comparison
between vertically arranged plots in Fig. 5a), the relative positions
of the different choice directions were preserved, indicating that
the directions (that is, signs) of the first dimensions were con-
sistent. Therefore, these results suggested that information of the
different epochs was also represented in these shared first

dimensions by flexible changes in the representational geometry.
The inverted geometry was consistent with the dominant tem-
poral response pattern observed in Fig. 4a. To test the reliability of
the temporal inversions, in the first dimensions of each subspace,
we computed the average distance between population responses
under the same conditions in the different epochs (for example,
distance from the cue-epoch responses to reward-epoch respon-
ses in the cue subspace). We compared those distances with the
average distance from one of those epochs to the baseline epoch
(for example, distance from the cue-epoch responses to baseline-
epoch responses in the cue subspace), which is equivalent to the
range of chance-level cluster shifts caused by the absence of the
choice-direction encodings (that is, overlapped clusters in Sup-
plementary Fig. 5c). As shown in Fig. 5g, the results showed larger
task-epoch dependent shifts of the representational patterns than
expected by chance (P < 0.001 for cue-epoch subspace; P < 0.001
for reward-epoch subspace). The discriminability was diminished
when the temporal patterns of individual neural responses were
collapsed by data shuffling (P ≈ 0.986 for shuffled reward-epoch
responses in cue-epoch subspace; P ≈ 0.999 for shuffled cue-
epoch responses in reward-epoch subspace). These results sug-
gested that the coherent response patterns at the individual
neurons mediated flexible changes for the task-epoch repre-
sentations. Finally, we asked how these flexible encodings for the
different epochs (Fig. 5g) were related to the coherent choice-
direction encodings across those epochs (the across-condition
distance in Fig. 5c). We compared the variability of the choice-
direction discriminability and the temporal shift distance across
subsets of trials (Fig. 5h) (“Methods”). We found that transition
of the population response between the cue and reward epochs
resulted in a high correlation between these two values (r= 0.719,
P= 1.369 × 10−159), suggesting that the PRC population specifi-
cally tuned to support both coherence and dynamics of neural
representations between these epochs. Such a strong correlation
was absent in the transition of population response between the
baseline epoch and the cue or reward epochs (r= 0.021, P=
0.501). Importantly, the correlation depended on the temporal
response patterns in the individual neurons (r= 0.088, P= 0.005
for shuffled responses), suggesting that the coherent single-
neuron responses were critical to efficiently enhance the coher-
ence and dynamics of the neural representations. Taken together,
these findings indicated that the PRC population reconciles the
coherent representations of choice directions with the dynamic
representations for different epochs via temporally flexible but
structured neural responses (i.e., inverted selectivity between
epochs).

Discussion
We investigated how coherent single-neuron representations
across different epochs can be reconciled with the temporal
dynamics of population structure. Individual neurons in the PRC
modulated their firings according to the choice directions in each
trial, and many neurons inverted such selectivity between the cue
and reward epochs. Despite the structured temporal response
patterns, we found a dynamic reorganization of the population-
encoding structure between the epochs (that is, neural subspaces
supported by different coordination patterns across neurons).
Yet, we also found shared neural dimensions between the epochs,
where the choice-direction information was consistently repre-
sented. Those dimensions depended on the coherent temporal
patterns of the single-neuron responses. These findings indicated
that the temporally coherent single-neuron responses contribute
to the dynamic population structure.

It is recently suggested that choice-related encodings observed
in higher-order cortical areas are not necessarily abstract signals
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but rather parsimoniously explained by combinations of funda-
mental behavioral and contextual variables such as spatial posi-
tion and head angle37. Additionally, a recent study in rats
revealed that neurons in the lateral entorhinal cortex are sensitive
to subtle changes of egocentric view38. In contrast to these
findings, our results revealed that the choice directions were a
better predictor for the PRC neural responses than other major
variables previously noted, namely, body posture, non-orienting
movements, and spatial view (Supplementary Fig. 2). Although
those individual factors could influence the PRC responses, they
were not unique to evoke the PRC responses. Thus, we conclude
that the choice-direction encodings in the PRC are an abstract
signal integrating various computations related to the choice at
each epoch.

How does the nature of the choice-direction encodings differ
between the cue and reward epochs? In the cue epoch, we did not
find a significant difference between the choice-direction encod-
ings in the correct and erroneous trials (Fig. 4e–f). Given that
those neural responses are better explained by the choice direc-
tions than by the head angles (Supplementary Fig. 2d), the cue-
epoch responses might reflect internal signals such as decision or
motor preparation driven by reward expectation16,46–49. Contrary,
in the reward epoch, the choice-direction encodings significantly
decreased in the erroneous trials, conveying the reward signals in
conjunction with the choice directions (Supplementary Fig. 2d–e).
Those distinct choice-related representations were not expected by
previous studies, which highlight perceptual and mnemonic
representations in the PRC19–22,50–53. However, a recent study
suggests that the PRC is also involved in value-based decision
making54. In light of widespread anatomical connections23–25, this
region might carry diverse information besides perceptual and
mnemonic signals depending on neural computations required for
the task55.

The above results emphasize the different neural computations
underlying the choice-direction selectivity. In spite of the explicit
difference, the PRC neurons often showed the choice-direction
encodings in both epochs, suggesting that they support associa-
tive representations of choice and its outcome. This agrees with a
traditional view, which holds that the PRC supports associative
memory16,18–22. Several studies showed that temporally sustained
responses were prevalent in the PRC16,26,27. Such sustained
responses were found in studies focusing cue and memory epochs
and were considered to serve as stable representations of targeted
information across time epochs, which enable typical functions of
the PRC including recognition memory56. Our finding of the
inverted response patterns was not predicted by those previous
studies but suggested its advantage in supporting both temporal
coherence and flexibility of neural representations. Moreover, an
important finding in our study is that the discriminability of the
choice directions and task epochs was highly correlated (Fig. 5h).
This encoding strategy provides a synthesized view upon the roles
of the PRC in forming integrated representations of information
with shared features and in discriminating between them.
Although those functions have been generally tested in visual
perception, our findings emphasize its multimodal nature54.

It is worth mentioning that the neural weights of individual
neurons varied between the cue and reward epochs. In spite of the
heterogeneity in individual neurons, at the population level, the
neural weights were moderately correlated between the epochs,
resulting in the coherent choice-direction representations (Fig.
5e–f). Heterogeneous response properties across neurons are
often observed in high-order cortical areas29,31,39,57–59 and are
considered to increase the number of dimensions that can be
represented by a neural population8,60–63. The moderately cor-
related neural subspaces between the cue and reward epochs
might enable integrated processing of a targeted variable and

contextual information as reported by previous studies26,27.
Although we did not detect any explicit clusters based on the
response property of the PRC neurons (Fig. 5e), it is still possible
that they can be categorized into subpopulations based on dif-
ferent projection or cell types13. According to this idea, the het-
erogeneity among the PRC neurons possibly reflects different
information routing to downstream regions such as the lateral
entorhinal cortex and the hippocampus. For instance, the neu-
rons strongly inverted the choice-direction encodings between the
cue and reward epochs can contribute to pattern separation
served by the CA3 region64. Also, the neurons carried more
choice-direction information in the reward epoch might con-
tribute to integrated reward representations in the CA1 region, in
which individual neurons convey multiple reward positions65.
Given the potentially various anatomical properties of individual
neurons, future studies should combine analytical and rigorous
anatomical approaches to gain a deeper understanding of how a
given population contributes to a larger process carried across
multiple brain regions13.

Methods
Subjects. Seven male Long-Evans rats (Shimizu Laboratory Supplies, Kyoto,
Japan) weighting 278–375 g at the beginning of the training were individually
housed and maintained on a laboratory light/dark cycle (lights on 8:00 A.M. to
9:00 P.M.). Rats were placed on water restriction with ad libitum access to food.
The animals were maintained at 80% of their baseline weight throughout the
experiments. All experiments were implemented in accordance with the guidelines
for the care and use of laboratory animals provided by the Animal Research
Committee of the Doshisha University with its approval.

Behavioral apparatus. The behavioral apparatus (Fig. 1a) has been previously
described13,66. An operant chamber (O’Hara, Tokyo, Japan) with three ports in the
front wall for nose-poke responses was enclosed in a soundproof box (Brain Sci-
ence Idea, Osaka, Japan). Each port was equipped with an infrared sensor to detect
the animals’ nose-poke responses. Visual cues were presented using white light-
emitting diodes (LEDs) (4000 mcd; RS Components, Yokohama, Japan) placed on
the left and right walls of the operant chamber, as shown in Fig. 1a. Cue odors were
presented via the central port through a stainless tube. The odors were mixed with
pure air to produce a 1:10 dilution at a flow rate of 60 ml/min using a custom-built
olfactometer (AALBORG, Orangeburg, NY). Water rewards were delivered from
gravity-fed reservoirs regulated by solenoid valves (The Lee Company, Westbrook,
CT) through stainless tubes placed inside of the left and right target ports. We
controlled stimulus and reward deliveries and measured behavioral responses using
Bpod and Pulse Pal67 (Sanworks, Stony Brook, NY).

Two-alternative forced-choice task. Each trial started when the rats poked their
snout into the central port (Fig. 1b). After a variable delay (200–600 ms, uniform
distribution), a cue randomly selected from four sensory stimuli (left/right LED for
visual modality, S(+)/R(−)-2-octanol for olfactory modality) was delivered. If the
rats successfully maintained their nose in the central port during 1 s after the cue
onset, the “go” sound was delivered, and they were allowed to withdraw from the
central port and to choose either left or right target port based on the task rule (Fig.
1a). The presentations of the cue and the go sound were terminated by the
withdrawal from the central port. When the rats left the central port without
waiting for the go sound, the trial was canceled and followed by a 5 s punish
intertrial-interval. Only correct choices were immediately rewarded by a drop of
water (13 µl for five rats and 16 µl for two rats) from the target port. Rats per-
formed 861 ± 232 trials in a daily recording session (seven rats, 50 sessions).

For two of seven rats (Supplementary Fig. 2), a 500-ms delay period was
inserted between the onset of the target choice and the reward onset to assess the
potential influence of non-orienting movements (licking) and spatial view on
neural responses.

Training. We trained the rats step-by-step to perform the task described above.
The training period typically lasted 4–8 weeks. First, the rats were trained to poke
into the central port and then collect the water reward (20 µl) from the left or right
target port. We gradually extended the duration of the central poke by delaying the
go sound up to 1 s after the poke onset. Next, the rats were trained to discriminate
the odor cues based on the same contingencies as the recording sessions. A variable
delay (200–600 ms) was inserted before the cue onset. After the rats became able to
successfully discriminate the odor cues (>80%), they were also trained to dis-
criminate the visual cues based on the same contingencies as the recording sessions
(>80%). Finally, we interleaved the visual and olfactory trials within a session and
trained the rats to accurately perform the task according to a training performance
criterion (>80%).
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For the two rats (Supplementary Fig. 2), a reward-delay period was introduced
after they acquired the odor discrimination. The reward delay was gradually
extended from 100 to 500 ms.

Mixture of odors. The cue odors, S(+)/R(−)-2-octanol, were mixed in a subset of
sessions to increase the difficulty of the olfactory discrimination and thereby obtaining
a sufficient number of erroneous trials. For instance, we used a 60/40 ratio in a given
session, delivering an odor mixture of 60% S(+)-2-octanol and 40% R(−)-2-octanol.
We maintained the odor discrimination accuracy constant (>80%) throughout the
recording sessions by adjusting the degree of odor mixing before each session.

Surgery. Rats were anesthetized with 2.5% isoflurane before surgery, and it was
maintained throughout surgical procedures. We monitored body temperature,
movements, and hind leg reflex and adjusted the depth of the anesthesia as needed.
An eye ointment was used to keep the eyes moistened throughout the surgery.
Subcutaneous scalp injection of a lidocaine 1% solution provided local anesthesia
before the incision. The left temporalis muscle was retracted to expose the skull
during the surgery. A craniotomy was performed over the anterior part of the left
PRC (AP −3.5 to −3.24 mm, ML 6.6–6.8 mm relative to the bregma, 3.5–4.0 mm
below the brain surface), and a custom-designed electrode was vertically implanted
using a stereotactic manipulator. A stainless-steel screw was placed over the cer-
ebellum and served as the ground during the recordings. We used the mean
response of all the electrodes as a reference. During a week of postsurgical recovery,
we gradually lowered the tetrodes to detect unit activities in the PRC. Electrode
placement was estimated based on the depth and was histologically confirmed at
the end of the experiments.

Histology. Once the experiments were completed, the rats were deeply anesthe-
tized with sodium pentobarbital and then transcardially perfused with phosphate-
buffered saline and 4% paraformaldehyde. The brains were removed and post-fixed
in 4% paraformaldehyde, and 100 μm coronal sections of the brains were prepared
to confirm the recording sites.

Electrophysiological recordings. A custom-designed electrode composed of eight
tetrodes (tungsten wire, 12.5 µm; California Fine Wire, Grover Beach, CA) was
used for the extracellular recordings. The tetrodes individually covered by a
polyimide tube (A-M Systems, Sequim, WA) were placed at a 100-µm separation
and typically had an impedance of 150–700 kΩ at 1 kHz. The signals were recorded
with Open Ephys acquisition board (Open Ephys, Cambridge, MA) at a sampling
rate of 30 kHz and bandpass filtered between 0.6 and 6 kHz. The tetrodes were
lowered approximately 80 µm after each recording session, and thereby indepen-
dent populations of neurons were recorded across the sessions.

Monitoring of body posture during task performance. We used a head-mounted
accelerometer (Intan Technologies, Los Angeles, CA) to obtain postural signals
from the animals (n= 2) during the electrophysiological recordings (Supplemen-
tary Fig. 2). The accelerometer signals (x-, y-, z-axis) were recorded at a sampling
rate of 30 kHz and then downsampled to 100 Hz. To precisely detect the body
posture of the animals, gravity components of the accelerometer signals were
estimated by using a low-pass filter with a cut-off frequency of 2 Hz40. To reduce
the influence from the head angle that each animal typically preferred40, for each
axis, the above-processed signals were normalized to the mean and standard
deviation in the baseline epoch (−400 to 0 ms before the cue onset).

Spike sorting and screening criteria of units. All analyses were performed using
MATLAB (MathWorks, Natick, MA). To detect single-neuron responses, the
spikes were manually clustered with MClust (A.D. Redish) for MATLAB. Only
neurons met the following criteria were included for further analyses: (1) units with
sufficient isolation quality (isolation distance ≥15); (2) units with reliable refractory
periods (violations were <1% of all spikes); and (3) units with sufficient mean firing
rates in the 1 s after the cue onset (>0.5 Hz). On average, we detected 10.9 ± 7.4
neurons in a single recording session, and 6.2 ± 3.4 neurons survived these quality
criteria (total of 312 neurons from seven rats).

Selective responses to choice directions. To evaluate the selective responses to
different directions of choices, we computed a choice-direction selectivity68. We
first grouped correct trials into four types based on the cue modality (visual or
olfactory) and the target choice (left or right). For each modality, we independently
computed the choice-direction selectivity by using ROC analysis69. The choice-
direction selectivity was obtained from the area under the ROC curve (AUC) and
defined as 2 × (AUC− 0.5) ranging from −1 to 1. In our analysis, a positive value
indicated a neuron selectively fired to the left target choice, and a negative value
indicated the opposite. A value of zero indicated the absence of choice-direction
selective responses. To determine statistical significance (P < 0.05), we used per-
mutation tests (1000 iterations). For visualization of the temporal patterns of the
choice-direction selectivity in individual neurons (Figs. 2a and 3, Supplementary
Figs. 1 and 2b), mean firing rates were computed in 10 ms time windows

(smoothed with a Gaussian, σ= 30 ms), and we then computed the choice-
direction selectivity at each time point from those data.

Estimation of P value in bootstrapping procedure. We evaluated the statistical
significance of the decoding analysis and the state space analysis with a boot-
strapping procedure8. We estimated the P value for the bootstrapping procedure by
computing the ratio (1+ X)/(N+ 1), where the number X indicates overlapping
data points between the two distributions, and the number N indicates iterations.
Since we used 1000 bootstraps, two distributions with no overlap resulted in P <
0.001, and two distributions with x% overlap resulted in P ≈ x /100.

Decoding analysis. We employed a cross-temporal pattern analysis42,58 to
investigate the temporal changes in the choice-direction selective responses in the
PRC. Neural responses were pooled across the recording sessions to maximize the
number of neural responses included in the analysis. Here, we refer to the pooled
pseudo-population of the PRC neurons (n= 207 from five rats) as the full popu-
lation. The instantaneous firing rate of each neuron was estimated by the spike
counts in a 150-ms sliding window (10 ms increment). We computed the above
described choice-direction selectivity from the instantaneous firing rates for each
neuron independently for visual and olfactory trials. In this manner, we generated
two independent population vectors for the full population (neurons × time matrix
each for the cue modalities). We obtained a pattern similarity index by computing
the Fisher-transformed Pearson correlation (r′) between these two population
vectors. This index provided the pattern similarity for both equivalent and different
time points (e.g., Fig. 4a). A positive value was interpreted as the evidence for a
reliable choice-direction encoding irrespective of the cue modality.

To estimate the mean performance from the pattern classification analysis, we
randomly resampled the neurons (the same number of neurons as the neural
population analyzed) and computed the choice-direction selectivity in the visual and
olfactory trials. Neural responses were aligned to the withdrawal onset from the central
port (for the cue epoch), target-choice onset (for the reward epoch), and target-choice
offset (for the two return epochs). For the return-epoch responses, we analyzed neural
responses before and after the animals left the target ports in preparation for the next
trials (pre-return epoch: −400 to 0ms before leaving a target port: post-return epoch:
0–400ms after leaving a target port; Supplementary Fig. 4). Only trials where the
animals directly returned from the target port to the central port for the next trial were
included in the analysis. These data allowed us to compute the pattern similarity
indices within an epoch or across two different epochs. To investigate the choice-
direction encodings during these epochs, we averaged the performance within each of
the epochs (the cue, reward, pre-return, and post-return epochs). To obtain a baseline
performance, we averaged the classification performance during the baseline epoch,
−400 to 0ms before the cue onset. We also quantified the pattern similarity of the
neural responses between two epochs (for simplicity, we here refer to these epochs as
A-epoch and B-epoch) by averaging the following two pattern classifications: pattern
classification for A-epoch responses in visual trials and B-epoch responses in olfactory
trials, and for A-epoch responses in olfactory trials and B-epoch responses in visual
trials (e.g., Fig. 4c). We repeated the above processes 1000 times to obtain a
distribution of 1000 different measurements of each pattern classification. To
determine the statistical significance, we compared a distribution obtained from 1000
different pattern classification measurements within an epoch with a baseline
distribution using the above described estimated P value. We considered zero to be a
chance level instead of the baseline distribution when we verified the statistical
significance of the classification across two different epochs.

Decoding analysis of erroneous trials. We included 119 neurons recorded in
sessions with a sufficient number of erroneous target choices (at least 11 trials for both
directions of the target choices) in all the analyses for erroneous trials. Due to the
similarity of the choice-direction selectivity between the different cue modalities in
correct trials (Figs. 2c and 4a), we computed the pattern similarity indices using the
correct visual trials and erroneous olfactory trials to evaluate the influence of erroneous
behavioral performance on the choice-direction encodings (Fig. 4e). In the erroneous
trials, the animals chose the same target port as the correct trials, but the choices were
not made based on the correct cue–target associations. To determine the statistical
significance of the pattern classification performance in the correct and erroneous
trials, we downsampled the correct olfactory trials to match the number of trials for the
erroneous olfactory trials (Fig. 4f). To test whether the classification performance
during each epoch decreased from the correct trials to the erroneous trials, we sub-
tracted the classification performance in the erroneous trials from that in the correct
trials for each resampling. The distribution of the residual performance was compared
with zero by using the estimated P value.

State-space analysis. To understand the population structure and its temporal
change between the cue and reward epochs, we performed the PCA. For each of the
epochs, we constructed 207 neurons × 4 conditions matrix43,44, in which columns
contained trial-averaged z-scored firing rates of each neuron. The instantaneous
firing rate of each neuron (estimated by spike counts in a 150-ms sliding window
with 10 ms increment) was converted to a z-score by normalizing to the mean and
standard deviation of its instantaneous firing rates during the baseline epoch. We
then obtained time-averaged firing rates of the neurons each for the cue and reward
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epochs. By performing PCA on these datasets, we reduced the dimensionality of
the PRC population from 207 neurons to two principal components (Supple-
mentary Fig. 5a). We independently performed this analysis for population
responses during the cue and reward epochs to obtain the cue-epoch and reward-
epoch subspaces.

For data projections onto the above two-dimensional neural subspaces, we
randomly selected 25 trials for each of the four trial conditions. Z-scored firing rates of
each neuron were then obtained by normalizing the data to the mean and standard
deviation of its firing rates during the baseline epoch. We averaged the z-scored firing
rates of each neuron during each of three epochs (the cue, reward, and baseline
epochs) to obtain 207 neurons × 4 conditions matrix for each epoch. To visualize the
population responses, we projected these data onto the two-dimensional PCA space.
This allowed us to obtain a single point reflecting the entire population response for
each of the four conditions. We repeated this procedure five times with different
subsets of 25 trials, and this allowed us to reduce some degree of the variability among
individual trials. To obtain the within-condition distance, we computed the mean of
pairwise Euclidean distances for five points in each of the four conditions and then
averaged those distances across the conditions to obtain a single value for the within-
condition distance. To obtain the across-condition distance, we computed pairwise
distances between two sets of five points obtained from two different conditions in the
same subspace and then averaged them. This procedure was repeated for all the
possible combinations of two different conditions of interest, and we then averaged
those distances to obtain a single value for the across-condition distance. We also
investigated how the representational geometry for the choice directions changed
between different epochs (i.e., the temporal shift of population responses in a neural
subspace). This was achieved by computing the mean of pairwise distances between
two sets of five points obtained from neural responses under a single condition in two
different epochs. The mean distance on the first dimension was obtained for all trial
conditions of interest and then averaged to produce a single value for the across-
condition distance for the temporal shifts.

To visualize variability across different subsets of trials (Fig. 5a) and test statistical
significance, the above analysis was repeated 1000 times with different subsets of
resampled trials. The across-condition distances of the projections on the
corresponding subspaces (that is, the cue-epoch responses onto the cue-epoch
subspace and the reward-epoch responses onto the reward-epoch subspace; Fig. 5a)
were compared with a distribution of the within-condition distances using the above
described estimated P value (Fig. 5b). The across-condition distances larger than the
within-condition distance indicated that different trial conditions were reliably
discriminated at the population level. For projections onto the interchanged subspaces
(that is, the cue-epoch responses onto the reward-epoch subspace and the reward-
epoch responses onto the cue-epoch subspace; Fig. 5a), the across-condition distances
for the different choice directions on the first dimension were computed in each
modality and then averaged. We compared those distances with a distribution of the
within-condition distances on the first dimension by using the estimated P value (Fig.
5c). Similarly, we projected the baseline-epoch responses as negative controls (Fig. 5c,
Supplementary Fig. 5c). Also, to investigate the importance of the temporal response
patterns of individual neurons, we projected randomly shuffled data (Fig. 5c, g), where
the correspondence between the cue-epoch responses and reward-epoch responses
were shuffled among the neurons (Supplementary Fig. 5d). We considered the across-
condition distances of the baseline-epoch responses to be chance when we evaluated
the temporal shifts of representational geometry between the cue and reward epoch in
a neural subspace (Fig. 5g). To understand the relationship between the coherent
choice-direction discriminability and the temporal shifts of representational geometry
between the cue and reward epochs (Fig. 5h), we averaged the across-condition
distances for the different choice directions computed in each of the cue and reward
subspaces (Fig. 5c) and summarized the temporal shifts of the representational
geometry by averaging the temporal shift distances computed in each of the cue and
reward subspaces (Fig. 5g). We directly compared these summarized distances
obtained from each condition in Fig. 5h.

To directly evaluate the contributions of individual neurons to the choice-direction
encodings (Fig. 5f), we performed the following analysis. We first sorted all the
neurons from ones with the highest magnitude of the weighting values on the first
dimension of the cue or reward epoch. For these differently sorted populations, we
performed cluster projections onto the corresponding subspaces with increasing
numbers of neurons. For precise evaluation of each neuron’s contribution, rather than
performing PCA on each of differently sized populations independently, we used the
same projection data in Fig. 5a (that is, the full population data) and replaced the
weighting values of excluded neurons with zero. In each size of the population, the
across-condition distance for the different choice directions on the first dimension was
computed for each modality and then averaged. Those distances were then normalized
to the distance obtained from the full population. We compared the distances from
differently sized populations with those from the full population by the estimated P
value. When the estimated P exceeded 0.05, we considered that the number of neurons
was sufficient to achieve the discriminability of the choice directions equivalent to the
full population.

Statistics and reproducibility. For reproducibility, behavioral and neural data
were obtained from the seven rats. More than 20 well-isolated units were recorded
in each of the rats. We excluded data from rats with an insufficient total number of
recorded units (n < 10 for each). Individual statistical tests are described where

referenced in the manuscript. All the data are presented as mean ± standard
deviation unless otherwise stated.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets analyzed and produced in the present study are available in figshare
repository (https://doi.org/10.6084/m9.figshare.12611666.v2)70.

Code availability
The custom code used for analyses in the present study is available from the
corresponding authors upon reasonable request.
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