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Abstract
In the past decade, the development of immune checkpoint inhibitors in oncological clinical settings was in the forefront.
However, the interest in musculoskeletal tumor patients as candidates for checkpoint inhibition remains underserved. Here,
we are forwarding evidence proposing that galectin-3 (Gal-3) is an additional immune factor in the checkpoint processes. This
review is the result of a large-scale cohort study depicting that overexpression of Gal-3 was widely prevalent in patients with
musculoskeletal tumors, whereas T cell infiltrations were generally suppressed in the tumor microenvironment. Targeting Gal-3
would serve as a novel immune checkpoint inhibitor candidate in patients afflicted with aggressive musculoskeletal tumors.
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1 Galectin-3 discovery

In the early 1980s, limited biochemical differences among
tumor cells with low or high metastatic potentials were report-
ed, and the specific surface characteristics associated with
metastasis were still undefined. It was shown that tumor cell
aggregation and pulmonary metastasis can correlate with dis-
tribution of cell surface dense anionic sites [1]. The following
year, in 1981, a simple sugar, galactose was reported to inhibit
the formation of tumor emboli, leading to the notion that tu-
mor cells express galactose-binding proteins, i.e., lectin. The
carbohydrate-binding protein(s) on the surface of malignant

cells had been implicated in tumor aggressive behaviors. At
that time, it was termed ‘galactoside-specific lectin’ [2]. In
1994, the protein was firstly named ‘galectin-3’ (Gal-3) [3].
Since then, identification studies have clarified that the mole-
cule was also known as IgE-binding protein, MAC2, L-29,
CPB-35, etc., since the names had not been organized at that
time. Additionally, 14 other galectins were discovered and the
family has been classified into three groups according to their
structure: (1) prototypical, (2) tandem repeat, and (3) chimeric.
In human cells, Gal-1-Gal-15 all express an evolutionarily
conserved carbohydrate recognition domain (CRD) that inter-
acts with various glycoproteins containing terminal galacto-
side residues [4]. One of them, e.g., Gal-3, was found to be a
pleiotropic-pluripotent molecule. Presently, consensus is that
Gal-3 works as a key driver of tumor progression and is con-
sidered a promising therapeutic target.

2 Galectin-3 in musculoskeletal tumors

In a recent large-scale cohort study, we show the Gal-3 ex-
pression profile in patients with musculoskeletal tumors. As a
result, Gal-3 was found to be highly expressed in Ewing’s
sarcoma, bone metastasis of breast cancer, a giant cell tumor
of bone, as compared with normal bone. In addition, higher
expressions were observed in rhabdomyosarcoma, fibrosarco-
ma, and angiosarcoma. In certain patients with osteosarcoma,
undifferentiated pleomorphic sarcoma, chondrosarcoma,
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chordoma, synovial sarcoma, liposarcoma, leiomyosarcoma,
and hemangiopericytoma, Gal-3 expression was at relatively
high levels [5]. Thus, the data revealed that Gal-3 expressions
were widely prevalent in musculoskeletal tumors.

In light of the molecular function of Gal-3, it tends to ap-
proach with other glycosylated proteins rather than taking in-
dependent action and thereafter transforms into a malignant
feature. For example, Gal-3 interacts with other apoptosis-
associated proteins such as Nucling, Synexin, Bax, and FasR
(CD95), leading to apoptosis-resistant phenotypes.
Furthermore, Gal-3 also plays a significant role as a modulator
of major signaling pathways, such as Wnt signaling, Ras/Raf/
MAPK signaling, and PI3K/AKT signaling through bindings
with β-catenin, K-Ras, and AKT, respectively, which could
induce dynamic changes in malignant phenotype. Gal-3 is
mainly a cytosolic protein; however, it can translocate into
the nucleus by binding with Impotin, Sufu, and Nup98, where-
in it controls the cell cycle through the interaction with cyclin
A, cyclin D, cyclin E, p21(WAF1), and p27 (KIP1), accelerat-
ing cancer cells’ proliferation. Gal-3 transmigrates in the cyto-
plasm, nucleus, and on the cell surface; thus, Gal-3 shows
unique localization [4]. Furthermore, Gal-3 is transported via
an unknown non-classical pathway into the extracellular milieu
via vesicular release, exosomal secretion, and traverse lipid
bilayer membrane. Due to the function of CRD, Gal-3 binds
with numerous proteins, more than 50molecules as we system-
atically reviewed [4]. Depending on the localization, Gal-3
accelerates malignancy in musculoskeletal tumors.

In patients with osteosarcoma, a higher expression of Gal-3
was reported to be positively correlated with advanced stage
[6], since cytoplasmic Gal-3 enhances the malignant pheno-
type of osteosarcoma [7, 8]. Osteosarcoma cells are capable of
secreting Gal-3 [9], and tumor-secreted Gal-3 influences oste-
oblasts and osteoclasts; Gal-3 inhibits osteoblast differentia-
tion by Notch signaling activation [10] and mediates osteo-
clast fusion by interaction with Myosin-2A, a modulator of
osteoclast differentiation, accelerating osteolytic bone remod-
eling [11]. Thus, tumor-secreting Gal-3 drives bone destruc-
tion. In addition to tumor cells, Gal-3-positive osteoclast pre-
cursors appear to congregate near the matured osteoclasts in
the osteosarcoma microenvironment [11]. Thus, Gal-3 en-
hances the progression of osteosarcoma.

In breast cancer bone metastasis, Gal-3 demonstrates an
osteolytic effect. On the other hand, the cleaved form of
Gal-3 is more abundant in prostate cancer bone metastases,
and the shift to cleaved Gal-3 attenuates the osteoclast differ-
entiation [11]. Of note, during the cancer dissemination pro-
cess, prostate cancer cells preferentially adhere to human bone
marrow endothelium through Gal-3 interaction, enhancing the
bone metastasis [12]. Consistently, Gal-3 antibody or
lactulose-L-leucine, an inhibitor of Gal-3, suppressed skeletal
metastasis in mouse models [13, 14]. These studies indicate
that Gal-3 is essential during the bone dissemination, and

therefore, targeting Gal-3 may preclude malignant cell lodg-
ing in bone metastasis.

In Ewing’s sarcoma, the Gal-3 expression level has been
reported approximately 14-fold higher in comparison with
that of osteosarcoma [15], suggesting a role of more aggres-
sive and bone destructive clinical behavior. We also observed
the potent Gal-3 expressions on the membrane of Ewing’s
sarcoma cells [data not shown], implying the functional role
of tumor aggregation or adhesion. It should be also noted that
previous reports showed that Ewing’s sarcoma secrete
exosomes inc lud ing ga lec t in -3 -b inding pro te in
(LGALS3BP) [16], and it may be a candidate of favorable
prognostic indicator [17], as neutralizing the molecular func-
tion of Gal-3. These evidences imply that inhibition of Gal-3
may suppress the aggressive behavior of Ewing’s sarcoma.

Giant cell tumor of bone, an osteoclast-producing tumor, is
characterized by osteoclastogenic stromal cells and giant cells,
which are excessively multinucleated osteoclast cells. Gal-3-
expressing cells were detected in the vicinity of giant cells,
and some of the giant cells expressed Gal-3, suggesting a role
of osteoclastogenesis [11].

Chordoma often arises from notochord, whereby common
locations of the lesion are sacrum and shows bone destructive
behavior. Previous study indicated that 75–100% of
chordoma were positive for Gal-3 [18, 19]. Considering the
frequency of expression, Gal-3 could contribute to tumor ma-
lignancy of chordoma.

In malignant soft tissue sarcomas, Gal-3 is widely preva-
lent, which is supported by a previous reports that have iden-
tified Gal-3 expression in fibrosarcoma, chondrosarcoma, un-
differentiated pleomorphic sarcoma, liposarcoma,
leiomyosarcoma, rhabdomyosarcoma, angiosarcoma, synovi-
al sarcoma to name but a few [20, 21]. Although the Gal-3
function(s) in most soft tissue sarcoma is yet to be established,
it should be emphasized that Gal-3 inhibition suppresses
angiosarcoma proliferation in vitro [22], implying that Gal-3
may contribute to malignant phenotype of soft tissue sarcoma.

3 Galectin-3, an immune checkpoint molecule

In order to combat the aggressive behavior of musculoskeletal
tumors, immunotherapy has been utilized. As for clinical trials
for soft tissue sarcoma, osteosarcoma, bone metastasis, and
other musculoskeletal tumors, immunotherapies are ongoing
in phase I–II, involving immune checkpoint inhibitors, cancer
vaccines, adoptive cell therapies, and chimeric antigen recep-
tor T cell (CAR-T) therapy [23–27]. A clinical guideline has
recommended pembrolizumab, a programmed cell death pro-
tein 1 (PD1) blocking antibody, only in alveolar soft part
sarcoma, with evidence of efficacy. However, other check-
point inhibitors have shown uncertain results in soft tissue
sarcomas [28]. Thus, in the past decade, numerous
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immunotherapeutic modalities have been developed to over-
come malignant musculoskeletal tumors; however, several at-
tempts have failed to result in beneficial clinical outcomes
with no underlying rationale determined as we mentioned pre-
viously [29]. To overcome these challenges, a novel check-
point target is crucial (Fig. 1a, b).

Gal-3-expressing tumor environments are quite distinctive,
showing various phenotypic alteration, e.g., escape from im-
mune attacks. Specifically, Gal-3 binds with T cell surface
receptors, CD7 and CD29, inducing apoptosis via mitochon-
drial cytochrome c release and caspase-3 activation [30].
Similarly, Gal-3 binds to a complement of T cell surface gly-
coprotein receptors CD45 and CD71, leading to induce T cell
death [31]. Further, Gal-3 promotes TCR downregulation,
which inhibits T cell activation and functions [32]. Most im-
portantly, Gal-3 is capable of binding to lymphocyte-
activation gene 3 (LAG3), which is necessary for activation
CD8+ T cells [33–35]. This interaction was confirmed by im-
munoprecipitation. Further, in order to visualize this finding,
we performed homology modeling of LAG3 and docked it
with CRD of Gal-3 (Fig. 2). LAG3 belongs to the immuno-
globulin superfamily and comprises a 503-amino acid type I
transmembrane protein, in which MHC class II and LSECtin
bind the extracellular domain of LAG3 [36, 37], whereby Gal-
3 interferes the interactions [33]. These evidences suggest that
Gal-3 plays a crucial role in the immune checkpoint, and the
notion leads to the clinical significance that suppression of
Gal-3 enhances the tumor-specific immune response.

4 Galectin-3 interference of T cells’ function
in musculoskeletal tumor patients

In a big data study of musculoskeletal patients, we have in-
vestigated T cell infiltration status, and the result suggested
that CD3+ T cells and CD8+ T cells were predominantly

suppressed in bone tumors. CD4+ T cells were infiltrated in
limited types of tumors including undifferentiated pleomor-
phic sarcoma, chondrosarcoma, and giant cell tumor of bone,
whereas other tumors demonstrated relatively lower infiltra-
tion. Similarly, regarding soft tissue sarcoma, this T cell infil-
tration was largely decreased. These results suggested that T
cell function is fundamentally suppressed in the immunolog-
ical microenvironment of musculoskeletal tumors [38]. The
data imply that the immune checkpoint of T cells’ function
can be inhibited by tumor-derived Gal-3 in the musculoskel-
etal tumor microenvironment.

Also, our prospective clinical study showed that the Gal-3
level of patient serum is positively associated with a clinical
time course of tumor progression [39]. The finding can be
interpretative that the tumor-secreted Gal-3, at least in part,
may interfere with the T cell function in the circulation and/or
tumor microenvironment. Simultaneously, since cancer pa-
tients produce autoantibodies to Gal-3 [39], Gal-3 hinders can-
cer detection/recognition by the endogenous antibodies and/or
immunotherapeutic agents, termed the phenomena as “cancer
stealth” effect [29]. These events may result in T cell function
interference serving as immune checkpoints (Fig. 1a, b).
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Dendritic cellsB cells
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LAG3

Gal-3 LSECtinMHC class II

Gal-3
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LAG3 biding partners

competitive 

inhibition
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Fig. 1 a Musculoskeletal tumors express Gal-3 on the cell surface or
secrete Gal-3 in extracellular milieu, leading to protection from immune
cells. b Competitive inhibition of LAG3 with binding partners. Immune
cells including CD4+ T cells, CD8+ T cells, natural killer (NK) cells,

dendritic cells, and B cells express LAG3. The LAG3 binding with
MHC class II and/or LSECtin activates the function of immune cells,
whereby Gal-3 interferes with these interactions. The figure was pro-
duced using Servier Medical Art with permission

LAG3

Galectin-3

Fig. 2 The molecular image represents docking of LAG3 (blue) and
CRD domain of Gal-3 (red). Since crystal structure of LAG3 is not
known, we performed homology modeling of this protein using
YASARA software, a molecular graphic modeling and simulation
program
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5 Pharmacological development of targeting
galectin-3

To date, no clinically available agents specifically inhibiting
Gal-3 have been reported, although some in vivo studies report-
ed that modified citrus pectin (MCP; A.K.A. GCS-100)) inhibits
tumor progression [40]. Another Gal-3 inhibitor, GR-MD-02
(belapectin; galactoarabino-rhamnogalacturonate), is currently
being researched in a clinical trial for therapeutic function for
nonalcoholic steatohepatitis, severe plaque psoriasis, and meta-
static melanoma [41–44]. GCS-100 was tested in relapsed
chronic lymphocytic leukemia [45] and refractory solid tumors
[46], while similarly, MCP was tested in relapsed prostate can-
cer [47]. These results may explain the “cancer stealth” effects
by tumor-secretingGal-3 or consumption of the inhibitors due to
unspecific binding to other Galectins, in which we proposed that
a larger dose of specific Gal-3 inhibitor may resolve the clinical
dilemma. Hence, we attempt to target the 158–175 amino acid
sequence (HFNPRFNENNRRVIVCNT) in the CRD of Gal-3,
which is responsible for its function based on the 3D structure
[48] (Fig. 3). Of note, the sequence is evolutionarily conserved
among the animal species, suggesting the significance of trans-
lational meaning (Fig. 4). Notably, endogenously produced Gal-

3 autoantibody in cancer patient does not recognize the CRD
[11, 49]. Therefore, we have generated monoclonal neutralizing
antibody against the sequence in order to inhibit the Gal-3 func-
tion, and it could be utilized as immune checkpoint inhibitor to
Gal-3. Thus, suppressing Gal-3 is emerging as one of the im-
mune checkpoint blockage therapies [50].

In conclusion, Gal-3 serves as an immune checkpoint,
whereby targeting Gal-3 may suppress the aggressive poten-
tial of malignant musculoskeletal tumors.
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