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The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/ CRISPR-associated (Cas) system
has emerged as the main technology for gene editing. Successful editing by CRISPR requires an appropri-
ate Cas protein and guide RNA. However, low cleavage efficiency and off-target effects hamper the devel-
opment and application of CRISPR/Cas systems. To predict cleavage efficiency and specificity, numerous
computational approaches have been developed for scoring guide RNAs. Most scores are empirical or
trained by experimental datasets, and scores are implemented using various computational methods.
Herein, we discuss these approaches, focusing mainly on the features or computational methods they uti-
lise. Furthermore, we summarise these tools and give some suggestions for their usage. We also recom-
mend three versatile web-based tools with user-friendly interfaces and preferable functions. The review
provides a comprehensive and up-to-date overview of computational approaches for guide RNA design
that could help users to select the optimal tools for their research.
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1. Introduction

Clustered Regularly Interspaced Short Palindromic Repeat
(CRISPR)/CRISPR-associated (Cas) systems, such as Cas9 [46] and
Cas12a (formerly Cpf1) [118], are the primary tools used for gen-
ome editing due to their various abilities to manipulate, detect,
and image certain DNA and RNA sequences in the cell [50]. The
CRISPR/Cas system was first adapted for genome editing in 2012
[31,46], and subsequent studies have transformed the CRISPR
RNA (crRNA) and trans-activating crRNA (tracrRNA) into a single
guide RNA (sgRNA) that can bind to both the Cas9 protein and
the target DNA sequence. Cas9 protein and sgRNA complex first
scans the appropriate PAM sequence and binds to the targeted gen-
ome loci, then the activated HNH and the RuvC nuclease domain of
Cas9 function to make a DNA double-strand break (DSB) in the
specific region [22,69].

The most frequently used CRISPR nuclease is type II endonucle-
ase Cas9, which recognises the 50-NGG-30 PAM (SpCas9) [73].
Another popular nuclease is CRISPR type V endonuclease Cas12a
(Cpf1), which recognises the 50-TTTV-30 PAM, and shows high
efficiency in both animal and plant organisms
[25,48,49,71,97,118,124]. Recently, several other Cas family pro-
teins have also been discovered and adapted for DNA or RNA edit-
ing events, including Cas12b, Cas13a and Cas14 [2,37,94].

CRISPR-based gene editing is implemented with sequence-
specific nucleases (SSNs) and a sgRNA to achieve precise gene
knock-out (KO) or gene knock-in (KI). Additionally, researchers
developed a catalytically inactive Cas9 (dCas9) that loses endonu-
clease activity, and has been adapted for gene expression regula-
tion (CRISPRa/i) and 3D genome studies [33,66,67,70,84,88].
Furthermore, base editing using modified nCas9 has greatly broad-
ened application of the CRISPR system [32,52,123]. Compared with
previous mature gene editing tools such as zinc-finger nucleases
(ZFNs) and transcription activator-like effector nucleases (TALENs)
[9,10,13,100,121], which use engineered proteins to target and
cleave specific genome loci, CRISPR is lower in cost of both time
and money. This advancing technology is increasingly being
Fig. 1. Schematic diagram of CRISPR/Cas9 syste
deployed, and has great potential for clinical detection, gene ther-
apy and agricultural improvement [3,21,50,126].

However, two major challenges hinder the development and
application of the CRISPR/Cas system: potential off-target effects,
and on-target efficiency (Fig. 1) [112,120]. Successful CRISPR guide
RNA (gRNA) design can resolve these issues [23,96], and powerful
computational approaches facilitate in silico gRNA design
[19,34,104], thereby enabling the design of specific gRNAs for par-
ticular experiments.

In this review, we summarise existing approaches for CRIPSR
guide RNA design and evaluation, and assist users in choosing
favourable tools for their research. Moreover, it aims to make users
aware of the latest computational CRISPR tools and resources.
2. Evaluation of CRISPR cleavage efficiency

In theory, the CRISPR/Cas protein scans the PAM sequence, and
sgRNA recognises target loci and activates endonuclease activity to
cleave specific sites. However, cleavage efficiency varies greatly
among different target sites and/or cell lines [14,21,27,28,51,78,
87,98,99,103,115,117,122,125], suggesting that several features
may influence the binding and cutting efficacy of the sgRNA-Cas
complex. Numerous studies have revealed that gRNA sequence fea-
tures (sequence composition, nucleotide position, GC content),
genetic and epigenetic features (chromatin accessibility, gene
expression) and energetics properties (RNA secondary structure,
melting temperature, free energy) all contribute to gRNA efficacy.
Based on these features, many computational tools have been
developed for designing highly efficient gRNAs. Herein, we intro-
duce these tools based on their features, and evaluate their effi-
ciency (Table 1).
2.1. Guide RNA sequence features

The nucleotide composition of a target sequence is one of
the most important determinants of gRNA efficiency
m at both on-target site and off-target site.



Table 1
Computational methods for evaluation of guide RNA efficiency.

Tool Enzymes Data source Main features Quantitative metrics

E-CRISP [38] Cas9 – SC, GF –
CRISPRscan [78] Cas9, Cpf1 Zebrafish SC Spearman correlation = 0.309, from [36]
evaluateCrispr [40] Cas9 Drosophila SC Spearman correlation = 0.074, from [36]
sgRNAScorer [14,15] Cas9, Cpf1 Human SC, EGF Spearman correlation = 0.225, from [36]
SSC [112] Cas9 Human, Mouse SC Spearman correlation = 0.274, from [36]
WU-CRISPR [106] Cas9 Human, Mouse SC, EP Spearman correlation = 0.215, from [36]
Azimuth [23,29] Cas9 Human, Mouse SC, GF, EP Spearman correlation = 0.366, from [36]
CRISPRater [55] Cas9 Human SC, GF Pearson correlation = 0.399, from [55]
CRISPRpred [86] Cas9 Human, Mouse SC, EP ROC-AUC = 0.85, from [86]
CASPER [75] Cas9, Cpf1 – SC Pearson correlation = 0.443, from [75]
DeepCpf1 [47] Cpf1 Human SC, EGF Spearman correlation = 0.748, from [47]
TSAM [82] Cas9 Human, Mouse, Zebrafish SC, GF, EP Spearman correlation = 0.4, from [82]
TUSCAN [105] Cas9 Human, Mouse, Zebrafish SC, GF Spearman correlation = 0.12, from [105]
uCRISPR [119] Cas9 – SC, EP Spearman correlation = 0.3, from [119]

SC, sequences composition; GF, genetic features; EGF, epigenetic features; EP, energetics properties.
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[24,103,107,112]. Large-scale CRIPSR-based screens in mammals
have shown that guanines are preferred in positions 1 and 2 before
the PAM sequence [103], while thymines are disfavoured within
+/-4 nucleotides surrounding the PAM sequence [107]. Addition-
ally, sequences downstream of PAMs can influence gRNA effi-
ciency, while sequences upstream have no significant effect [24].
Cytosine is preferred at the CRISPR/Cas9 cutting site (-3 position
proximal to PAM) [21,112], and the GC content of the region 4–
13 bases downstream of the PAM sequence contributes to gRNA
efficiency. Based on this key information, several efficiency predic-
tion models have been constructed.

Rule Set 1 is a predictive model built using data derived from
1,841 sgRNAs in human and mouse [24], the score is predicted
by a support vector machine (SVM) model, and a supervised learn-
ing method classifies data in a generalised linear manner. Rule Set
1 is mainly used to investigate sequence features that influence
CRISPR cutting efficiency. Results predicted by this model show a
high correlation with experimental results. To improve the accu-
racy, the authors adapted more datasets and built a new model
in 2016 called Rule Set 2 [23]. In this model, position-
independent nucleotide counts and the location of the sgRNA tar-
get site within the gene were considered to improve predictions
based on their observations. These optimised models were applied
for gRNA design for both CRISPR KO and CRISPRa/i experiments. A
package to predict the gRNA efficiency based on the models was
also developed and implemented in Broad Institute GPP sgRNA
Designer [29].

To unravel the nucleotide preference of gRNA target sites in dif-
ferent CRISPR-based editing events, both CRISPR KO and CRISPRa/i
libraries in mammals were screened [112], and significant differ-
ences in nucleotide preference between CRISPR KO and CRISPRa/i
were detected. Elastic Net is a regularised regression method for
fitting and classifying data that performs better than SVM in some
cases [128]. The Elastic Net algorithm was used to construct mod-
els for both CRISPR KO and CRISPRa/i, and they were applied in
Spacer Scoring for CRISPR (SSC) software to predict the efficiency
of gRNA. Platforms such as E-CRISP, CHOPCHOP and CRISPR-
FOCUS also include this model [12,38,57].

Moreno-Mateos and his colleagues observed that the loading
and activity of sgRNA increased with guanine enrichment and ade-
nine depletion [78]. They measured >1,000 sgRNAs targeting 128
genes in zebrafish and used the logistical regression method to
construct a predictive model that was integrated into CRISPRscan.
WU-CRISPR takes advantage of this data and adds some novel fea-
tures [24,106], resulting in a model with higher precision than sev-
eral other predictive models [14,24,112]. Labuhn et al. identified
PAM-distal GC content-dependent activity and constructed a
model named CRISPRater [55] that was integrated into CRISPR/
Cas9 target online predictor (CCTop), a platform for CRISPR target
prediction [93].

The Church laboratory developed software called sgRNA scorer
to calculate sgRNA on-target scores based on their SVMmodel [14].
A second version of the sgRNA scorer software was proposed that
improved the on-target prediction power and added prediction
for other Cas systems such as SaCas9 and AsCpf1 [15]. Housden
et al. then used a drug target method to screen CRISPR KO effi-
ciency in Drosophila and developed an efficiency prediction tool
[40]. CASPER integrated scores from CRISPRscan and added some
new features to maximise correlations between scores and on-
target experimental data [75]. This tool can also detect off-target
scores and perform multipopulational analysis.
2.2. Genetic and epigenetic features

Genetic and epigenetic features like chromatin accessibility,
gene position and expression are also important factors that influ-
ence sgRNA binding and Cas nucleases cleavage. Many researches
have demonstrated that nucleosomes inhibit Cas9 target cleavage,
and DNase I hypersensitivity and epigenomic markers alter gRNA
efficacy [23,39,44,101,116]. Based on these features, several tools
have been developed. By borrowing knowledge from oligonu-
cleotide design and nucleosome occupancy models, an R package
called predictSGRNA was proposed for evaluation of sgRNA efficacy
[53], and this performed better than other models such as Azimuth
and sgRNA scorer [14,23,29].

Non-homologous end joining (NHEJ) and microhomology-
mediated end joining (MMEJ) are two major pathways which pro-
duce heterogeneous repair outcomes when repairing Cas9-
mediated DSBs. People use CRISPR/Cas9 system to knock out genes
by inducing indels into target genome location. However, CRISPR-
based gene KO may induces in-frame variants in which gene func-
tions are retained. Thus, microhomology-based prediction of
CRISPR on-target efficiency should be considered. To this end,
Bae et al. developed Microhomology-Predictor to improve KO effi-
ciency by reducing in-frame editing [7]. Recent researches have
showed that template-free Cas9-editing outcomes are predictable.
inDelphi was the first model for precise prediction of CRISPR edit-
ing genotype [90]. Soon after, a computational predictor called
FORECasT was developed using >40,000 sgRNAs in different cell
lines [5]. It was shown that most reproducible mutations are single
base insertion, short deletions or longer microhomology-mediated
deletions, in addition, Cas9-editing outcomes were cell-line-
dependent. The Shendure laboratory also built a predictive model
called Lindel for prediction of the insertions and deletions of
CRISPR/Cas9-mediated DSB repair based on local sequence context
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[16]. All these approaches are sure to assist users in guide RNAs
selection for gene disruption.

CRISPR-Cpf1 achieves high efficiency and suffers minor off-
targets, besides, Cpf1 prefers AT-enriched regions. Hence, more
and more studies have adapted Cpf1 for KO screens. However,
models for evaluation of Cpf1 cleavage efficiency are lacking.
DeepCpf1 is an algorithm especially for prediction of Cpf1 activity
[47]. It is implemented within the deep-learning framework and
chromatin accessibility data. This program can significantly
improve the accuracy of Cpf1 activity prediction. In addition, mod-
els for other Cas experiments, such as Cas9, xCas9, and base edition

are also provided on the author’s GitHub (https://github.com/

MyungjaeSong/Paired-Library). CRISPR-DT is a recently developed
platform for prediction of Cpf1 target efficiency [127]. This SVM
model displayed better performance than the deep learning-
based model employed in DeepCpf1.
2.3. Energetics properties

The energetics associated with the formation of the DNA, gRNA
and Cas protein complex are regular and can be analysed to elim-
inate bias among different models, since some energetics methods
may better illustrate the Cas9 editing efficacy [95,107,113].
CRISPRpred includes the positions of nucleotides as well as sec-
ondary structures of sgRNAs to predict the cleavage efficiency,
and this performs better than Rule Set 1 [24,86]. Zhang et al.
recently demonstrated a free energy scheme called uCRISPR for
evaluating the Cas9 editing efficacy, as well as off-target effects
[119]. This model is thought to apply to any cleavage-activity
Cas9 dataset.
2.4. Other considerations for gRNA efficiency

Of note, these predictive models were trained by individual
experiments and rules, and each model generates different on-
target scores for sgRNAs, hence users must be careful when evalu-
ating or designing guide RNAs using these models in their own
experiments. However, several key features are reliable, such as
guanine preference, GC content, seed region and the secondary
structure of gRNAs [65,91,106,112].

The accuracy of different models is controlled by their learning
methods or the approaches of CRISPR activity measurement.
Doench et al. tested multiple training methods and selected the
best-performing one as the kernel of their model [23]. TUSCAN, a
random forest-based model, outperformed models built solely by
linear regression [78,105]. A two-step averaging method (TSAM)
for the regression of cleavage efficiencies also performed better
than many other models [14,23,82,112]. Additionally, measure-
Table 2
Computational methods for prediction of guide RNA specificity.

Tool Enzymes Methods Main features

CasOT [108] Cas9 alignment unlimited mismatch number, pair
Cas-OFFinder [8] costom alignment unlimited mismatch number, GPU
sgRNAcas9 [110] Cas9 alignment max 5 mismatches, paired-gRNA
FlashFry [74] costom alignment unlimited mismatch number, mu
Crisflash [43] Cas9 alignment unlimited mismatch number, var
MIT [41] Cas9 scoring 20 bp sgRNA without PAM
CCTop [93] Cas9, Cpf1 scoring empirically score based on numb
CFD [23] Cas9 scoring 20 bp sgRNA with PAM (enable n
CRISPRoff [4] Cas9 scoring energetics property and sequence
uCRISPR [119] Cas9 scoring energetics property and sequence
CRISTA [1] Cas9 scoring machine learning, sequences com
Elevation [62] Cas9 scoring machine learning, integrate both
DeepCRISPR [18] Cas9 scoring deep learning, sequences compos
ment using sequencing data rather than phenotypic data may gen-
erate fewer false positive results, albeit at a cost [105].

It is critical for users to know which tool best suits their
research. A comprehensive evaluation of different efficiency pre-
diction tools was conducted to examine differences among models
[36], and it revealed differences in the correlation between differ-
ent datasets and models. Furthermore, no model performed excel-
lently across all datasets, suggesting that a careful selection of
CRISPR gRNA design tools is necessary. Users can also evaluate
gRNAs using multiple models and select the best one for their
experiments. Among the available tools, Rule Set 2 and DeepCpf1
are the most used and accurate scoring methods for evaluating
Cas9 and Cpf1 cutting efficacy, and uCRISPR may be more accurate
than some other methods, but it requires further experimental
testing.
3. Prediction of CRISPR cutting specificity

The main obstacle for the application of CRISPR is off-target
effects. CRISPR nucleases may cleave unintended genomic sites
and cause unexpected mutations due to sgRNAs recognising DNA
sequences with a few mismatches and/or DNA/RNA bulges,
referred to as off-target cleavage [41,120]. Off-target effects can
be effectively relieved by predicting CRISPR cutting specificity
and designing optimal gRNAs [41]. To predict the specificity of
CRISPR gRNAs, two main methods have been proposed: (1)
alignment-based method. Based on conventional or specialized
algothrims, gRNAs are aligned to a given genome and off-target
sequences and sites are returned. This method is mainly used for
find out all potential off-targets in silico, (2) Scoring-based method.
sgRNAs should be further scoring and ranking using identified off-
targets from alignment process to select the most specific one for
experiments. Two scoring approaches are shown: hypothesis-
driven, where off-targets are scored based on the contribution of
specific genome context factors to gRNA specificity; learning-
based, where gRNAs are scored and predicted from a training
model that considers the different features affecting specificity.
These methods for prediction of gRNA specificity are discussed
below and some of them are summarised in Table 2.

3.1. Alignment-based methods

In theory, potential off-target sites can be identified by aligning
gRNA sequences to the reference genome based on sequence
homology. Bowtie [59] and BWA [61] are traditional tools for short
sequence alignment that are capable of off-target detection
[36,104]. However, there are several potential issues when using
these tools. First, tools like Bowtie and BWA cannot identify small
PAMs, since these alignment tools were developed for next-
Quantitative metrics

ed-gRNA mode, annotation slow
acceleration, web support middle, fast (use GPU)

mode, annotation, risk evaluation slow
ltiple on/off-target scores, annotation fast
iant data support fast

ROC-AUC = 0.87, from [36]
er of mismatches ROC-AUC = 0.77, from [36]
on-canonical PAM) ROC-AUC = 0.91, from [36]
s composition ROC-AUC = 0.98, from [4]
s composition Pearson correlation = 0.75, from [119]
position and epigenetic feature ROC-AUC = 0.96, from [1]
CFD model and epigenetic features ROC-AUC = 0.98, from [62]
ition and epigenetic feature ROC-AUC = 0.98, from [18]

https://github.com/MyungjaeSong/Paired-Library
https://github.com/MyungjaeSong/Paired-Library
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generation sequencing (NGS) read alignment. Second, these tools
allow very limited mismatches in their seed regions, making align-
ment with default parameters impractical for identifying all poten-
tial off-target sites. A survey using bowtie2 [58] to detect off-
targets failed to find all possible off-target sites, and could only find
off-targets with up to one mismatch [23].

Despite the defects, some gRNA design methods utilise these
tools, and parameters have been modified to fit the demand for
off-target prediction. CCTop uses Bowtie to find off-target sites
by first identifying PAM sites, and matches and mismatches in pro-
tospacer sequences are then searched for by bowtie with modified
parameters [93]. Up to five mismatches are allowed in the proto-
spacer as more mismatches may prevent DSB induction. CCTop
also implements an off-target score for each candidate sgRNA.
CHOPCHOP detects off-target sites using Bowtie with parameters
-v and -L for searching sgRNA core regions [77]. CRISPOR uses
BWA to find all potential off-target sites in iterative mode (‘‘-N”),
and can find all validated off-targets as well as Cas-OFFinder [8,36].

In addition to these traditional tools, many other tools and algo-
rithms have been developed for off-target site detection. Cas-
OFFinder is one of the most popular tools for searching potential
off-target sites, and advantages include no limit to the number of
mismatches, PAM types, gRNA length or high running speed with
GPUs. Cas-OFFinder can also predict off-target sites with 1 bp dele-
tions or insertions (i.e. DNA/RNA bulges). CasOT is implemented to
find Cas9 on-target sites from input sequences, as well as potential
off-target sites with up to six mismatches in the seed region (12 nt
adjacent to the PAM). This tool can also determine whether off-
targets are within a coding exon [108]. Meanwhile, sgRNAcas9 uti-
lises the ultrafast short sequence mapping tool SeqMap [45] to find
off-targets, and classifies all sites into three categories to generate
a final output of the best candidate gRNAs [110]. Recently, two new
alignment-based tools have been developed. Crisflash utilises a
tree-based algorithm to rapidly design CRISPR guide RNAs and
optimise guide accuracy by incorporating user-supplied variant
data [43]. FlashFry rapidly searches off-target sites and provides
much useful information (annotation of off-target sites, on/off-
target scores, GC content, etc.) for candidate gRNAs [74]. Here we
still classified Crisflash and FlashFry as alignment-based methods
since they both propose novel algorithms for off-target searching,
whereas the scoring approaches they use are borrowed from others
[23,24,41,78].

Among these tools, Cas-OFFinder may be the best choice for
identifying all potential off-target sites with any Cas nucleases,
and FlashFry is also worth a try for its high speed and comprehen-
sive outputs.

3.2. Scoring-based methods

3.2.1. Hypothesis-driven methods
Alignment-based methods are reliable for detection of most

potential off-targets, however, not all nucleotide positions contain-
ing mismatches have the same decisive effect on off-target cleav-
age. Additionally, alignment-based prediction always outputs
redundant off-target sites, many which are false-positives,
although users can reduce the number of outputs by restricting
the maximum mismatches when exploring off-target cleavage.
One study compared experimentally validated off-targets and
off-targets predicted by Cas-OFFinder and CCTop, and the results
showed that off-targets detected by the prediction tools only cov-
ered some of the validated sites, while some off-target sites cannot
be predicted solely based on sequence homology [11]. Thus, fea-
tures that influence the nonspecific binding of CRISPR gRNAs need
to be considered to increase the accuracy of off-target detection.

MIT (Hsu-Zhang) score was proposed for off-target evaluation
during the early stages of gene editing by CRISPR. Hsu et al. evalu-
ated >700 guide RNA variants and SpCas9-induced indel mutation
levels at >100 predicted genomic off-target loci [41]. They evalu-
ated the contributions made by different mismatch positions and
numbers in the target 20 bp, and calculated a weight matrix to
determine off-target efficiency for each sgRNA. The authors
claimed that this score accounts for >50% of the variance in cutting
frequency. The MIT score has been integrated into many CRISPR
gRNA design tools such as CHOPCHOP and CRISPOR [36,56].

Cutting frequency determination (CFD) is another popular score
for off-target evaluation. It is noticeable that sgRNA can also bind
genome loci with non-canonical PAMs such as NAG, NCG and
NGA, which may cause off-target cleavage. Doench et al. added
PAM features in their scoring metrics [23]. sgRNAs with mis-
matches and indels in target sequences were also included for
examining correlations between sgRNAs and off-targets. CFD score
was validated with GUIDE-seq and proved to perform better than
MIT score, hence it was adopted by CRISPRscan [78], GuideScan
[83] and CRISPOR [36].

The prediction of sgRNA specificity based on the structural fea-
tures of the Cas9-sgRNA complex proved to be superior to predic-
tion solely based on sequence features. CRISPRoff [4] and uCRISPR
[119] both utilise energetics properties for off-target evaluation.
Compared with other scoring methods like MIT and CFD, they both
yielded better accuracy in off-target prediction. Nevertheless, nei-
ther have not been systematically evaluated by large-scale experi-
ments, and caution should be exercised when using them.

3.2.2. Learning-based methods
Sometimes, empirical algorithms cannot effectively evaluate

off-targets since they only consider minor features, whereas
learning-based methods build complex models using combinations
of multiple features, and they may better predict off-targets. In
recent years, several new approaches for off-target prediction
based on machine learning have been developed.

CRISPR Target Assessment (CRISTA) software uses BWA as the
off-target search tool and implements multiple features (PAM type,
nucleotide composition, GC content, chromatin structure, DNA
methylation, RNA secondary structure, etc.) to predict cleavage
propensity [1]. CRISTA exhibits better performance than MIT,
CCTop and CFD.

The Doench laboratory also developed a linear regression model
for prediction of off-target activity called Elevation that takes both
sequence and chromatin accessibility features into consideration,
as well as observations from others [62]. Elevation predicts indi-
vidual scores for each off-target site, as well as an aggregate score
for gRNAs. This method performs best among MIT, CFD and CCTop.
However, this software can only compute off-target scores for the
human exome (GRCh38) and cannot support other organisms on
their website.

DeepCRISPR is a state-of-the-art computational platform that
unifies sgRNA on-target and off-target site prediction into one
framework with deep learning [18]. It identifies all possible
sequence and epigenetic features that may affect sgRNA KO effi-
cacy by learning from large data. This method was proved to sur-
pass other available off-target prediction tools [23,41,92,93].

3.3. Benchmark of scoring-based methods

Different scoring methods are based on different characteristics
applied by each individual laboratory. In order to compare the
accuracy of different scores, Haeussler et al. assessed four
hypothesis-driven methods for off-target prediction using the
same datasets [36]. CFD score exhibited the best prediction accu-
racy, whereas CCTop performed the worst. Data imbalance, where
the number of true observed off-target sites (OTS) identified by off-
target detection experiments is much less than that of all potential



Table 3
Web-based CRISPR guide RNA design tools.

Tool Website

CHOPCHOP [56,57,77] https://chopchop.cbu.uib.no
CRISPR RGEN Tools [42,79] http://www.rgenome.net/
CRISPOR [20,36] http://crispor.tefor.net
E-CRISP [38] http://www.e-crisp.org/E-CRISP
CCTop [93] https://crispr.cos.uni-heidelberg.de
CRISPR-ERA [64] http://CRISPR-ERA.stanford.edu
CRISPETa [85] http://crispeta.crg.eu
CRISPRscan [78] https://www.crisprscan.org
EuPaGDT [81] http://grna.ctegd.uga.edu
CRISPR-P [60,63] http://crispr.hzau.edu.cn/CRISPR2/
CRISPR-PLANT [76,109] https://www.genome.arizona.edu/crispr2
CRISPR-GE [111] http://skl.scau.edu.cn
inDelphi* [90] https://www.crisprindelphi.design/
FORECasT* [5] https://partslab.sanger.ac.uk/FORECasT
Lindel* [16] https://shendurelab.github.io/Lindel/

Tools marked by asterisk (*) are used for prediction of CRISPR editing outcomes.

Fig. 2. Timeline of the development of web-based tools for CRISPR guide RNA design.
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off-target sites recognized by alignment-based methods, is a com-
mon issue in the learning-based methods. To address the problem,
a systematic survey was conducted to assess the influence of data
imbalance [30]. The authors used bootstrapping sampling and PR-
AUC methods to evaluate two well-established models. They
emphasized the importance of using symmetric data for model
construct and taking unbiased datasets for benchmark. According
to current assessment results, we recommend people to use CFD
score for off-target prediction. Elevation and DeepCRISPR are suit-
able for human genome editing, but CRISPRoff and uCRISPR may
need further evaluation before use.
4. Tools for CRISPR guide RNA design

A CRISPR/Cas complex typically contains a Cas protein and a
sgRNA, both of which determine the cutting activity. However, pro-
tein engineering is a complicated and uncertain strategy for most
researchers, and optimising gRNAs is more feasible and efficient.
A robust gRNA requires maximum on-target efficiency as well as
minimum off-target activity. Basing on these two criteria, numer-
ous computational tools have been developed for high-efficiency
CRISPR gRNA design. However, each tool possesses distinct fea-
tures, and user-friendliness is also important. To acquaint users
with existing gRNA design tools, we provide an overview of most
that are available based on the strength of their features, and this
help users to make appropriate selections. Furthermore, we recom-
mend several functional and user-friendly websites for gRNA
design (Fig. 2, Table 3).
4.1. A comprehensive overview of CRISPR guide RNA design tools

The CRISPR/Cas system was first adapted for gene editing in
2012, and several tools were developed immediately thereafter,
such as Zinc Finger Targeter (ZiFiT) [89], Cas9 guide RNA Design
[68] and CRISPR (http://crispr.mit.edu/) [41]. All these platforms
have been implemented in the design of gRNAs for model organ-
isms. ZiFiT is also used to design Zinc Finger and TALEN modules,
but Cas9 guide RNA Design and CRISPR are now unavailable.

In the following years, various tools for CRISPR gRNA design
emerged, due to both urgent demand for these tools, and because
people have learned more and more about how the CRISPR system
functions and what influences the efficiency and specificity of Cas
cleavage. Many of these tools combine multiple scoring methods
and provide alternative options for users. Some others have also
proposed their own algorithms to rank designed sgRNAs, and this
can assist users in gRNA selection. CHOPCHOP [56,57,77] provides
alternative scores for users such as Rule Set ½ [23,24], SSC [112],
CRISPRscan [78] and deepCpf1 [47]. E-CRISP utilises its own SAE
(Specificity, Annotation, Efficacy) score to determine the quality
of each sgRNA, while Rule Set 1 [24] and SSC [112] are also
included in E-CRISP. CCTop [93] assigns off-target scores for each
sequence empirically, while the CRISPRater score [55] is also
included to predict the efficiency of sgRNAs. CRISPOR [36] is a ver-
satile platform that ranks gRNAs according to different scores for
evaluating potential off-targets in the genome of interest, and for
predicting on–target activity.

A large number of CRISPR/Cas-derived RNA-guided Endonucle-
ases (RGENs) have been identified or modified to improve the cut-
ting efficiency and enlarge the editing range. Some tools enable the
design of gRNAs for RGENs. For example, Cas-Designer [79] allows
users to choose 20 PAM types from different RGENs, while CRISPOR
[20] also offers various PAMs from a defined list. To best serve the
specialised purposes of different experiments, several web-based
tools have been developed. CRISPR-ERA [64] and CHOPCHOP v3
[57] support sgRNA design for the CRISPRa/i system. CRISPETa
[85] is mainly used for genome deletion with paired gRNAs, and
BE-Designer [42] can be used for designing gRNA for base editing.
Recently, three methods have been employed for successively pre-
dicting Cas9-editing outcomes: inDelphi [90], FORECasT [5] and
Lindel [16]. These approaches can help to identify gRNAs based
on forecasting results.

Researchers should choose suitable tools with caution since dif-
ferent tools are in favour of different genomes or cell types. For
instance, Yeastriction [72] is specialised for yeast, FlyCRISPR [35]
is specific for Drosophila, EuPaGDT [81] is recommended for
eukaryotic pathogens, and CRISPR-P [60,63], CRISPR-PLANT
[76,109] and CRISPR-GE [111] are all implemented for genome

https://chopchop.cbu.uib.no
http://www.rgenome.net/
http://crispor.tefor.net
http://www.e-crisp.org/E-CRISP
https://crispr.cos.uni-heidelberg.de
http://CRISPR-ERA.stanford.edu
http://crispeta.crg.eu
https://www.crisprscan.org
http://grna.ctegd.uga.edu
http://crispr.hzau.edu.cn/CRISPR2/
https://www.genome.arizona.edu/crispr2
http://skl.scau.edu.cn
https://www.crisprindelphi.design/
https://partslab.sanger.ac.uk/FORECasT
https://shendurelab.github.io/Lindel/
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editing in plants. Also, user-friendliness is essential for these web-
based design tools. Based on these considerations, we propose
three comprehensive web-based platforms for CRISPR gRNA
design.

4.2. Three comprehensive web platforms for CRISPR guide RNA design

4.2.1. CHOPCHOP
CHOPCHOP has a succinct interface with well-rounded func-

tions, >200 genomes are available on the website, and users can
provide gene names, genomic coordinates or target sequences as
inputs. If a gene is given, users can set specific regions of the gene
as targets, such as coding sequences or promoters. Before design-
ing gRNAs, two off-target detection methods and seven efficiency
scores can be chosen, which aids users in selecting optimal gRNAs
for their research.

To satisfy different experimental purposes, CRISPR Cas9 nucle-
ase/nickase, Cpf1, CasX, C2C2 and TALEN are all supported by
CHOPCHOP, and various modes of DNA targeting are optional such
as KO/KI, gene activation/repression, and nanopore enrichment. In
activation/repression mode, gRNAs are designed to target the pro-
moter region and its flanking sites in order to bring the activating/
repressing domain into close proximity with the transcription start
site [17,54]. Meanwhile, nanopore enrichment mode is imple-
mented to design sgRNAs for long fragment excision within
40 kb. Additionally, the inDelphi model has been integrated into
CHOPCHOP for repair profile prediction by Cas9 in five cell types
[90].

After clicking the ‘Find Target Sites’ button, a results table is
shown, and each candidate gRNA has a rank, genomic information,
GC content, self-complementarity score, mismatch number (0–3)
and an efficiency score. A graphical view of all gRNAs is also pro-
vided in the UCSC Genome Browser, which helps users to select
optimal gRNAs.

4.2.2. CRISPR RGEN tools
CRISPR RGEN tools, computational tools and libraries for RNA-

guided endonucleases, are maintained by the Bae laboratory, and
libraries comprise nine useful tools including Cas-OFFinder [8],
Cas-Designer [79] and Digenome-Seq [80]. Herein, we mainly dis-
cuss the two gRNA design tools Cas-Designer and BE-Designer [42].

Compared with other designer tools, Cas-Designer allows DNA/
RNA bulges when performing off-target detection. Additionally,
this detection method is more rapid than others due to the Cas-
OFFinder algorithm. Genomic sequences or coordinates and fasta
file formats are allowed as inputs. Over 350 genomes and 20
PAM types are specified for users, and outputs include target
sequences as well as out-of-frame score (calculate by microhomol-
ogy), mismatch number (0–2) and off-target sites with up to 1 bp
bulge. On/off-target sites are redirected to the Ensembl genome
browser [26], which is capable of further inspection.

Unlike Cas-Designer, BE-Designer is primarily implemented for
base editing. In this tool, four methods of base editing are specified,
and the editing window region is also adjustable. After the design
phase, three outcomes are based on different coding types, and
gRNAs, editing window sequences and amino acids are highlighted
in a user-friendly manner. This tool is a good choice for base
editing.

4.2.3. CRISPOR
Since many tools have been developed for highly efficient

CRISPR gRNA design, an ensemble of multiple tools can be useful,
and CRISPOR does this well [20,36]. At present, CRISPOR contains
417 genomes and 19 PAM types, and can meet the needs of most
users. CRISPOR takes genome coordinates and sequences
<2,000 bp as inputs and provides comprehensive information as
outputs. By default, results are shown in two parts; visualisation
of PAM sites along the given sequence, which allows for download-
ing using multiple formats including fasta, GenBank and Snap-
Gene; a table including all information for each predicted gRNA
is also generated. In the table, two specificity scores (MIT and
CFD) and 10 efficiency scores (Rule Set 2, CRISPRscan, etc.) are cal-
culated [23,41,78]. Furthermore, Microhomology and Lindel scores
are also provided for outcome prediction [7,16]. Warnings such as
extreme GC content and poly-T values are indicated, the table is
downloadable, and candidate off-target sites with up to four mis-
matches can be visualised and downloaded.

In addition to gRNA design, CRISPOR designs primers for each
gRNA as well as off-target sites. These primers are useful when
conducting on/off-target validation or in vitro expression experi-
ments. Furthermore, CRISPOR enables filtering of gRNAs with
genomic variants based on well-known variant databases or
marked input sequences with N characters. Thus, CRISPOR may
be the best tool for designing gRNAs.
5. Summary and perspectives

CRISPR/Cas technology has emerged as an advanced strategy for
functional genomics, crop breeding and precise medicine. Guide
RNAs are indispensable for CRISPR-based editing, and computa-
tional approaches provide assistance for efficient gRNA design.
Numerous tools have been developed for CRISPR gRNA design
and evaluation. However, many issues remain. For example, exper-
imental datasets used to build models for predicting sgRNA speci-
ficity or efficiency are disparate; CRISPRscan score performs worse
in mammals than in zebrafish, the genome the predictive model
was trained in [36]. Researchers should therefore know the
strengths and weaknesses of each scoring method, and select the
optimal tool for their research.

As we become more aware of the mechanisms by which Cas
proteins recognise gRNAs, and bind to and cleave target loci, more
and more novel features contributing to cutting efficiency and
specificity are being identified, including sequence composition.
For instance, low chromatin accessibility may block access of
Cas9, while open chromatin regions are more likely to cause unde-
sired mutations [39,92]. In practice, specificity is more important
than efficiency for application of CRISPR. However, several off-
targets remain indecipherable using current tools, and discovery
of novel features may minimise off-target effects.

Too much choice is not always desirable, and an unbiased eval-
uation can provide guidance. To this end, the Liu laboratory has
conducted the benchmarking [30,114], and Haeussler et al. per-
formed a comparison of different predictive scores and integrated
most into CRISPOR [36]. None of the tools excel when using hetero-
geneous data, due to cell-specific or species-specific training mod-
els. Therefore, more cell types need to be evaluated. Also, plant and
some animal genomes should be analysed thoroughly, since
human or mouse have dominated to date. Moreover, it will be ben-
eficial if useful features of multiple tools are combined in future
software packages.

The major outcomes of Cas9 cleavage is non-random and pre-
dictable [102], and several tools have been created for prediction
of CRISPR-Cas9 outcomes [5,16,90]. Such findings facilitate more
accurate gene editing. However, existing tools cannot account for
large indels, homozygous sites and the activity of nucleases other
than SpCas9, and this should be resolved in future [6].

In summary, the development of computational approaches has
revolutionised the design of effective gRNAs, and CRISPR-based
gene therapies and customised gene editing may come within
reach. It is likely that CRISPR technology will continue to become
more powerful in the coming years.
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